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9.1. ORDINARY DIFFERENTIAL EQUATIONS

Continuous-time models are realized using the Ptolemy II continuous-time (CT) domain
(also called the Continuous domain), which models physical processes. This domain is
particularly useful for cyber-physical systems, which are characterized by their mixture
of computational and physical processes.

The CT domain conceptually models time as a continuum. It exploits the superdense
time model in Ptolemy II to process signals with discontinuities, signals that mix discrete
and continuous portions, and purely discrete signals. The resulting models can be com-
bined hierarchically with discrete event models, and modal models can be used to develop
hybrid systems.

9.1 Ordinary Differential Equations

The continuous dynamics of physical processes are represented using ordinary differ-
ential equations (ODEs), which are differential equations over a time variable. The
Ptolemy II models of continuous-time systems are similar to those used in Simulink
(from The MathWorks), but Ptolemy’s use of superdense time provides cleaner model-
ing of mixed signal and hybrid systems (Lee and Zheng, 2007). This section focuses on
how continuous dynamics are specified in a Ptolemy II model and how the Continuous
director executes the resulting models.

9.1.1 Integrator

In Ptolemy II, differential equations are represented using Integrator actors in feedback
loops. At time t, the output of an Integrator actor is given by

x(t) = x0 +

∫ t

t0

ẋ(τ)dτ, (9.1)

where x0 is the initialState of the Integrator, t0 is the startTime of the director, and ẋ is the
input signal to the Integrator. Note that since the output x of the Integrator is the integral
of its input ẋ, then at any given time, the input ẋ is the derivative of the output x,

ẋ(t) =
d

dt
x(t). (9.2)
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9. CONTINUOUS-TIME MODELS

Thus, the system describes either an integral equation or a differential equation, depending
on which of these two forms you use. ODEs can be represented using Integrator actors,
as illustrated by the following example.

Example 9.1: The well-known Lorenz attractor is a non-linear feedback system
that exhibits a style of chaotic behavior known as a strange attractor. The model
in Figure 9.1 is a block diagram representation of the set of nonlinear ODEs that
govern the behavior of this system. Let the output of the top integrator be x1, the
output of the middle integrator be x2, and the output of the bottom integrator be x3.

Figure 9.1: A model describing a set of nonlinear ordinary differential equations.
[online]
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9.1. ORDINARY DIFFERENTIAL EQUATIONS

Then the equations described by Figure 9.1 are

ẋ1(t) = σ(x2(t)− x1(t))
ẋ2(t) = (λ− x3(t))x1(t)− x2(t) (9.3)

ẋ3(t) = x1(t)x2(t)− bx3(t)

where σ, λ, and b are real-valued constants. For each equation, the expression on
the right side of the equals sign is implemented by an Expression actor, whose icon
shows the expression. Each expression refers to parameters (such as lambda for λ
and sigma for σ) and input ports of the actor (such as x1 for x1 and x2 for x2). The
expression in each Expression actor can be edited by double clicking on the actor,
and the parameter values can be edited by double clicking on the parameters, which
are shown next to bullets at the top.

The three integrators specify initial values for x1, x2, and x3; these values can be
changed by double-clicking on the corresponding Integrator icon. In this example,
all three initial values are set to 1.0 (not shown in the figure).

The Continuous Director, shown at the upper left, manages the simulation of the model.
It contains a sophisticated ODE solver with several key parameters. These parameters can
be accessed by double clicking on the director, which results in the dialog box shown in
Figure 9.2.

Figure 9.2: Dialog box showing director parameters for the model in Figure 9.1.
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9. CONTINUOUS-TIME MODELS

The simplest parameters are startTime and stopTime, which define the region of the time
line over which the simulation will execute. The effects of the other parameters are ex-
plored in Exercise 1.

The output of the Lorenz model is shown in Figure 9.3. The XY Plotter displays x1(t) vs.
x2(t) for values of t in between startTime and stopTime.

Like the Lorenz model, many continuous-time models contain integrators in feedback
loops. Instead of using Integrator actors, however, it is possible to use more elaborate
blocks that implement linear and non-linear dynamics, as described below.
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Figure 9.3: Result of running the Lorenz model.
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9.1. ORDINARY DIFFERENTIAL EQUATIONS

9.1.2 Transfer Functions

When representing continuous-time systems, it is often more convenient to use a higher-
level description than individual integrators. For example, for linear time invariant (LTI)
systems, it is common to characterize their input output behavior in terms of a transfer
function, which is the Laplace transform of the impulse response. Specifically, for an
input x and output y, the transfer function may be given as a function of a complex
variable s:

H(s) =
Y (s)

X(s)
=
b1s

m−1 + b2s
m−2 + · · · bm

a1sn−1 + a2sn−2 + · · · an
(9.4)

where Y and X are the Laplace transforms of y and x, respectively. The number n of
denominator coefficients is strictly greater than the number m of numerator coefficients.
A system that is described by a transfer function can be constructed using individual inte-
grators, but is more conveniently implemented using the ContinuousTransferFunction
actor, as illustrated by the following example.

Example 9.2: Consider the model in Figure 9.4, which produces the plot in Figure
9.5. This model generates a square wave using a ContinuousClock actor (see side-
bar on page 326) and feeds that square wave into a ContinuousTransferFunction
actor. The transfer function implemented by the ContinuousTransferFunction actor
is given by the following:

H(s) =
Y (s)

X(s)
=

1

0.001s2 + 0.01s+ 1
.

Figure 9.4: Model illustrating the use of ContinuousTransferFunction. [online]
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9. CONTINUOUS-TIME MODELS
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Figure 9.5: Result of running the model in Figure 9.4.

Comparing the equation above to Equation (9.4), we see that m = 1 and n = 3,
with additional parameters as follows:

b1 = 1

a1 = 0.001, a2 = 0.01, a3 = 1.0

The parameters of the actor are therefore set to

numerator = {1.0}
denominator = {0.001, 0.01, 1.0}

An equivalent model constructed with individual integrators is shown in Figure 9.6
(see Exercise 2 to explore why these are equivalent).

The previous example shows that a complex network of integrators, gains, and adders
can be represented compactly using the ContinuousTransferFunction actor. In fact, this
actor uses the specified parameter values to construct a hierarchical model similar to the
one shown in Figure 9.6. It is possible to view this hierarchical model by right clicking
on the ContinuousTransferFunction actor and selecting Open Actor. (Select [Graph→
Automatic Layout] so that the actors are shown in a more readable layout.) Continu-
ousTransferFunction is an example of a higher-order actor, where the parameters specify
an actor network that implements the functionality of the actor.
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9.1. ORDINARY DIFFERENTIAL EQUATIONS

Figure 9.6: A model equivalent to the one in Figure 9.4 assuming the parameters
of Example 9.2. [online]

The ContinuousTransferFunction actor and other actors that support higher-level descrip-
tions of dynamics are summarized in the sidebar on page 327.

9.1.3 Solvers

Numerical integration is an old, complex, and deep topic (Press et al., 1992). A complete
treatment of this topic is beyond the scope of this text, but it is useful to understand the
basic concepts in order to make effective use of the Ptolemy solver functions (which use
numerical integration to find solutions to equations). In this section, we will give a brief
overview of the solver mechanisms that are implemented in the Ptolemy II Continuous
director.

Suppose that w is a continuous-time signal. For the moment, let us ignore the superdense
time model used in Ptolemy II, and assume that w is an integrable function of the form
w : R → R. Assume further that for any t ∈ R, we have a procedure to evaluate w(t).
Suppose further that x is a continuous-time signal given by

x(t) = x0 +

∫ t

0
w(τ)dτ,
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9. CONTINUOUS-TIME MODELS
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Figure 9.7: Illustration of the trapezoidal method. The area under the curve is
approximated by the sum of the areas of the trapezoids. One of the trapezoids is
shaded.

where x0 is a constant. Equivalently, x(t) is the area under the curve formed by w(τ)
from τ = 0 to τ = t, plus an initial value x0. Note that, consequently, w is the derivative
of x, or w(t) = ẋ(t). Given w, we can construct x by providing w as the input to an
Integrator actor with initialState set to x0; x will then be the output.

Numerical integration is the process of evaluating x at enough points t ∈ R to accurately
deduce the shape of the function. Of course, the meaning of “accurate” may depend on
the application, but one of the key criteria is that the value of x is sufficiently accurate
at sufficiently many points that those values of x can be used to calculate values of x
at additional points t ∈ R in time. A solver is a realization of a numerical integration
algorithm. The simplest solvers are fixed step size solvers. They define a step size h, and
calculate x at intervals of h, specifically x(h), x(2h), x(3h), etc.

A reasonably accurate fixed step size solver uses the trapezoidal method, where it ap-
proximates x as follows:

x(nh) =

{
x0, if n = 0
x((n− 1)h) + h(w((n− 1)h) + w(nh))/2, if n ≥ 1

This approach is illustrated in Figure 9.7. As defined by the equations above, the area
under the curve w from 0 to nh is approximated by the sum of the areas of trapezoids of
width h, where the heights of the sides of the trapezoids are given by w(mh) for integers
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Figure 9.8: Illustration of the forward Euler method. The area under the curve is
approximated by the sum of the areas of the rectangles, like the shaded one.

m. The shaded trapezoid in the figure approximates the area under the curve from time
(n− 1)h to time nh, where n = 6 and h = 0.05.

A trapezoidal method solver is difficult to use within feedback systems like the one shown
in Figure 9.1, however, because the solver needs to compute the outputs of the Integrator
actors based on the inputs. To compute the output of an Integrator at time tn = nh,
the solver needs to know the value of the input at both tn−1 = (n − 1)h and tn = nh.
But in Figure 9.1, the input to the integrators at any time tn depends on the output of
the same integrators at that same time tn; there is a circular dependency. Solvers that
exhibit a circular dependency are called implicit method solvers. One way to use them
within feedback systems is to “guess” the feedback value and iteratively refine the guess
until some desired accuracy is achieved, but in general there is no assurance that such
strategies yield unique answers.

In contrast to implicit method solvers, the forward Euler method is an explicit method
solver. It is similar to the trapezoidal method but is easier to apply to feedback systems.
It approximates x by

x(nh) = x((n− 1)h) + hw((n− 1)h).

This approach is illustrated in Figure 9.8. The area under each step is approximated as
a rectangle rather than as a trapezoid. This method is less accurate, usually, and errors
accumulate faster, but it does not require the solver to know the input at time nh.
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9. CONTINUOUS-TIME MODELS

In general, using a smaller step size h increases the accuracy of the solution, but increases
the amount of computation required. The step size required to meet a target level of
accuracy depends on how rapidly the signal is varying. Both the trapezoidal method and
the forward Euler method can be generalized to become variable step size solvers that
dynamically adjust their step size based on the variability of the signal. Such solvers
evaluate the integral at time instants t1, t2, etc., using an algorithm to determine the
increment to use between time instants. This algorithm first chooses a step size, then
performs the numerical integration, then estimates the error. If the estimate of the error is
above some threshold (controlled by the errorTolerance parameter of the director), then
the director redoes the numerical integration with a smaller step size.

A variable-step-size forward Euler solver will first determine a time increment hn to de-
fine tn = tn−1 + hn and then calculate

x(tn) = x(tn−1) + hnw(tn−1).

The variable-step-size forward Euler method is a special case of the widely used Runge-
Kutta (RK) methods. The Continuous director offers two variants of RK solvers,
ExplicitRK23Solver and ExplicitRK45Solver, selected using the ODESolver pa-
rameter of the director. These variants are described in more detail in the sidebars on pages
328 and 329. The plot in Figure 9.5 is generated using the ExplicitRK23Solver. A
closeup with stems that indicate where the solver chose to calculate signal values is shown
in Figure 9.9. This figure shows that the solver uses smaller step sizes in regions where
the signal is varying more rapidly.
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Figure 9.9: A closeup of the plot in Figure 9.5 (with stems showing) reveals that
the solver uses smaller step sizes in regions where the signal varies more rapidly.
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9.1. ORDINARY DIFFERENTIAL EQUATIONS

Sidebar: Continuous-Time Signal Generators

The continuous domain provides several actors that generate continuous-time signals.

These actors are located in DomainSpecific→Continuous→SignalGenerators,
except BandlimitedNoise, which is in DomainSpecific→Continuous→Random.
• ContinuousClock has parameters similar to DiscreteClock, but produces a piecewise

constant signal. A square wave, like that shown in Figure 9.5, is a simple example
of such a signal; the actor is also capable of producing complex repeating or non-
repeating patterns.
• ContinuousSinewave, as the name implies, produces a sine wave. The frequency,

phase, and amplitude of the sine wave are set via parameters. This actor constrains
the step size of the solver to ensure that its output is reasonably smooth; the step size
is set to be no greater than one tenth of a period of the sine wave.
• BandlimitedNoise is the most sophisticated of these signal generators. This actor

generates continuous-time noise with a Gaussian distribution and controlled band-
width. Although a full discussion of the topic is beyond the scope of this text, we
note that it is not theoretically possible for a causal system to produce perfectly ban-
dlimited noise (see Lee and Varaiya (2011)). This actor implements a reasonable
approximation. Like ContinuousSinewave, this actor affects the step size chosen by
the solver; it ensures that the solver samples the signal at least as frequently as twice
the specified bandwidth. This is nominally the Nyquist frequency of an ideally ban-
dlimited noise signal.
• Waveform produces a periodic waveform from a finite set of samples. It provides

two interpolation methods, linear and Hermite, where the latter uses a third-order
interpolation technique based on the Hermite curves in Chapter 11 of Foley et al.
(1996). Hermite interpolation is useful for generating smooth curves of arbitrary
shape. The interpolation assumes that the waveform is periodic. Note that this actor
also affects the step sizes taken by the solver. In particular, it ensures that the solver
includes the specified samples, though it does not require the solver to include any
samples between them.
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Sidebar: Actors for Modeling Dynamics

Ptolemy II provides several actors that can be used to model continuous-time systems
with complicated dynamics (behavior over time). These actors are shown below, and
can be found in DomainSpecific→Continuous→Dynamics:

The fundamental actor is the Integrator, described in Sections 9.1.1 and 9.2.4. The others
are higher-order actors that construct submodels using instances of Integrator.
• ContinuousTransferFunction, as explained in Section 9.1.2, can realize a continuous-

time system based on a transfer function specified as a ratio of two polynomials. The
ContinuousTransferFunction actor does not support non-zero initial conditions for the
Integrators.
• LinearStateSpace specifies the input-output relationship of a system with a set of

matrices and vectors that describe a linear constant-coefficient difference equation
(LCCDE). Unlike ContinuousTransferFunction, this actor supports non-zero initial
conditions, but it is similarly constrained to model systems that can be characterized
by linear functions.
• DifferentialSystem can be used to model complicated nonlinear dynamics. For ex-

ample, it can be used to specify the Lorenz attractor of Example 9.1, as shown in
Exercise 3. See the actor documentation for details.
• Derivative provides a crude estimate of the derivative of its input. Use of this actor

is discouraged, however, because its output can be very noisy, even if the input is
continuous and differentiable. The output is simply the difference between the current
input and the previous input divided by the step size. If the input is not differentiable,
however, the output is not piecewise continuous, which may force the solver to use
the smallest allowed step size. Note that this actor has two outputs. The bottom output
produces a discrete event when the input has a discontinuity. This event represents a
Dirac delta function, explained in Section 9.2.4.
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Sidebar: Runge-Kutta Methods

In general, an ODE can be represented by a system of differential equations on a vector-
valued state

ẋ(t) = g(x(t), u(t), t),

y(t) = f(x(t), u(t), t),

where x : R → Rn, y : R → Rm, and u : R → Rl are state, output, and input signals.
The functions g : Rn × Rl × R→ Rn and f : Rn × Rl × R→ Rm are state functions
and output functions respectively. The state function g is represented by the Expression
actors in the feedback path in Figure 9.1. This function gives the inputs ẋ(t) of the
Integrator actors as a function of their outputs x(t), external inputs u(t) (of which there
are none in Figure 9.1), and the current time t (which is also not used in Figure 9.1).

Given this formulation, an explicit k-stage RK method has the form

x(tn) = x(tn−1) +

k−1∑
i=0

ciKi, (9.5)

where

K0 = hng(x(tn−1), u(tn−1), tn−1),

Ki = hng(x(tn−1) +

i−1∑
j=0

Ai,jKj , u(tn−1 + hbi),

tn−1 + hbi), i ∈ {1, · · · , k − 1}

and Ai,j , bi and ci are algorithm parameters calculated by comparing the form of a
Taylor series expansion of x with (9.5).

The first-order RK method, also called the forward Euler method, has the (much
simpler) form

x(tn) = x(tn−1) + hnẋ(tn−1).

This method is conceptually important but not as accurate as other available methods.

Continued on page 329.
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Sidebar: Runge-Kutta Methods - Continued

Continued from page 328.
More accurate Runge-Kutta methods have three or four stages, and also control the

step size for each integration step. The ExplicitRK23Solver implemented by the
Continuous director is a k = 3 (three-stage) method and is given by

x(tn) = x(tn−1) +
2

9
K0 +

3

9
K1 +

4

9
K2, (9.6)

where

K0 = hng(x(tn−1), tn−1), (9.7)

K1 = hng(x(tn−1) + 0.5K0, u(tn−1 + 0.5hn),

tn−1 + 0.5hn), (9.8)

K2 = hng(x(tn−1) + 0.75K1, u(tn−1 + 0.75hn),

tn−1 + 0.75hn). (9.9)

Notice that in order to complete one integration step, this method requires evaluation
of the function g at intermediate times tn−1 + 0.5hn and tn−1 + 0.75hn, in addition
to the times tn−1, where hn is the step size. This fact significantly complicates the
design of actors, because they have to tolerate multiple evaluations (firings) that are
speculative and may have to be redone with a smaller step size if the required accuracy
is not achieved. The validity of a step size hn is not known until the full integration step
has been completed. In fact, any method that requires intermediate evaluations of the
state function g, such as the classical fourth-order RK method, linear multi-step methods
(LMS), and BulirschStoer methods, will encounter the same issue.

In the Continuous domain, the RK solvers speculatively execute the model at inter-
mediate points, invoking the fire method of actors but not their postfire method.
As a consequence, actors used in the Continuous domain must all conform to the strict
actor semantics; they must not change state in their fire method.
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9.2 Mixed Discrete and Continuous Systems

The continuous domain supports mixtures of discrete and continuous behaviors. The
simplest such mixtures produce piecewise continuous signals, which vary smoothly over
time except at particular points in time, where they vary abruptly. Piecewise continuous
signals are explained in Section 9.2.1.

In addition, signals can be genuinely discrete. In particular, as with the DE domain,
a signal in the Continuous domain can be absent at a time stamp. A signal that is never
absent is a true continuous-time signal. A signal that is always absent except at a discrete
set of time stamps is a discrete-event signal, explained in Section 9.2.2. A model that
mixes both types of signals is a mixed signal model. It is possible to have signals that
are continuous-time over a range of time stamps, and discrete-event over another range.
These are called mixed signals.

9.2.1 Piecewise Continuous Signals

As shown in Figure 9.9, variable step-size solvers produce more samples per unit time
when a signal is varying rapidly. These solvers do not, however, directly support discon-
tinuous signals, such as the square wave shown in Figure 9.5. The Continuous director in
Ptolemy II augments the standard ODE solvers with techniques that handle such discon-
tinuities, but the signals must be piecewise continuous. Meeting this prerequisite requires
some care, as we will discuss later in the chapter.

Recall that Ptolemy II uses a superdense time model. This means that a continuous-time
signal is a function of the form

x : T × N→ V, (9.10)

where T is the set of model time values (see Section 1.7.3), N is the non-negative integers
representing the microstep, and V is some set of values (the set V is the data type of the
signal). This function specifies that, at each model time t ∈ T , the signal x can have
several values, and these values occur in a defined order. For the square wave in Figure
9.5, at time t = 1.0, for example, the value of the square wave is first x(t, 0) = 2 and then
x(t, 1) = −2.

In order for time to progress past a model time t ∈ T , we need to ensure that every signal
in the model has a finite number of values at t. Thus, we require that for all t ∈ T , there
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exist an m ∈ N such that

∀n > m, x(t, n) = x(t,m). (9.11)

This constraint prevents chattering Zeno conditions, where a signal takes on infinitely
many values at a particular time. Such conditions prevent an execution from progressing
beyond that point in model time, assuming the execution is constrained to produce values
in chronological order.

Assuming x has no chattering Zeno condition, then there is a least value of m satisfying
(9.11). We call this value of m the final microstep and x(t,m) the final value of x at t.
We call x(t, 0) the initial value at time t. If m = 0, then we say that x has only one value
at time t.

Define the initial value function xi : T → V by

∀ t ∈ T, xi(t) = x(t, 0).

Define the final value function xf : T → V by

∀ t ∈ T, xf (t) = x(t,mt),

wheremt is the final microstep at time t. Note that xi and xf are conventional continuous-
time functions if we abstract model time as the real numbers T = R.

A piecewise continuous signal is defined to be a function x of the form x : T × N → V
with no chattering Zeno conditions that satisfies three requirements:

1. the initial value function xi is continuous on the left;

2. the final value function xf is continuous on the right; and

3. x has only one value at all t ∈ T\D, where D is a discrete subset of T .

The last requirement is a subtle one that deserves further discussion. First, the notation
T\D refers to a set that contains all elements of the set T except those in the set D. D
is constrained to be a discrete set, described in the sidebar on page 334. Intuitively, D is
a set of time values that can be counted in temporal order. It is easy to see that if D = ∅
(the empty set), then xi = xf , and both xi and xf are continuous functions. Otherwise
each of these functions is piecewise continuous.
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A key constraint of the Continuous domain in Ptolemy II is that all signals are piecewise
continuous in the above sense. Based on this definition, the square wave shown in Figure
9.5 is piecewise continuous. At each discontinuity, it has two values: an initial value
that matches the values before the discontinuity, and a final value that matches the value
after the discontinuity. It can be easy to create signals that are not piecewise continuous,
however, as illustrated by the following example.

Example 9.3: The model in Figure 9.10 contains an Expression actor whose input
is a continuous-time signal. The expression is shown below:

(in > 1.0) ? in + 1 : 0

If the input is greater than 1.0, then the output will be the input plus one; otherwise
the output will be zero. This output signal is not piecewise continuous in the sense
described above. Before or at time 1.0, the output value is zero. But at any time
after 1.0, the value is not zero. The signal is not continuous from the right.

Figure 9.11 shows the resulting plot, where the output of the Expression actor is
labeled “second.” The transition from zero to non-zero is not instantaneous, as

Figure 9.10: A model that produces a signal that is not piecewise continuous, and
therefore can exhibit solver-dependent behavior. This problem is eliminated in the
model in Figure 9.23. [online]
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shown by the slanted dashed line in the middle plot. Worse, the width of the tran-
sition depends on seemingly irrelevant details of the model. The model shows the
signal connected to a second integrator. If that second integrator is deleted from the
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Figure 9.11: A plot of the signal produced by the model in Figure 9.10 with and
without the second Integrator. Note that the output of the Expression actor seems
to depend on whether the second Integrator is present. The signals labeled “first,”
“second,” and “third” are the top-to-bottom inputs of the plotter, respectively.
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model, then the width of the transition changes, as shown in the lower plot. This is
because the second Integrator affects the step size taken by the solver. In order to
achieve adequate integration accuracy, the second Integrator forces a smaller step
size in the vicinity of time 1.0.

The problem is not solved by changing the expression to

(in >= 1.0) ? in + 1 : 0

Here, the transition from zero to non-zero occurs when the input is greater than or
equal to 1.0. In this case, the resulting signal is not continuous from the left. The
resulting plots are identical. The Expression actor simply calculates a specified
function of its inputs when it fires. It has no mechanism for generating distinct
values at distinct microsteps unless its input already has distinct values at distinct
microsteps.

The previous example shows that using an actor whose output is a discontinuous function
of the input can create problems if the input is a continuous-time signal. The next few
sections describe various mechanisms for properly constructing discontinuous signals.
The particular problem with Figure 9.10 is solved using modal models in Section 9.3.1.

Sidebar: Probing Further: Discrete Sets

A set D is a discrete set if it is a totally ordered set (for any two elements d1 and d2,
either d1 ≤ d2 or d1 > d2) where there exists a one-to-one function f : D → N that
is order preserving. Order preserving simply means that for all d1, d2 ∈ D where
d1 ≤ d2, we have that f(d1) ≤ f(d2). The existence of such a one-to-one function
ensures that we can arrange the elements of D in temporal order. Notice that D is a
countable set, but not all countable sets are discrete. For example, the set Q of rational
numbers is countable but not discrete. There is no such one-to-one function.
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9.2.2 Discrete-Event Signals in the Continuous Domain

As described earlier, the Continuous domain supports genuinely discrete signals, which
are signals that are present only at particular instants. As a consequence, the clock actors
that are used in the DE domain (see sidebar on page 241) can be used in the continuous
domain.

Example 9.4: The ContinuousClock actor in Figure 9.4 is a composite actor that
uses a DiscreteClock and a ZeroOrderHold (see box on page 338), as shown in Fig-
ure 9.12. The DiscreteClock produces a discrete-event signal and the ZeroOrder-
Hold converts that signal to a continuous-time signal (see sidebar on page 338).

Figure 9.12: The ContinuousClock actor in this model is a composite actor that
uses a DiscreteClock and a ZeroOrderHold.
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Both signals are piecewise continuous. The output signal from DiscreteClock at
the model time of each event is characterized as follows: it is absent at microstep
zero (which matches its value at times just before the event); present at microstep
one (which is the discrete event); and absent again at microsteps two and higher
(which matches its value at larger times until the next discrete event). Therefore,
the output of DiscreteClock is piecewise continuous, as required by the solver.

The clock actors described in the sidebar on page 241 all behave in a manner that is similar
to DiscreteClock and hence they can all be used in the continuous domain.

Note that although many actors that operate on or produce discrete events have a trigger
input port, there is rarely a reason to connect that port in the Continuous domain. In the
DE domain, a trigger port is used to trigger execution of an actor at the time of the input
event. But in the Continuous domain, every actor executes every time that there is an
execution. Nevertheless, it is sometimes useful to use the trigger port, as illustrated by
the example in Figure 9.13.

9.2.3 Resetting Integrators at Discrete Times

In addition to its signal input and output, the Integrator actor has two extra ports at the
bottom of the icon. The one at the lower right is a PortParameter called initialState. When
an input token is provided on that port, the state of the Integrator will be reset to the value
of the token. The output of the Integrator will change instantaneously to the specified
value.

Example 9.5: The model in Figure 9.14 uses a DiscreteClock actor to periodically
reset an Integrator.

The input events on the initialState port are required to be purely discrete. This means
that at all model times, the input signal must be absent at microstep 0. Any attempt to
feed a continuous signal into this port results in an exception similar to the one below:

IllegalActionException: Signal at the initialState port is not purely
discrete.
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Figure 9.13: The trigger port of the CurrentTime actor in this model is used to
turn on and off its output. During the time intervals where the output of the Dis-
creteClock actor is false, the CurrentTime actor is disabled, and hence its output
will be absent. [online]
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Figure 9.14: Illustration of the use of the initialState port of the Integrator actor.
[online]
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in Integrator

This check ensures that the output of the Integrator is piecewise continuous. In Figure
9.14, for example, at the points of discontinuity the signal first takes the value of the
Integrator state prior to applying the reset. In the subsequent microstep, it takes the value
after the reset. In contrast, if the output of the Integrator had changed abruptly at microstep
zero, then the output could have been a different value at a time infinitesimally earlier —
thus violating the requirement for piecewise continuity.

9.2.4 Dirac Delta Functions

The other Integrator input port is called impulse. Like the initialState port discussed in the
previous section, the signal at this port is required to be purely discrete. When an impulse
event arrives, it causes an instantaneous increment or decrement of the state (and output)

Sidebar: Continuous Signals from Discrete Events

The ZeroOrderHold actor, shown below, takes a discrete-event signal in and produces
a continuous-time signal on its output:

This actor is in DomainSpecific→Continuous→Discrete to Continuous.
At times between input events, the value of the output is the value of the most recent

event, so the output is piecewise constant. At the time of each input event, the output at
microstep zero is the value of the previous event, and at microstep one, it takes the value
of the current event. Hence, the output signal is piecewise continuous.

It may seem desirable to define an actor that interpolates between the values of the
input events, as is done by the Waveform actor (see sidebar on page 326). However, in
order to interpolate, the actor would have to know the value of a future event. Actors in
the continuous domain are required to be causal, meaning that their outputs depend only
on current and past inputs. The outputs cannot depend on future inputs. Hence, no such
interpolation is possible. The Waveform actor is able to perform interpolation because
the values that it is interpolating are specified as parameters, not as input events.

338 Ptolemaeus, System Design

http://Ptolemy.org


9. CONTINUOUS-TIME MODELS

of the Integrator. That is, rather than resetting the state to a specified value, it adds to (or
subtracts from) the current state.

Mathematically, such functionality is often represented as a Dirac delta function in sig-
nals and systems. A Dirac delta function is a function δ : R→ R+ given by

∀ t ∈ R, t 6= 0, δ(t) = 0

and ∫ ∞
−∞

δ(τ)dτ = 1.

That is, the signal value is zero everywhere except at t = 0, but its integral is unity.
At t = 0, therefore, its value cannot be finite. Any finite value would yield an integral
of zero. This is indicated by R+ in the form of the function, δ : R → R+, where R+

represents the extended reals, which includes infinity. Dirac delta functions are widely
used in modeling continuous-time systems (see Lee and Varaiya (2011), for example), so
it is important to be able to include them in simulations.

Suppose that a signal y has a Dirac delta function occurring at time t1 as follows,

y(t) = y1(t) +Kδ(t− t1),

where y1 is an ordinary continuous-time signal, and K is a scaling constant. Then∫ t

−∞
y(τ)dτ =

{ ∫ t
−∞ y1(τ)dτ t < t1
K +

∫ t
−∞ y1(τ)dτ t ≥ t1

The component Kδ(t − t1) is a Dirac delta function at time t1 with weight K, and it
causes an instantaneous increment in the integral by K at time t = t1.

Example 9.6: LTI systems can be characterized by their impulse response, which
is their response to a Dirac delta function. The model in Figure 9.15 is an LTI
system with transfer function

H(s) =
1

1 + as−1 + bs−2
.

The model provides a Dirac delta function at time 0.2, producing the impulse re-
sponse shown in the plot.
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Figure 9.15: Response of an LTI system to a Dirac delta function. [online]

It is difficult to model Dirac delta functions in computing systems because of their in-
stantaneous and infinite nature. The superdense time model of Ptolemy II coupled with
the semantics of the Continuous domain provide a rigorous, unambiguous model that can
support Dirac delta functions.
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Sidebar: Generating Discrete Events

Several actors convert continuous-time signals to discrete-event signals (these actors
are located in DomainSpecific→Continuous→Continuous to Discrete):

• LevelCrossingDetector converts continuous signals to discrete events when the input
signal crosses a threshold specified by the level parameter. A direction parameter
constrains the actor to detect only rising or falling transitions. This actor introduces
a one-microstep delay before it produces an output. That is, when a level crossing
is detected, the actor requests a refiring in the next microstep at the current time,
and produces the output during that refiring. This ensures that the output satisfies the
piecewise continuity constraint; it is always absent at microstep 0. The one-microstep
delay enables the actor to be used in a feedback loop. An example is shown in Figure
9.16, where the feedback loop resets the Integrator each time it reaches a threshold
(1.0 in the example).
• PeriodicSampler generates discrete events by periodically sampling an input signal.

The sampling rate is given by a parameter. By default, the actor reads the initial value
of the input signal (the input value at microstep 0), but sends it to the output port one
microstep later (at microstep 1). This ensures that the output at microstep 0 is always
absent, thus ensuring that the output signal is piecewise continuous. (The input is
absent prior to the sample time, so piecewise continuity requires that it be absent at
microstep 0 at the sample time.) Because of the one-step delay, the PeriodicSampler
can also be used in a feedback loop. For example, it can be used to periodically reset
an Integrator, as shown in the example in Figure 9.17.
• Sampler is a simple actor. Whenever the trigger signal (at the bottom port on the

icon) is present, it copies the input from the left port to the output. There is no mi-
crostep delay. If the signal at the trigger port is a piecewise continuous discrete-event
signal, then the output will also be a piecewise continuous discrete-event signal. Sam-
pler will normally read its inputs at microstep 1 because the trigger input is discrete.
(PeriodicSampler will behave in the same way if its microstep parameter is set to 1.)
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Figure 9.16: Illustration of the LevelCrossingDetector, which can be put in a feed-
back loop. In this case, whenever the output of the Integrator reaches 1.0, it is
reset to zero. [online]
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Figure 9.17: The PeriodicSampler actor, placed in a feedback loop. In this case,
the Integrator will be reset to zero at intervals of one time unit regardless of its
state. [online]
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9.2.5 Interoperating with DE

The Continuous and DE domains both support discrete-event signals. There is a subtle
but important difference between these domains, however. In the Continuous domain, at
a time stamp selected by the solver, all actors are fired. In the DE domain, an actor is
only fired if either it has an event at an input port or it has previously asked to be fired.
As a consequence, DE models can be much more efficient, particularly when events are
sparse.

It can be useful to build models that combine the two domains. Such combinations are
suitable for many cyber-physical systems, for example, which combine continuous dy-
namics with software-based controllers. Constructing models with a mixture of Continu-
ous and DE domains is easy, as illustrated by the following example.

Example 9.7: Consider the model in Figure 9.18. The top level of the model
is implemented in the DE domain, and includes an opaque composite actor that is
a Continuous model. This example models a “job shop,” where job arrivals are
discrete events, the processing rate is given by an exponential random variable, and
the job processing is modeled in continuous time.

The model assigns an integer number to each job. It then approaches that number
with a slope given by the (random) rate. The higher the rate, the faster the job is
completed. The job is complete when the blue (dashed) line in the plot reaches the
red (solid) line in the lower plot. The upper plot shows the times at which each
job is generated and completed. Note that this model has a feedback loop such that
each time a job is finished, a new one is started with a new service time.

This example is somewhat contrived, however, in the sense that it does not actually
require the use of the Continuous domain (see Exercise 4). In fact, models where
continuous-time signals linearly increase or decrease can usually be realized within
the DE domain alone, without the need for a solver. That said, there is still value in
constructing the mixed-domain model because it can easily evolve to support more
complex dynamics in the Continuous portion.

Continuous models can be placed within DE models, as shown in the previous example.
Conversely, DE models can be placed within Continuous models. The choice of top level
domain is often determined by emphasis. If the emphasis is on a discrete controller, then
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Figure 9.18: Illustration of a hierarchical combination of DE and Continuous mod-
els, as considered in Example 9.7. [online]
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using DE at the top level often makes sense. If the emphasis is on the physical plant, then
using Continuous at the top level may be better.

If multiple Continuous submodels are placed within a DE model, then the solvers in the
submodels are decoupled. This can be useful for modeling systems with widely disparate
time scales; one solver can use small step sizes without forcing the other submodel to use
small step sizes.

The ability to combine DE and Continuous domains relies on a key property of DE, which
is that events in DE normally occur at microstep one, not at microstep zero. When these
events cross the boundary into a Continuous model, they preserve this microstep. Hence,
a signal that passes from the DE domain to the Continuous domain will normally be
absent at microstep zero, thus ensuring piecewise continuity. When a signal goes from
the Continuous domain to the DE domain, however, it is important that the signal be
discrete, as would be produced by a Sampler or LevelCrossingDetector (see page 341).

9.2.6 Fixed-Point Semantics

Recall from Section 7.3.4 that, as of this writing, the DE director in Ptolemy II imple-
ments an approximation of the fixed-point semantics described by Lee and Zheng (2007).
In contrast, the Continuous director implements an exact fixed-point semantics, and can
therefore execute some models that DE cannot.

Example 9.8: Consider the model shown in Figure 9.19. This model is identical
to the model considered in Example 7.14, except that the Continuous director is
used instead of the DE director. The Continuous director, unlike the DE director,
is able to fire actors multiple times at a given time stamp. As a consequence, it
does not need to know whether an event is present or absent at the input of the
composite actor before it is fired. The director can fire the composite actor, obtain
an event from the DiscreteClock, and then later fire the composite actor again once
that event has been fed back.
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9.3 Hybrid Systems and Modal Models

A hybrid system is a model that combines continuous dynamics with discrete mode
changes. Such models are created in Ptolemy II using ModalModel actors, found in the
Utilities library and explained in Chapter 8. This section starts by examining a pre-
built hybrid system, and concludes by explaining the principles that make hybrid models
work. Chapter 8 explains how to construct such models, and explains how time is handled
in mode refinements.
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Figure 9.19: A discrete-event model that is executable using the Continuous di-
rector, but not using the DE director, as shown in Example 7.14. [online]
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Figure 9.20: Top level of the bouncing ball hybrid system example. [online]

Example 9.9: A bouncing ball model is shown in Figure 9.20. It can be found
under “Bouncing Ball” in the Tour of Ptolemy II (Figure 2.3, in the “Hybrid Sys-
tems” entry). The bouncing ball model uses a ModalModel component named Ball
Model. Executing the model yields a plot like that in the figure (along with 3-D
animation that is constructed using the GR (graphics) domain, which is not covered
here). This model has continuous dynamics during times when the ball is in the air,
and discrete events when the ball hits the surface and bounces.
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Figure 9.21 shows the contents of Ball Model, which is a modal model with three
states: init, free, and stop. During the time a modal model is in a state, its behavior is
specified by the mode refinement. In this case, only the free state has a refinement,

Figure 9.21: Inside the Ball Model of Figure 9.20.
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shown at the bottom of Figure 9.21. The init state is the initial state, which is
used only for its outgoing transition, and has set actions to initialize the ball model.
Specifically, the transition is labeled as follows:

guard: true
set:
free.initialPosition = initialPosition;
free.initialVelocity = 0.0

The first line is a guard, which is a predicate that determines when the transition
is enabled. In this case, the transition is always enabled, since the predicate has
value true. Thus, the model immediately transitions to mode free. This transition
occurs in microstep zero at the start of the execution. The “set:” line indicates that
the successive lines define set actions (see Section 6.2). The third and fourth lines
set the parameters of the destination mode free. The free state represents the mode
of operation when the ball is in free fall, and the stop state represents the mode
where the ball has stopped bouncing.

When the model begins executing, it is in the init state. Since the init state has no
refinement, the outputs of the Ball Model will be absent while the modal model is
in that state. The outgoing transition has a guard that is always enabled, so the Ball
Model will be in that state for only one microstep.

Inside the free state, the refinement represents the law of gravity, which states that
an object of any mass will have an acceleration of about 9.81meters/second2. The
acceleration is integrated to find the velocity, which is, in turn, integrated to find
the vertical position. In the refinement, a LevelCrossingDetector actor is used to
detect when the vertical position of the ball is zero. Its output produces events
on the (discrete) output port bump. Figure 9.21 shows that this event triggers a
state transition back to the same free state, but now the initialVelocity parameter is
changed to reverse the sign and attenuate its value by the elasticity. The ball loses
energy when it bounces, as shown by the plot in Figure 9.20.

Figure 9.21 shows that when the position and velocity of the ball drop below a
specified threshold, the state machine transitions to the state stop, which has no
refinement. At this point, the model produces no further outputs.

Ptolemaeus, System Design 349

http://Ptolemy.org


9.3. HYBRID SYSTEMS AND MODAL MODELS

-45
-40
-35
-30
-25
-20
-15
-10

-5
0
5

10

0 5 10 15 20 25 30

Position

time (sec)

he
ig

ht
 m

et
er

s

Figure 9.22: Result of running the bouncing ball model without the stop state.

The bouncing ball model illustrates an interesting property of hybrid system modeling.
The stop state, it turns out, is essential. Without it, the time between bounces keeps
decreasing, as does the magnitude of each bounce. At some point, these numbers get
smaller than the representable precision, and large errors start to occur. Removing the
stop state from the FSM and re-running the model yields the result shown in Figure 9.22.
In effect, the ball falls through the surface on which it is bouncing and then goes into a
free-fall in the space below.

The error that occurs here illustrates a fundamental pitfall that can occur with hybrid
system modeling. In this case, the event detected by the LevelCrossingDetector actor
can be missed by the simulator. This actor works with the solver to attempt to identify
the precise point in time when the event occurs. It ensures that the simulation includes
a sample at that time. However, when the numbers become sufficiently small they are
dominated by numerical errors, and the event is missed.

The bouncing ball is an example of a Zeno model (see Section 7.4). The time between
bounces gets smaller as the simulation progresses, and it gets smaller fast enough that,
with infinite precision, an infinite number of bounce events would occur in a finite amount
of time.
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9.3.1 Hybrid Systems and Discontinuous Signals

Recall from Example 9.3 that actors whose outputs are a discontinuous function of the
input can create signals that are not piecewise continuous. This can result in solver-
dependent behavior, in which arbitrary step-size decisions made by the solver strongly
affect the execution of the model. These problems can be solved using modal models, as
illustrated in the following example.

Example 9.10: Figure 9.23 shows a variant of the model in Figure 9.10 that cor-
rectly produces a piecewise continuous signal. This variant uses a ModalModel,
which specifies a transition at the discontinuity of the signal. The transitions of
a modal model are instantaneous, in that model time does not advance. The mi-
crostep, however, does advance. In this model, the transition occurs within the
errorTolerance (a director parameter) after time 1.0. At the time of the transition,
the refinement of the zero state fires first, producing output 0 at microstep 0, and
then the refinement of the increment state fires at microstep 1, producing output
2.0 (or within the errorTolerance of 2.0). Hence, the output signal is piecewise
continuous.

The operation of ModalModel actors is explained in Chapter 8. When combined with
the Continuous director, such operation translates naturally into an effective and useful
semantics for hybrid systems. To fully understand the interoperation of modal models and
the Continuous domain, it is useful to review the execution semantics of modal models,
described in Section 6.2. Specifically, a firing of the modal model consists of firing of
the refinement of the current state (if there is one), evaluating the guards, and taking
a transition if a guard is true. It is also important to understand that while a mode is
inactive, time does not advance in the refinement. Thus, the local notion of time within a
refinement lags the global notion of time in its environment.

In modal models, transitions are allowed to have output actions (see Section 6.2). Such
actions should be used with care because the transition may be taken in microstep 0,
and the resulting output will not be piecewise continuous. If output actions are used
to produce discrete events, the transition must be triggered by a discrete event from a
piecewise continuous signal.
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9.3. HYBRID SYSTEMS AND MODAL MODELS
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Figure 9.23: A variant of the model in Figure 9.10 that correctly produces a piece-
wise continuous signal. [online]
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9. CONTINUOUS-TIME MODELS

9.4 Summary

Modeling continuous-time systems and approximating their behavior on digital comput-
ers can be tricky. The superdense time model of Ptolemy II makes it easier to accurately
model a large class of systems, and is particularly useful for systems that mix continuous
and discrete behaviors. The Continuous domain, described in this chapter, exploits this
model of time to deliver sophisticated modeling and simulation capabilities.
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EXERCISES

Exercises

1. Let x be a continuous-time signal where x(0) = 1 and ẍ(t) = −x(t), where ẍ is
the second derivative of x with respect to time t. It is easy to verify that a solution
to this equation is x(t) = cos(t).

(a) Use Integrator actors to construct this signal x without using any actors or
expressions involving trigonometric functions. Plot the execution over some
reasonable time to verify that the solution matches what theory predicts.

(b) Change the solver that the director uses from ExplicitRK23Solver to Explic-
itRK45Solver. Describe qualitatively the difference in the results. Which
solver gives a better solution? What criteria are you using for “better”? Give
an explanation for the differences.

(c) All numerical ODE solvers introduce errors. Although the theory predicts
that the amplitude of the solution x(t) = cos(t) remains constant for all time,
a numerical solver will be unable to sustain this. Describe qualitatively how
the ExplicitRK23Solver and ExplicitRK45Solver perform over the long run,
leaving other parameters of the director at their default values. Which solver
is better? By what criteria?

(d) Experiment with some of the other director parameters. How does the error-
Tolerance parameter affect the solution? How about maxStepSize?

2. Example 9.2 shows the use of ContinuousTransferFunction to specify a transfer
function for a continuous-time system. Show that with the parameters given in the
example, that the models in Figures 9.4 and 9.6 are equivalent. Hint: This problem
is easy if you have taken a typical electrical engineering signals and systems class,
but it is doable without that if you recognize the following fact: If a signal w has
Laplace transform W , then the integral of that signal has Laplace transform W ′

where for all complex numbers s, W ′(s) = W (s)/s. That is, dividing by s in the
Laplace domain is equivalent to integrating in the time domain.

3. Consider the Lorenz attractor in Example 9.1. Implement the same system using
the DifferentialSystem higher-order actor. Give the parameter names and values for
your DifferentialSystem.

4. The model in Example 9.7 does not actually require the Continuous domain to
achieve the same functionality. Construct an equivalent model that is purely a DE
model.
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