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Cyber	Physical	Systems	
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Predictability	requires	determinacy	and	depends	on	timing,	
including	execution	times	and	network	delays.	



  

What	is	Real	Time?	

•  fast	computation	
•  prioritized	scheduling	
•  computation	on	streaming	data	
•  bounded	execution	time	
•  temporal	semantics	in	programs	
•  temporal	semantics	in	networks	
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The image cannot be displayed. Your computer may not have enough memory to open the image, or the image 
may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may 
have to delete the image and then insert it again.

These	are	very	different	from	one	another.	
We	have	to	decide	which	to	focus	on.	



  

Achieving	Real	Time	

•  overengineering	
•  using	old	technology	
•  response-time	analysis	
•  real-time	operating	systems	(RTOSs)	
•  specialized	networks	
•  extensive	testing	and	validation	
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Achieving	Real	Time	in	Practice	

•  overengineering	
•  using	old	technology	
•  response-time	analysis	
•  real-time	operating	systems	(RTOSs)	
•  specialized	networks	
•  extensive	testing	and	validation	
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Maybe	we	can	do	better?	



  

Correct execution of a program in all widely used 
programming languages, and correct delivery of a network 
message in all general-purpose networks has nothing to do 
with how long it takes to do anything. 
 

	
Programmers	have	to	step	outside	the	
programming	abstractions	to	specify	timing	
behavior.	
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The Challenge: Timing is not part 
of Software Semantics	



  

// Source code is a model: 
for (int i=0; i<10; i++) { 
  x[i] = a[i]*b[j-i]; 
  notify(x[i]); 
} 

Semantics	is	the		
Meaning	of	a	Model	
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UML	

Ptolemy	 Simulink	

A	model	is	any	description	of	a	system	that	is	
not	the	thing-in-itself.	

(das	Ding	an	sich		in	Kantian	philosophy).	



  

Timing	of	programs	emerges	from	
the	implementation	

•  Pipeline	hazards	
•  Cache	effects	
•  Variable	DRAM	latencies	
•  Speculative	execution	
•  Interrupts	
•  Forwarding	
•  Dynamic	voltage/frequency	
•  …	
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An	Epiphany	
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•  In	science,	the	value	of	a	model	lies	in	how	well	its	
behavior	matches	that	of	the	physical	system.	

•  In	engineering,	the	value	of	the	physical	system	lies	
in	how	well	its	behavior	matches	that	of	the	model.	

A	scientist	asks,	“Can	I	make	a	model	for	this	thing?”		
An	engineer	asks,	“Can	I	make	a	thing	for	this	model?”	
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The	Value	of	Models	



  

Models	vs.	Reality	

In	this	example,	
the	modeling	
framework	is	
calculus	and	
Newton’s	laws.	
	
Fidelity	is	how	
well	the	model	
and	its	target	
match	
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The	model	

The	target	
(the	thing	
being	
modeled).	



  

A	Model	
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Image	by	Dominique	Toussaint,	GNU	Free	Documentation	License,	Version	1.2	or	later.	
	



  

A	Physical	Realization	
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Model	Fidelity	

•  To	a	scientist,	the	model	is	flawed.	
•  To	an	engineer,	the	realization	is	flawed.	

I’m	an	engineer…	
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Useful	Models	and	Useful	Things	

“Essentially,	all	models	are	wrong,		
but	some	are	useful.”	

	
Box,	G.	E.	P.	and	N.	R.	Draper,	1987:	Empirical	Model-Building	and	Response	
Surfaces.	Wiley	Series	in	Probability	and	Statistics,	Wiley.		

	
“Essentially,	all	system	implementations		

are	wrong,	but	some	are	useful.”	
	
Lee	and	Sirjani,	“What	good	are	models,”	FACS	2018.	
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The	Value	of	Simulation	

	
“Simulation	is	doomed	to	succeed.”	

[anonymous]	
	

Could	this	statement	be	confusing	engineering	
models	for	scientific	ones?	
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Lee	and	Sirjani,	“What	good	are	models,”	FACS	2018.	



  

Changing	the	Question	

Is	the	question	whether	we	can	build	models	
describing	the	behavior	of	real-time	systems?	
	
Or	
	
Is	the	question	whether	we	can	build	real-time	
systems	with	behavior	matching	our	models?	
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Consider	Chip	Design	

19 

A	piece	of	silicon	that	
doesn’t	behave	like	the	
model	is	just	beach	
sand.	
	

Intel	Haswell,	each	with	1.4	billion	transistors	



  

The hardware out of which we build 
computers is capable of delivering “correct” 
computations and precise timing… 

 
Synchronous digital logic delivers 
precise, repeatable timing. 
 
 
 
… but the overlaying software 
abstractions discard timing. 

// Perform the convolution. 
for (int i=0; i<10; i++) { 
  x[i] = a[i]*b[j-i]; 
  // Notify listeners. 
  notify(x[i]); 
} 
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PRET Machines – Giving Software the 
Capabilities its Hardware Already Has. 

•  PREcision-Timed processors = PRET 
•  Predictable, REpeatable Timing = PRET 
•  Performance with REpeatable Timing = PRET 

= PRET + 
Computing 

With time 

// Perform the convolution. 
for (int i=0; i<10; i++) { 
  x[i] = a[i]*b[j-i]; 
  // Notify listeners. 
  notify(x[i]); 
} 

http://chess.eecs.berkeley.edu/pret	
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Major	Challenges	
and	existence	proofs	that	they	can	be	met	

•  Pipelines	
–  fine-grain	multithreading	

•  Memory	hierarchy	
– memory	controllers	with	controllable	latency	

•  I/O	
–  threaded	interrupts	with	zero	effect	on	timing	
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Three	Generations	of	PRET	
Machines	at	Berkeley	

•  PRET1,	Sparc-based	(simulation	only)	
–  [Lickly	et	al.,	CASES,	2008]	

•  PTARM,	ARM-based	(FPGA	implementation)	
–  [Liu	et	al.,	ICCD,	2012]	

•  FlexPRET,	RISC-V-based	(FPGA	+	simulation)	
–  [Zimmer	et	al.,	RTAS,	2014,	PhD	Thesis	2015]	
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Hardware	
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Our Second Generation PRET 
PTArm, a soft core on a 
Xilinx Virtex 5 FPGA (2012) 
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Our	Third-Generation	PRET:	
Open-Source	FlexPRET	(Zimmer	2014/15)	

•  32-bit,	5-stage	thread	interleaved	pipeline,	RISC-V	ISA	
–  Hard	real-time	HW	threads:	
scheduled	at	constant	rate	for	isolation	and	repeatability.	

–  Soft	real-time	HW	threads:		
share	all	available	cycles	for	efficiency.	

•  Deployed	on	Xilinx	FPGA	
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SRT thread 

Hardware	
thread	Hardware	
thread	Hardware	
thread	Hardware	
thread	

FlexPRET 
Hard-Real-Time (HRT) Threads 
Interleaved with Soft-Real-Time (SRT) Threads 
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Fact	

The	real-time	performance	of	a	FlexPRET	
machine	is	never	worse	than	that	of	a	
conventional	machine.	
	
Proof:	A	FlexPRET	machine	is	a	conventional	
machine	if	the	memory-mapped	registers	
controlling	HRT	and	SRT	threads	is	set	to	have	
only	one	thread,	a	SRT	thread.	

27 Lee,	Berkeley	



  

The	Cost	(Worst	Case)	

A	baseline	RISC-V	without	any	complex	
instructions	(floating	point,	integer	division,	
packed	instructions)	can	be	realized	on	an	FPGA	
with	580	flip	flops	and	2,788	LUTs.	
A	4-thread	FlexPRET	can	be	realized	with	908	
flip	flops	and	3,943	LUTs,	an	increase	of	56%	and	
41%	respectively.	
	
Percentage	is	much	lower	with	floating	point,	division,	etc.	
[Zimmer,	Broman,	Shaver,	Lee,	RTAS	2014]	
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About	Interrupts	

“[M]any	a	systems	programmer’s	
grey	hair	bears	witness	to	the	
fact	that	we	should	not	talk	
lightly	about	the	logical	problems	
created	by	that	feature”	
	
	 	 	-	Edsger	Dijkstra	(1972)	

29 Lee,	Berkeley	



  

Interrupts	

•  Nondeterministically	interleaved	with	program	
•  Make	response	time	>	execution	time	
•  Disrupt	cache	and	branch	predictors	
•  Overhead	of	context	switching	

•  For	WCET	analysis,	have	to	disable	interrupts	
•  Disabling	interrupts	increases	variability	in	
response	time	

30 Lee,	Berkeley	



  

Interrupts	

Scientific	solution:	
•  Model	all	these	effects	

Engineering	solution:	
•  Eliminate	all	these	effects	

The	latter	is	what	PRET	machines	do.	

31 Lee,	Berkeley	



  

Interrupt Handler Thread 
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FlexPRET I/O 
Interrupt Handler Thread Option 
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A	similar	strategy	is	
also	used	by	XMOS,	
but	with	less	isolation.	



  

Abstract	PRET	Machines	(APM)	

RTSS,	2017,	Paris.	
This	paper	shows	that	achieving	deterministic	response	
times	that	meet	deadlines,	when	that	is	feasible,	
comes	at	no	cost	in	worst-case	response	times.	
	

This	is	shown	for	a	task	model	of	N	sporadic	
independent	tasks	with	deadlines.	
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Intuition	

•  N	sporadic	real-time	tasks	with	minimum	
interarrival	time	Ti,	deadlines	Di,	and	WCET	Ci.	

Theorem:	When	Ti	=	Di,	PRET	yields	deterministic	
response	times	no	worse	than	the	worst	case	
response	time	of	a	conventional	architecture.	
	

When	Ti	>	Di,	if	any	processor	can	deliver	
deterministic	response	times,	PRET	will,	with	worst	
case	response	time	no	worse	than	a	conventional	
architecture.	
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Benefits	of	PRET	
(Even	if	you	don’t	care	about	determinism)	

•  Very	low	context	switch	overhead	
–  Up	to	the	number	of	hardware	threads.	
–  Conventional	overhead	above	that.	

•  Improved	performance	
–  Can	eliminate	pipeline	bubbles.	

•  High-precision	timing	instructions	
–  Nanoseconds	of	precision	are	possible.	

•  Tighter	execution-time	analysis	
–  Especially	with	more	concurrency.	
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Benefits	of	PRET	
(If	you	take	advantage	of	determinism)	

•  Modularity	
–  Non-interference	between	tasks	(even	with	interrupts).	

•  Exactness	
–  Get	not	just	WCET,	but	actual	response	time.	

•  Repeatability	
–  Works	in	the	field	like	on	the	bench.	

•  Complexity	
–  More	hard-real-time	tasks	is	better	than	fewer.	

•  Certifiability	
–  Every	correct	execution	of	the	software	gives	the	same	behavior.	

•  Energy	
–  Reduce	voltage	and	frequency	to	the	minimum	to	meet	deadlines.	
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Achieving	Real	Time	in	Practice	

•  overengineering	
•  using	old	technology	
•  response-time	analysis	
•  real-time	operating	systems	(RTOSs)	
•  specialized	networks	
•  extensive	testing	and	validation	
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What	about	the	programming	model?	

✔	
✔	
✔	

✔	



  

Engineering	Models	for	Real-Time	
Cyber-Physical	Systems	

	

	
•  PRET:	time-deterministic	architectures	

–  http://chess.eecs.berkeley.edu/pret		

•  PTIDES:	distributed	real-time	software	
–  http://chess.eecs.berkeley.edu/ptides	
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These	enable	models	
with	tightly	controlled	
timing	and	
deterministic	
behaviors.	
	
We	have	shown	that	
that	these	models	are	
practically	realizable	at	
reasonable	cost.	



  

Roots	of	the	Idea	

ACM	Transactions	on	Programming	Languages	and	Systems,	1984.	
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Abstract:	Discrete-event	(DE)	models	are	formal	system	specifications	that	
have	analyzable	deterministic	behaviors.	Using	a	global,	consistent	notion	of	
time,	DE	components	communicate	via	time-stamped	events.	DE	models	
have	primarily	been	used	in	performance	modeling	and	simulation,	where	
time	stamps	are	a	modeling	property	bearing	no	relationship	to	real	time	
during	execution	of	the	model.	In	this	paper,	we	extend	DE	models	with	the	
capability	of	relating	certain	events	to	physical	time…	
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Ptides – A Robust Distributed DE 
MoC for IoIT Applications  



  

Google	Spanner	–	A	Reinvention	

Google	
independently	
developed	a	
very	similar	
technique	and	
applied	it	to	
distributed	
databases.	

Lee,	Berkeley	 41 

	Proceedings	of	OSDI	2012	



  

Google	Spanner	–		
A	Reinvention	of	Ptides	
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Distributed	database	with	redundant	
storage	and	query	handling	across	data	
centers.	

Update	to	a	record	
comes	in.	Time	stamp	t1.	

Query	for	the	same	record	
comes	in.	Time	stamp	t2.	



  

Google	Spanner	–		
A	Reinvention	of	Ptides	
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Query	for	the	same	record	
comes	in.	Time	stamp	t2.	

If	t2	<	t1,	the	query	response	should	be	the	
pre-update	value.	Otherwise,	it	should	be	
the	post-update	value.	

Update	to	a	record	
comes	in.	Time	stamp	t1.	



  

Google	Spanner:		
When	to	Respond?	
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Query	for	the	same	record	
comes	in.	Time	stamp	t2.	

When	the	local	clock	time	exceeds		
t2	+	e	+	b,	issue	the	current	record	
value	as	a	response.	

Synchronize	clocks	
with	error	bound	e.	

Communication	
latency	bound	b.	

Update	to	a	record	
comes	in.	Time	stamp	t1.	



  

Google	Spanner:	Fault!	
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Query	for	the	same	record	
comes	in.	Time	stamp	t2.	

If	after	sending	a	response,	we	receive	a	
record	update	with	time	stamp	t1	<	t2	
declare	a	fault.	Spanner	handles	this	with	a	
transaction	schema.	

Synchronize	clocks	
with	error	bound	e.	

Communication	
latency	bound	b.	

Update	to	a	record	
comes	in.	Time	stamp	t1.	



  

Ptides	Applies	this	Idea	to	
Distributed	Real-Time	Systems	
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Time	stamp	value	is	a	
deadline	

Time	stamp	value	is	
time	of	measurement	

Actors	wrap	
sensors	

Actors	wrap	
actuators	



  

Ptides:	Deterministic		
Distributed	Real-Time	

Assume	bounds	on:	
•  clock	synchronization	error	
•  network	latency	
then	events	are	processed	in	time-stamp	order	
at	every	component.		If	in	addition	we	assume	
•  bounds	on	execution	time	
then	events	are	delivered	to	actuators	on	time.	
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See	http://chess.eecs.berkeley.edu/ptides	



  

PTIDES	Requires	Synchronized	
Clocks	with	Bounded	Error	

Every	engineered	design	
makes	assumptions	about	
its	execution	platform.	
	
	

Ubiquitous	clock	
synchronization	gives	us	a	
new	and	powerful	tool.		
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Lingua	Franca	

A	meta-language	for	PRET,	Ptides,	and	
predictable	concurrent	systems	in	general.	
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To	Appear,	Design	Automation	Conference	(DAC),	June,	2019.	



  

Lingua	Franca	

A	meta-language	for	PRET,	Ptides,	and	
predictable	concurrent	systems	in	general.	
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To	Appear,	Design	Automation	Conference	(DAC),	June,	2019.	



  

Conclusion	

•  In	science,	the	value	of	a	model	lies	in	
how	well	its	behavior	matches	that	of	
the	physical	system.	

•  In	engineering,	the	value	of	the	physical	
system	lies	in	how	well	its	behavior	
matches	that	of	the	model.	

My	message:		
Do	less	science	and	more	engineering.	
	
http://ptolemy.berkeley.edu/pret	
http://ptolemy.berkeley.edu/ptides			

http://platoandthenerd.org		


