
cba

This is a chapter from the book

System Design, Modeling, and Simulation using Ptolemy II

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported
License. To view a copy of this license, visit:

http://creativecommons.org/licenses/by-sa/3.0/,

or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View,
California, 94041, USA. Permissions beyond the scope of this license may be available
at:

http://ptolemy.org/books/Systems.

First Edition, Version 1.0

Please cite this book as:

Claudius Ptolemaeus, Editor,
System Design, Modeling, and Simulation using Ptolemy II, Ptolemy.org, 2014.

http://ptolemy.org/books/Systems.

http://creativecommons.org/licenses/by-sa/3.0/
http://ptolemy.org/books/Systems
http://ptolemy.org/books/Systems


3
Dataflow

Edward A. Lee, Stephen Neuendorffer, Gang Zhou
Contents

3.1 Synchronous Dataflow . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.1.1 Balance Equations . . . . . . . . . . . . . . . . . . . . . . . 95
Sidebar: SDF Schedulers . . . . . . . . . . . . . . . . . . . . . . . . 100
Sidebar: Frequency Analysis . . . . . . . . . . . . . . . . . . . . . . 101
3.1.2 Feedback Loops . . . . . . . . . . . . . . . . . . . . . . . . 103
3.1.3 Time in Dataflow Models . . . . . . . . . . . . . . . . . . . . 105
Sidebar: Multirate Dataflow Actors . . . . . . . . . . . . . . . . . . 106
Sidebar: Signal Processing Actors . . . . . . . . . . . . . . . . . . . 107
Sidebar: Dynamically Varying Rates . . . . . . . . . . . . . . . . . . 108
Sidebar: StreamIt . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Sidebar: Other Variants of Dataflow . . . . . . . . . . . . . . . . . . 110
Sidebar: Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Sidebar: Logic Actors . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.2 Dynamic Dataflow . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.2.1 Firing Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.2.2 Iterations in DDF . . . . . . . . . . . . . . . . . . . . . . . . 118
Sidebar: Token Flow Control Actors . . . . . . . . . . . . . . . . . . 119
Sidebar: Structured Dataflow . . . . . . . . . . . . . . . . . . . . . . 120
3.2.3 Combining DDF with Other Domains . . . . . . . . . . . . . 123
Sidebar: Defining a DDF Iteration . . . . . . . . . . . . . . . . . . . 124
Sidebar: String Manipulation Actors . . . . . . . . . . . . . . . . . . 125
Sidebar: Building Regression Tests . . . . . . . . . . . . . . . . . . . 126

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Sidebar: IO Actors . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

92



3. DATAFLOW

Ptolemy II was created to enable heterogeneous models to be developed and simulated
together as part of an overall system model. As discussed in previous chapters, a key
innovation in Ptolemy II is that, unlike other design and modeling environments, Ptolemy
II supports multiple models of computation that are tailored to specific types of model-
ing problems. These models of computation define how the model will behave and are
determined by the director that is used within that model. In Ptolemy II terminology, the
director realizes a domain, which is an implementation of a model of computation. Thus,
the director, domain, and model of computation are all tied together; when you construct a
model that contains an SDFDirector (a synchronous dataflow director), for example, you
have constructed a model “in the SDF domain,” using the SDF model of computation.

This chapter describes the dataflow domains that are currently available in Ptolemy II,
which include synchronous (static) and dynamic dataflow models. Dataflow domains are
appropriate for applications that involve processing streams of data values. These streams
can flow through sequences of actors that transform them in some way. Such models are
often called pipe and filter models, because the connections between actor are analogous
to pipes that carry flows, and the actors are analogous to filters the change the flows in
some way. Dataflow domains mostly ignore time, although SDF is capable of modeling
streams with uniformly spaced time between iterations. Subsequent chapters discuss other
domains and their selection and use.

3.1 Synchronous Dataflow

The Synchronous dataflow (SDF) domain, also called static dataflow,1 was introduced
by Lee and Messerschmitt (1987b), and is one of the first domains (or models of com-
putation) developed for Ptolemy II. It is a specific type of dataflow model. In dataflow
models, actors begin execution (they are fired) when their required data inputs become
available. SDF is a relatively simple case of dataflow; the order in which actors are exe-

1The term “synchronous dataflow” can cause confusion because it is not synchronous in the sense of
SR, considered in Chapter 5. There is no global clock in SDF models, and actors are fired asynchronously.
For this reason, some authors prefer the term “static dataflow.” This does not avoid all confusion, however,
because Dennis (1974) had previously coined the term “static dataflow” to refer to dataflow graphs where
buffers could hold at most one token. Since there is no way to avoid a collision of terminology, we stick with
the original “synchronous dataflow” terminology used in the literature. The term SDF arose from a signal
processing concept, where two signals with sample rates that are related by a rational multiple are deemed to
be synchronous.

Ptolemaeus, System Design 93

http://Ptolemy.org


3.1. SYNCHRONOUS DATAFLOW

cuted is static, and does not depend on the data that is processed (the values of the tokens
that are passed between actors).

In a homogeneous SDF model, an actor fires when there is a token on each of its input
ports and produces a token on each output port. In this case, the director simply has to
ensure that each actor fires after the actors that supply it with data, and an iteration of
the model consists of one firing of each actor. Most of the examples in Chapter 2 were
homogeneous SDF models.

Not all actors produce and consume a single token each time they are fired, however;
some require multiple input tokens before they can be fired and produce multiple output
tokens. The SDF scheduler, which is responsible for determining the order in which
actors are executed, supports more complex models than homogeneous SDF. It is capable
of scheduling the execution of actors with arbitrary data rates, as long as these rates are
given by specifying the number of tokens consumed and produced by the firing of each
actor on each port.

2x10

-30
-25

-20

-15

-10

-5

0

5

10

15

0.0 0.5 1.0 1.5 2.0 2.5

SequencePlotter

Figure 3.1: A multirate SDF model. The Spectrum actor requires 256 tokens to
fire, so one iteration of this model requires 256 firings of Sinewave, Channel, and
SequencePlotter, and one firing of Spectrum. [online]

94 Ptolemaeus, System Design

http://ptolemy.org/systems/models/dataflow/SpectrumOfNoisySinusoid/index.html
http://Ptolemy.org


3. DATAFLOW

Example 3.1: One example of an actor that requires multiple input tokens to fire is
the Spectrum actor (see box on page 101). Figure 3.1 shows a system that computes
the spectrum of the same noisy sine wave that we constructed in Figure 2.20. The
Spectrum actor has a single parameter that specifies the order of the fast Fourier
transform (FFT) used to calculate the spectrum. Figure 3.1 shows the output of the
model with order set to 8 and the number of iterations set to 1. (See Chapter 17,
Section 17.2 to improve the labeling of the plot.)

When the order parameter is set to 8, the Spectrum actor requires 28 (256) input
samples to fire, and produces 28 output samples. In order for the Spectrum actor
to fire once, the actors that supply its input data, Sinewave and Channel, must each
fire 256 times. The SDF director extracts this relationship and defines one iteration
of the model to consist of 256 firings of Sinewave, Channel, and SequencePlotter,
and one firing of Spectrum.

This example implements a multirate model; that is, the firing rates of the actors are
not identical. In particular, the Spectrum actor executes at a different rate than the other
actors. It is common for the execution of a multirate model to consist of exactly one
iteration. The director determines how many times to fire each actor in an iteration using
balance equations, as described in the next section.

3.1.1 Balance Equations

Consider a single connection between two actors, A and B, as shown in Figure 3.2. The
notation here means that when A fires, it produces M tokens on its output port, and when
B fires, it consumes N tokens on its input port. M and N are nonnegative integers.
Suppose that A fires qA times and B fires qB times. All tokens that A produces are

Figure 3.2: SDF actor A produces M tokens when it fires, and actor B consumes
N tokens when it fires.

Ptolemaeus, System Design 95

http://Ptolemy.org


3.1. SYNCHRONOUS DATAFLOW

consumed by B if and only if the following balance equation is satisfied,

qAM = qBN. (3.1)

Given values qA and qB satisfying (3.1), the system remains in balance; A produces
exactly as many tokens as B consumes.

Suppose we wish to process an arbitrarily large number of tokens, a situation that is typical
of streaming applications. A naive strategy is to fire actorA an arbitrarily large number qA
times, and then fire actorB qB times, where qA and qB satisfy (3.1). This strategy is naive,
however, because it requires storing an arbitrarily large number of unconsumed tokens in
a buffer. A better strategy is to find the smallest positive qA and qB that satisfy (3.1). Then
we can construct a schedule that fires actor A qA times and actor B qB times, and we can
repeat this schedule as many times as we like without requiring any more memory to store
unconsumed tokens. That is, we can achieve an unbounded execution (an execution
processes an arbitrarily large number of tokens) with bounded buffers (buffers with a
bound on the number of unconsumed tokens). In each round of the schedule, called an
iteration, actor B consumes exactly as many tokens as actor A produces.

Example 3.2: Suppose that in Figure 3.2, M = 2 and N = 3. There are many
possible solutions to the corresponding balance equation, one of which is qA = 3
and qB = 2. With these values, the following schedule can be repeated forever:

A,A,A,B,B.

An alternative schedule could also be used:

A,A,B,A,B.

In fact, the latter schedule has an advantage in that it requires less memory for
storing intermediate tokens; B fires as soon as there are enough tokens, rather than
waiting for A to complete its entire cycle.

Another solution to (3.1) is qA = 6 and qB = 4. This solution includes more firings
in the schedule than are strictly needed to keep the system in balance.

The equation is also satisfied by qA = 0 and qB = 0, but if the number of firings of
actors is zero, then no useful work is done. Clearly, this is not a solution we want.
Negative solutions are also not meaningful.

96 Ptolemaeus, System Design

http://Ptolemy.org


3. DATAFLOW

The SDF director, by default, finds the least positive integer solution to the balance equa-
tions, and constructs a schedule that fires the actors in the model the requisite number of
times, given by this solution. An execution sequence that fires the actors exactly as many
times as specified by this solution is called a complete iteration.

In a more complicated SDF model, every connection between actors results in a balance
equation. Hence, the model defines a system of equations, and finding the least positive
integer solution is not entirely trivial.

Example 3.3: Figure 3.3 shows a network with three SDF actors. The connections
result in the following system of balance equations:

qA = qB

2qB = qC

2qA = qC .

The least positive integer solution to these equations is qA = qB = 1, and qC = 2,
so the following schedule can be repeated forever to get an unbounded execution
with bounded buffers,

A,B,C,C.

The balance equations do not always have a non-trivial solution, as illustrated in the fol-
lowing example.

Example 3.4: Figure 3.4 shows a network with three SDF actors where the only
solution to the balance equations is the trivial one, qA = qB = qC = 0. A conse-

Figure 3.3: A consistent SDF model.

Ptolemaeus, System Design 97

http://Ptolemy.org


3.1. SYNCHRONOUS DATAFLOW

Figure 3.4: An inconsistent SDF model.

quence is that there is no unbounded execution with bounded buffers for this model.
It cannot be kept in balance.

An SDF model that has a non-zero solution to the balance equations is said to be consis-
tent. If the only solution is zero, then it is inconsistent. An inconsistent model has no
unbounded execution with bounded buffers.

Lee and Messerschmitt (1987b) showed that if the balance equations have a non-zero
solution, then they also have a solution where qi is a nonnegative integer for all actors
i. Moreover, for connected models (where there is a communication path between any
two actors), they give a procedure for finding the least positive integer solution. Such a
procedure forms the foundation for a scheduler for SDF models.

Example 3.5: Figure 3.5 shows an SDF model that makes extensive use of the
multirate capabilities of SDF. The AudioCapture actor captures sound from the
microphone on the machine on which the models run, producing a sequence of
samples at a default rate of 8,000 samples per second. The Chop actor extracts
chunks of 128 samples from each input block of 500 samples (see box on page 106).
The Spectrum actor computes the power spectrum, which measures the power as
a function of frequency (see box on page 101). The two SequenceToArray actors
(box on page 106) construct arrays that are then plotted using ArrayPlotter actors
(see Chapter 17). The particular plots that are shown are the response to a whistle.
Notice the peaks in the spectrum at about 1,700 Hz and -1,700 Hz.

The SDF director in this model figures out that the AudioCapture actor needs to
fire 500 times for each firing of Chop, Spectrum, and SequenceToArray, and the
plotters.

98 Ptolemaeus, System Design

http://Ptolemy.org


3. DATAFLOW

2x10

-0.2

-0.1

0.0

0.1

0.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Time-Domain Signal

time (sec)

-60

-40

-20

0

-4000.0 -2000.0 0.0 2000.0 4000.0

Spectrum

frequency (Hz)

am
pl

itu
de

 (d
B)

Figure 3.5: Model that computes the power spectrum of the audio signal captured
from the microphone. The plots here show a whistle at about 1,700 Hz. [online]

Ptolemaeus, System Design 99

http://ptolemy.org/systems/models/dataflow/SoundSpectrum/index.html
http://Ptolemy.org


3.1. SYNCHRONOUS DATAFLOW

Sidebar: SDF Schedulers

A key advantage of using SDF is that there may be many possible schedules for a given
model, including some that execute actors in parallel. In this case, actors in the dataflow
graph can be mapped onto different processors in a multicore or distributed architecture
for improved performance. Lee and Messerschmitt (1987a) adapt classical job-shop
scheduling algorithms (Coffman, 1976), particularly those introduced by Hu (1961), to
SDF by converting the SDF graph into an acyclic precedence graph (APG). Lee and
Ha (1989) classify scheduling strategies into fully dynamic scheduling (all scheduling
decisions are made at run time), static assignment scheduling (all decisions except the
assignment to processors are made at run time), self-timed scheduling (only the timing
of an actor firing is determined at run time), and fully-static scheduling (every aspect
of the schedule is determined before run time). Sih and Lee (1993a) extend the job-shop
scheduling techniques to account for interprocessor communication costs (see also Sih
and Lee (1993b)). Pino et al. (1994) show how to construct schedules for heterogeneous
multiprocessors. Falk et al. (2008) give a parallel scheduling strategy based on clustering
and demonstrate significant performance gains for multimedia applications.

In addition to parallel scheduling strategies, other scheduling optimizations are also
useful (see Bhattacharyya et al. (1996b) for a collection of these). Ha and Lee (1991)
relax the constraints of SDF to allow data-dependent iterative firing of actors (a tech-
nique called quasi-static scheduling). Bhattacharyya and Lee (1993) develop optimized
schedules for iterated invocations of actors (see also Bhattacharyya et al. (1996a)). Bhat-
tacharyya et al. (1993) optimize schedules to minimize memory usage and later apply
these optimizations to code generation for embedded processors (Bhattacharyya et al.,
1995). Murthy and Bhattacharyya (2006) collect algorithms that minimize the use of
memory through scheduling and buffer sharing. Geilen et al. (2005) show that model
checking techniques can be used to optimize memory. Stuijk et al. (2008) explore the
tradeoff between throughput and buffering (see also Moreira et al. (2010)). Sriram and
Bhattacharyya (2009) develop scheduling optimizations that minimize the number of
synchronization operations in parallel SDF. Synchronization ensures that an actor does
not fire before it receives the data it needs to fire. However, synchronization is not re-
quired if a previous synchronization already provides assurance that the data are present.
By manipulating the schedule, one can minimize the number of required synchroniza-
tion points.

100 Ptolemaeus, System Design

http://Ptolemy.org


3. DATAFLOW

Sidebar: Frequency Analysis

The SDF domain is particularly useful for signal processing. One of the basic operations
in signal processing is to convert a time domain signal into a frequency domain signal
and vice versa (see Lee and Varaiya (2011)). Actors that support this operation are found
in the Actors→SignalProcessing→Spectrum library, and shown below:

• FFT and IFFT calculate the discrete Fourier transform (DFT) and its inverse, respec-
tively, of a signal using the fast Fourier transform algorithm. The order parameter
specifies the number of input tokens that are used for each FFT calculation. It is a
“radix two” algorithm, which implies that the number of tokens is required to be a
power of two, and the order parameter specifies the exponent. For example, if or-
der=10, then the number of input tokens used for each firing is 210 = 1024. The
remaining actors implement various spectral estimation algorithms, and are all com-
posite actors that use FFT as a component. These algorithms output signal power in
decibels (dB) as a function of frequency. The output frequency ranges from −fN to
fN , where fN is the Nyquist frequency (half the sampling frequency). That is, the
first half of the output represents negative frequencies and the second half represents
positive frequencies.
• Spectrum is the simplest of the spectral estimators. It calculates the FFT of the input

signal and converts the result to a power measurement in dB.
• SmoothedPeriodogram calculates a power spectrum by first estimating the autocor-

relation of the input. This approach averages the inputs and is less sensitive to noise.
• MaximumEntropySpectrum is a parametric spectral estimator; it uses the Levinson-

Durbin algorithm to construct the parameters of autoregressive (AR) models that
could plausibly have generated the input signal. It then selects the model that maxi-
mizes the entropy (see Kay (1988)). It is the most sophisticated of the spectral esti-
mators and typically produces the smoothest estimates.

Outputs from the three spectral estimators are compared in Figure 3.6, where the in-
put consists of three sinusoids in noise. Choosing the right spectral estimator for an
application is a sophisticated topic, beyond the scope of this book.

Ptolemaeus, System Design 101

http://Ptolemy.org


3.1. SYNCHRONOUS DATAFLOW

3x10

periodogram
smoothed

max entropy

-35
-30

-25

-20

-15

-10

-5

0

5

10

15

20

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Spectral Estimates

Frequency (in Hz)

D
ec

ib
el

s

output of Spectrum

output of 
SmoothedPeriodogram

output of MaximumEntropySpectrum

Figure 3.6: Comparison of three spectral estimation techniques described in the
box on page 101. [online]

102 Ptolemaeus, System Design

http://ptolemy.org/systems/models/dataflow/MaximumEntropySpectrum/index.html
http://Ptolemy.org


3. DATAFLOW

3.1.2 Feedback Loops

A feedback loop in SDF must include at least one instance of the SampleDelay actor
(found in the FlowControl→SequenceControl sublibrary). Without this actor, the
loop would deadlock; actors in the feedback loop would be unable to fire because they
depend on each other for tokens. The SampleDelay actor resolves this problem by pro-
ducing initial tokens on its output before the model begins firing. The initial tokens are
specified by the initialOutputs parameter, which defines an array of tokens. These initial
tokens enable downstream actors to fire and break the circular dependencies that would
otherwise result from a feedback loop.

Example 3.6: Consider the model in Figure 3.7. This homogeneous SDF model
generates a counting sequence using a feedback loop. The SampleDelay actor be-
gins the process by producing a token with value of 0 on its output. This token,
together with a token from the Const actor, enables the AddSubtract actor to fire.
The output of that actor enables the next firing of SampleDelay. After the initial
firing, the SampleDelay copies its input to its output unchanged.

Figure 3.7: An SDF model with a feedback loop must have at least one instance
of the SampleDelay actor in it. [online]

Ptolemaeus, System Design 103

http://ptolemy.org/systems/models/dataflow/SampleDelay/index.html
http://Ptolemy.org


3.1. SYNCHRONOUS DATAFLOW

Consistency is sufficient to ensure bounded buffers, but it is not sufficient to ensure that
an unbounded execution exists. The model may deadlock even if it is consistent. The
SDF director analyzes a model for both consistency and deadlock. To allow feedback, it
treats delay actors differently than other actors. A delay actor is able to produce initial
output tokens before it receives any input tokens. It subsequently behaves like a normal
SDF actor, consuming and producing a fixed number of tokens on each firing. In the
SDF domain, the initial tokens are understood to be initial conditions for execution rather
than part of the execution itself. Thus, the scheduler will ensure that all initial tokens are
produced before the SDF execution begins. Conceptually, the SampleDelay actor could
be replaced by initial tokens placed on a feedback connection.

Example 3.7: Figure 3.8 shows an SDF model with initial tokens on a feedback
loop. The balance equations are

3qA = 2qB

2qB = 3qA.

The least positive integer solution exists and is qA = 2, and qB = 3, so the model
is consistent. With four initial tokens on the feedback connection, as shown, the
following schedule can be repeated forever,

A,B,A,B,B.

This schedule starts with actorA, because at the start of execution, only actorA can
fire, because actor B does not have sufficient tokens. When A fires, it consumes
three tokens from the four initial tokens, leaving one behind. It sends three tokens
to B. At this point, only B can fire, consuming two of the three tokens sent by A,

Figure 3.8: An SDF model with initial tokens on a feedback loop. In Ptolemy II,
these initial tokens would be provided by a SampleDelay actor.

104 Ptolemaeus, System Design

http://Ptolemy.org


3. DATAFLOW

and producing two more tokens on its output. At this point, actor A can fire again,
because there are exactly three tokens on its input. It will consume all of these and
produce three tokens. At this point, B has four tokens on its input, enabling two
firings. After those two firings, both actors have been fired the requisite number of
times, and the buffer on the feedback arc again has four tokens. The schedule has
therefore returned the dataflow graph to its initial condition.

Were there any fewer than four initial tokens on the feedback path, however, the
model would deadlock. If there were only three tokens, for example, then A could
fire, followed by B, but neither would have enough input tokens to fire again.

Lee and Messerschmitt (1987b) discuss the procedure for solving the balance equations,
along with a procedure that will either provide a schedule for an unbounded execution
or prove that no such schedule exists. Using these procedures, both bounded buffers
and deadlock are decidable for SDF models (meaning that it is possible for Ptolemy to
determine whether deadlock or unbounded buffers occur in any SDF model).

3.1.3 Time in Dataflow Models

In the SDF examples we have considered thus far, we have used the SequencePlotter actor
but not the TimedPlotter actor (see Chapter 17). This is because the SDF domain does
not generally use the notion of time in its models. By default, time does not advance as
an SDF model executes (though the SDFDirector does contain a parameter, called period,
that can be used to advance time by a fixed amount on each iteration of the model).
Therefore, in most SDF models, the TimedPlotter actor would show the time axis as
always being equal to zero. The SequencePlotter actor, in contrast, plots a sequence of
values that are not time-based, and is therefore frequently used in SDF models. The
discrete event (DE) and Continuous domains, discussed in Chapters 7 and 9, include a
much stronger notion of time, and often use the TimedPlotter.

Ptolemaeus, System Design 105

http://Ptolemy.org


3.1. SYNCHRONOUS DATAFLOW

Sidebar: Multirate Dataflow Actors

The Ptolemy II library offers a few actors that produce and/or consume multiple tokens
per firing on a port. The most basic ones are shown below:

• Commutator and Distributor, in the FlowControl→Aggregators sublibrary,
convert tokens arriving from multiple signals into a sequence of tokens and vice versa.
Commutator has a multiport input, and on each firing, it reads a fixed number of to-
kens (given by its blockSize parameter) from each input channel, and outputs all the
tokens from all the input channels as a sequence. Distributor reverses this process.
• DownSample and UpSample, in SignalProcessing→Filtering, discard or in-

sert tokens. Downsample reads a fixed number of tokens (given by its factor param-
eter), and outputs one of those tokens (selected by its phase parameter). UpSample
inserts a fixed number of zero-valued tokens between input tokens.
• Repeat, found under FlowControl→SequenceControl, is similar to UpSample

except that instead of inserting zero-valued tokens, it repeats the input token.
• ArrayToSequence and SequenceToArray, found in the Array library, convert array

tokens into sequences of tokens and vice versa. Both actors have an arrayLength
parameter that specifies the length of the incoming (or outgoing) array. ArrayToSe-
quence also has an enforceArrayLength parameter, which, if set to true, causes the
actor to generate an error message if it receives an array of the wrong length. In
SequenceToArray, arrayLength is a PortParameter, and hence the number of input
tokens that are read can vary. These actors are SDF actors only when the array length
is constant.
• Chop, in FlowControl→SequenceControl, reads a specified number of input

tokens and produces a specified subset of those inputs, possibly padded with zero-
valued tokens or previously consumed tokens.

106 Ptolemaeus, System Design

http://Ptolemy.org


3. DATAFLOW

Sidebar: Signal Processing Actors

In addition to the spectral analysis actors described on page 101, Ptolemy II includes
several other key signal processing actors, as shown below.

• IIR implements an infinite impulse response filter, also called a recursive filter (see
Lee and Varaiya (2011)). Filter coefficients are provided in two arrays, one for the
numerator and one for the denominator polynomial of the transfer function.
• FIR implements a finite impulse response filter, also called a tapped delay line, with

coefficients specified by the taps parameter. Whereas IIR is a homogeneous SDF
(single-rate) actor, FIR is potentially a multirate actor. When the decimation (inter-
polation) parameters are not equal to 1, the filter behaves as if it were followed (pre-
ceded) by a DownSample (UpSample) actor (see sidebar on page 106). However, the
implementation is much more efficient than it would be using UpSample or Down-
Sample actors; a polyphase structure is used internally, avoiding unnecessary use of
memory and unnecessary multiplication by zero. Arbitrary sample-rate conversions
by rational factors can be accomplished in this manner.
• DelayLine produces an array rather than the scalar produced by FIR. Instead of a

weighted average of the contents of the delay line (which is what FIR produces),
DelayLine simply outputs the contents of the delay line as an array.
• VariableFIR is identical to FIR except that the coefficients are provided as an array

on an input port (and thus can vary) rather than being defined as actor parameters.
• LMSAdaptive is similar to FIR, except that the coefficients are adjusted on each

firing using a gradient descent adaptive filter algorithm that attempts to minimize the
power of the signal at the error input port.

In addition to the actors described here, the signal processing library includes fixed
and adaptive lattice filters, statistical analysis actors, actors for communications systems
(such as source and channel coders and decoders), audio capture and playback, and
image and video processing actors. See the actor index on page 632.

Ptolemaeus, System Design 107

http://Ptolemy.org


3.1. SYNCHRONOUS DATAFLOW

Sidebar: Dynamically Varying Rates

A variant of SDF that is called parameterized SDF (PSDF), introduced by Bhat-
tacharya and Bhattacharyya (2000), allows the production and consumption rates of
ports to be given by a parameter rather than being a constant. The value of the param-
eter is permitted to change, but only between complete iterations. When the value of
such a parameter changes, a new schedule must be used for the next complete iteration.

The example in Figure 3.9 illustrates how PSDF can be achieved with the SDF direc-
tor in Ptolemy II. First, notice that the director’s allowRateChanges parameter has been
set to true. This indicates to the director that it may need to compute more than one
schedule, since rate parameters may change during the execution of the model.

Second, notice that the Repeat actor’s numberOfTimes parameter is set equal to the
model parameter rate, which initially has value zero. Hence, when this model executes
its first iteration, the Repeat actor will produce zero tokens, so the Display actor will not
fire. The initial output from the Ramp actor, which has value 1, will not be displayed.

During this first iteration, the Expression and SetVariable actor both fire once. The
Expression actor sets its output equal to input, unless the input is equal to the value of the
iterations parameter (which it doesn’t in this first iteration). The SetVariable actor sets
the value of the rate parameter to 1. By default, SetVariable has a delayed parameter
with value true, which means that the rate parameter changes only after the current
iteration is complete.

In the second iteration, the value of the rate parameter is 1, so the Repeat actor copies
its input (which has value 2) once to its output. The Expression and SetVariable actors
set the rate parameter now to 2, so in the third iteration, the Repeat actor copies its input
(which has value 3) twice to its output. The sequence of displayed outputs is therefore
2, 3, 3, 4, 4, 4, · · · .

To stop the model, the iterations parameter of the director is set to 5. In the last
iteration of the execution, the Expression actor ensures that the rate parameter gets reset
to 0. Hence, the next time the model executes, it will start again with the rate parameter
set to 0.

In this example, each time the rate parameter changes, the SDF director recomputes
the schedule. In a better implementation of PSDF, it would probably precompute sched-
ules and/or cache previously computed schedules, but this implementation does not do
that. It just recomputes the schedule between iterations.

108 Ptolemaeus, System Design

http://Ptolemy.org


3. DATAFLOW

Figure 3.9: An SDF model with dynamically varying rates. [online]

Sidebar: StreamIt

Thies et al. (2002) give a textual programming language, StreamIt, based on SDF
and intended for use with streaming data applications such as multimedia. Software
components (called filters rather than actors) produce and consume fixed amounts of
data. The language provides compact structured constructs for common patterns of
actor composition, such as chains of filters, parallel chains of filters, or feedback loops.

A key innovation in StreamIt is the notion of a teleport message (Thies et al., 2005).
Teleport messages improve the expressiveness of SDF by allowing one actor to sporad-
ically send a message to another; that is, rather than sending a message on every firing,
only some firings send messages. The teleport message mechanism nonetheless ensures
determinism by ensuring that the message is received by the receiving actor in exactly
the same firing that it would have if the sending actor had sent messages on every firing.
But it avoids the overhead of sending messages on every firing. This approach models a
communication channel where tokens are sometimes, but not always, produced and con-
sumed. But it preserves the determinism of SDF models, where the results of execution
are the same for any valid schedule.

Ptolemaeus, System Design 109

http://ptolemy.org/systems/models/dataflow/DynamicRates/index.html
http://Ptolemy.org


3.1. SYNCHRONOUS DATAFLOW

Sidebar: Other Variants of Dataflow

A disadvantage of SDF is that every actor must produce and consume a fixed amount of
data; the production and consumption rates cannot depend on the data. DDF (Section
3.2) relaxes this constraint at the cost of being able to statically precompute the firing
schedule. In addition, as discussed earlier in the chapter, it is no longer possible to
analyze all models for deadlock or bounded buffers (these questions are undecidable).
Researchers have developed a number of variants of dataflow, however, that are more
expressive than SDF but still amenable to some forms of static analysis.

Cyclo-static dataflow (CSDF) allows production and consumption rates to vary in
a periodic manner (Bilsen et al., 1996). An example is the SingleTokenCommutator
actor (in FlowControl→Aggregators). This actor is similar to the Commutator ac-
tor (see sidebar on page 106), but instead of consuming all inputs in a single firing, it
consumes inputs from only one channel in each firing, and rotates through the input
channels on successive firings. For each input channel, the consumption rate alternates
between zero and one. This actor is useful in feedback systems where the input to the
second channel depends on the input to the first channel.

SDF can also be combined hierarchically with finite state machines (FSMs) to create
modal models, described in Chapter 8. Each state of the FSM is associated with a
submodel (a mode refinement, where each refinement can have different production and
consumption rates). If the state transitions of the FSM are constrained to occur only
at certain times, the model remains decidable. This combination was introduced by
Girault et al. (1999), who called it heterochronous dataflow (HDF). SDF Scenarios
(Geilen and Stuijk, 2010) are similar to HDF in that they also use an FSM, but rather
than having mode refinements, in SDF Scenarios each state of the FSM is associated
with a set of production and consumption rates for a single SDF model. Bhattacharya
and Bhattacharyya (2000) introduced parameterized SDF (PSDF), where production and
consumption rates can depend on input data as long as the same dependence can be
represented in parameterized schedule.

Murthy and Lee (2002) introduced multidimensional SDF (MDSDF). Whereas a
channel in SDF carries a sequence of tokens, a channel in MDSDF carries a multi-
dimensional array of tokens. That is, the history of tokens can grow along multiple
dimensions. This model is effective for expressing certain kinds of signal processing
applications, particularly image processing, video processing, radar and sonar.

110 Ptolemaeus, System Design

http://Ptolemy.org


3. DATAFLOW

Sidebar: Petri Nets

Petri nets, named after Carl Adam Petri, are a popular modeling formalism related to
dataflow (Murata, 1989). They have two types of elements, places and transitions,
depicted as white circles and rectangles, respectively. A place can contain any number
of tokens, depicted as black circles. A transition is enabled if all places connected to it
as inputs contain at least one token.

Once a transition is enabled, it can fire, consuming one token from each input place and
depositing one token on each output place. The state of a network, called its marking, is
the number of tokens on each place in the network. The figure above shows the marking
of a simple network before and after a firing. If a place provides inputs to more than one
transition, then a token on that place may trigger a firing of either destination transition
(one or the other fires, nondeterministically).

Petri net transitions are like dataflow actors; they fire when sufficient inputs are avail-
able. In basic Petri nets, tokens have no value, and firing of a transition does not involve
any computation on tokens. A firing is just the act of moving tokens from one place
to another. Also, places do not preserve token ordering, unlike dataflow buffers. Like
homogeneous SDF, transitions are enabled by a single token on each input place. Unlike
SDF, a place may feed more than one transition, resulting in nondeterminism.

There are many variants of Petri nets, at least one of which is equivalent to SDF. In
particular, tokens can have values (such tokens are called colored tokens in the liter-
ature, where the color of a token represents its value). Transitions can manipulate the
color of tokens (analogous to the firing function of a dataflow actors). Arcs connecting
places to transitions can be weighted to indicate that more than one token is required to
fire a transition, or that a transition produces more than one token. This is analogous to
SDF production and consumption rates. And finally, the Petri net graph structure can be
constrained so that for each place, there is exactly one source transition and exactly one
destination transition. With order-preserving places, such Petri nets are SDF graphs.

Ptolemaeus, System Design 111

http://Ptolemy.org


3.1. SYNCHRONOUS DATAFLOW

Sidebar: Logic Actors

The actors found in the Logic library are useful for building control logic:

• The Comparator actor compares two values of type double (or of any type that can
be losslessly converted to double, as explained in Chapter 14). The available compar-
isons are >,>=, <,<=, and ==. The output is a boolean.
• The Equals actor compares any number of input tokens of any type for equality and

outputs a boolean true if they are equal and a false otherwise.
• The IsPresent actor outputs a boolean true if the input is present when it fires and false

otherwise. In dataflow domains, the input is always present, so the output will always
be true. This actor is more useful in the SR and DE domains (Chapters 5 and 7).
• LogicalNot accepts an input boolean and outputs the converse boolean.
• LogicGate implements the following six logic functions (the icon changes when you

select the logic function):

• The TrueGate actor produces a boolean true output when the input is a boolean true.
Otherwise, it produces no token at all. This is clearly not an SDF actor, but it can be
used with DDF. It is also useful in SR (Chapter 5).

112 Ptolemaeus, System Design

http://Ptolemy.org


3. DATAFLOW

3.2 Dynamic Dataflow

Although the ability to guarantee bounded buffers and rule out deadlock is valuable, it
comes at a price: SDF is not very expressive. It cannot directly express conditional firing,
for example, such as when an actor fires only if a token has a particular value.

A number of dataflow variants have been developed that loosen the constraints of SDF;
several of these are discussed in the sidebar on page 110. In this section, we describe
a variant known as dynamic dataflow (DDF). DDF is much more flexible than SDF,
because actors can produce and consume a varying number of tokens on each firing.

3.2.1 Firing Rules

As in other dataflow MoCs (such as SDF) DDF actors begin execution when they have
sufficient input data. For a given actor to fire, its firing rule (that is, the condition that
must be met before an actor can fire) must be satisfied. In SDF, the actors’ firing rule is
constant. It simply specifies the fixed number of tokens that are required on each input
port before the actor can fire. In the DDF domain, however, firing rules can be more
complicated, and may specify a different number of tokens for each firing.

Example 3.8: The SampleDelay actor of Example 3.6 is directly supported by the
DDF MoC, without any need for special treatment of initial tokens. Specifically,
the firing rule for SampleDelay states that on the first firing, it requires no input
tokens. On subsequent firings, it requires one token.

Another difference is that, in SDF, actors produce a fixed number of tokens on each output
port. In DDF, the number of tokens produced can vary.

Example 3.9: On its first firing, the SampleDelay actor produces the number of
tokens specified in its initialOutputs parameter. On subsequent firings it produces
a single token that is equal to the token it consumed.

Ptolemaeus, System Design 113

http://Ptolemy.org


3.2. DYNAMIC DATAFLOW

The firing rules themselves need not be constant. Upon firing, a DDF actor may change
the firing rules for the next firing.

A key DDF actor is the BooleanSelect, which merges two input streams into one stream
according to a stream of boolean-valued control tokens (see sidebar on page 119). This
actor has three firing rules. Initially, it requires one token on the control (bottom) port,
and no tokens on the other two ports. When it fires, it records the value of the control
token and changes its firing rule to require a token on one of the trueInput port (labeled
T) or the falseInput port (labeled F), depending on the value of the control token. When
the actor next fires, it consumes the token on the corresponding port and sends it to the
output. Thus, it fires twice to produce one output. After producing an output, its firing
rule reverts to requiring a single token on the control port.

A more general version of the BooleanSelect is the Select actor, which merges an arbitrary
number of input streams into one stream according to a stream of integer-valued control
tokens, rather than just two streams (see sidebar on page 119).

Whereas BooleanSelect and Select merge multiple input streams into one, BooleanSwitch
and Switch do the converse; they split a single stream into multiple streams. Again, a
stream of control tokens determines, for each input token, to which output stream that
token should be sent. These Switch and Select actors accomplish conditional routing of
tokens, as illustrated in the following examples.

Example 3.10: Figure 3.10 uses BooleanSwitch and BooleanSelect to accomplish
conditional firing, the equivalent of if-then-else in an imperative programming lan-
guage. In this figure, the Bernoulli actor produces a random stream of Boolean-
valued tokens. This control stream controls the routing of tokens produced by the
Ramp actor. When Bernoulli produces true, the output of the Ramp actor is mul-
tiplied by −1 using the Scale actor. When Bernoulli produces false, Scale2 is
used; it passes its input through unchanged. The BooleanSelect uses the same con-
trol stream to select the appropriate Scale output.

Example 3.11: Figure 3.11 shows a DDF model that uses BooleanSwitch and
BooleanSelect to realize data-dependent iteration using a feedback loop. The Ramp

114 Ptolemaeus, System Design

http://Ptolemy.org


3. DATAFLOW

-40

-30

-20

-10

0

10

20

30

40

0 5 10 15 20 25 30 35 40

SequencePlotter

Figure 3.10: A DDF model that accomplishes conditional firing. [online]

actor feeds the loop with a sequence of increasing integers, 0, 1, 2, 3, etc. The
SampleDelay initiates the loop by providing a false token to the control port of
the BooleanSelect. In the full cycle, each input integer is repeatedly multiplied
by 0.5 until the resulting value is less than 0.5. The Comparator actor (found in
the Logic library) controls whether the token is routed back around the loop for
another iteration or routed out of the loop to the Discard actor (the one at the right
with the icon that looks like a ground symbol on an electrical circuit diagram, found
in Sinks→GenericSinks). The Discard actor receives and discards its input, but
in this case, it is also used to control what an iteration means. The parameter
requiredFiringsPerIteration has been added to the actor and assigned a value of 1
(see Section 3.2.2 below). Hence, one iteration of the model consists of as many
iterations of the loop as needed to produce one firing of Discard. This structure is
analogous to a do-while loop in an imperative programming language.

Ptolemaeus, System Design 115

http://ptolemy.org/systems/models/dataflow/IfThenElse/index.html
http://Ptolemy.org


3.2. DYNAMIC DATAFLOW

0.0
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 5 10 15 20 25 30 35

SequencePlotter

Figure 3.11: A DDF model that accomplishes data-dependent iteration. [online]

The pattern shown in Figure 3.11 is sufficiently useful that it might be used repeatedly.
Fortunately, Ptolemy II includes a mechanism for storing and re-using a design pattern,
created by Feng (2009). The pattern shown in Figure 3.12, for example, is available as a
unit in the MoreLibraries→DesignPatterns. In fact, any Ptolemy II model can be
exported to a library as a design pattern and reimported into another model as a unit by
simply dragging it into the model.

The Switch and Select actors (and their boolean versions) that are part of the DDF domain
provide increased flexibility and expressiveness relative to the SDF domain, but their use
means that it may not be possible to determine a schedule with bounded buffers, nor is

116 Ptolemaeus, System Design

http://ptolemy.org/systems/models/dataflow/Loop/index.html
http://Ptolemy.org


3. DATAFLOW

Figure 3.12: A design pattern stored as a unit in a library.

possible to ensure that the model will not deadlock. In fact, Buck (1993) showed that
bounded buffers and deadlock are undecidable for DDF models. For this reason, DDF
models are not as readily analyzed.

Example 3.12: A variant of the if-then-else model shown in Figure 3.10 is shown
in Figure 3.13. In this case, the inputs to the BooleanSelect have been reversed.
Unlike the earlier model, this model has no schedule that assures bounded buffers.
The Bernoulli actor is capable of producing an arbitrarily long sequence of true-
valued tokens, during which an arbitrarily long sequence of tokens may build up
on input buffer for the false port of the BooleanSelect, thus potentially overflowing
the buffer.

Switch and Select and their boolean cousins are dataflow analogs of the goto statement
in imperative languages. They provide low-level control over execution by conditionally
routing tokens. Like goto statements, their use can result in models that are difficult
to understand. This problem is addressed using structured dataflow, described in the
sidebar on page 120, and implemented in Ptolemy II using higher-order actors, described
in Section 2.7.

Ptolemaeus, System Design 117

http://Ptolemy.org


3.2. DYNAMIC DATAFLOW

-40

-30

-20

-10

0

10

20

30

40

0 5 10 15 20 25 30 35 40

SequencePlotter

Figure 3.13: A DDF model that has no bounded buffer schedule. [online]

3.2.2 Iterations in DDF

One of the advantages of SDF is that a complete iteration is uniquely defined. It consists of
a fixed number of firings of each of the actors in the model. It is therefore easy to control
the duration of an overall execution of the model by setting the iterations parameter of the
SDF director, which controls the number of times each actor will be executed.

The DDF director also has an iterations parameter, but defining an iteration is more dif-
ficult. An iteration can be defined by adding a parameter to one or more actors named
requiredFiringsPerIteration and giving that parameter an integer value, as illustrated in
the following example.

118 Ptolemaeus, System Design

http://ptolemy.org/systems/models/dataflow/Unbounded/index.html
http://Ptolemy.org


3. DATAFLOW

Sidebar: Token Flow Control Actors

Ptolemy II provides a number of actors that can route tokens in a model. The most basic
of these are Switch and Select (and their boolean variants), shown here:

On each firing, Switch consumes one token from the input and an integer-valued token
from the control port (on the bottom) and routes the input token to the output channel
specified by the control token. All other output channels produce no tokens on that
firing. Select does the converse, consuming a single token from the channel specified
by the control token and sending that token to the output. The other input channels
consume no tokens. BooleanSwitch (BooleanSelect) are variants where the number of
outputs (or inputs) is constrained to be two, and the control token is boolean rather than
integer valued.

Switch and Select can be compared to the following actors with related functionality:

ConfigurationSwitch is similar to BooleanSwitch except that instead of a control in-
put port it has a parameter that determines which output to send data to. If the value
of the parameter does not change during execution of the model (normally this is the
case with parameters), then this actor is an SDF actor that always produces zero tokens
on one output and one token on the other. ConfigurationSelect is likewise similar to
BooleanSelect.

BooleanMultiplexor and Multiplexor are similar to BooleanSelect and Select except
that they consume one token from all input channels. These actors discard all but one
of those input tokens, and send that one token to the output. Since these two actors
consume and produce exactly one token on every channel, they are homogeneous SDF
actors.

Ptolemaeus, System Design 119

http://Ptolemy.org


3.2. DYNAMIC DATAFLOW

Sidebar: Structured Dataflow

In an imperative language, structured programming replaces goto statements (which
can be problematic, as described in Dijkstra (1968)) with nested for loops,
if-then-else, do-while, and recursion. In structured dataflow, these concepts are
adapted to the dataflow modeling environment.

Figure 3.14 shows an alternative way to accomplish the conditional firing of Figure
3.10. The result is an SDF model that has many advantages over the DDF model in
Figure 3.10. The Case actor is an example of a higher-order actor, like those discussed
in Section 2.7. Inside, it contains two sub-models (refinements), one named true that
contains a Scale actor with a parameter of −1, and one named default that contains a
Scale actor with a parameter of 1. When the control input to the Case actor is true, the
true refinement executes one iteration. For any other control input, the default refinement
executes.

This style of conditional firing is called structured dataflow, because, much like
structured programming, control constructs are nested hierarchically. The approach
avoids arbitrary data-dependent token routing (which is analogous to avoiding arbitrary
branches using goto instructions). Moreover, the use of the Case actors enables the over-
all model to be an SDF model. In the example in Figure 3.14, every actor consumes and
produces exactly one token on every port. Hence, the model is analyzable for deadlock
and bounded buffers.

This style of structured dataflow was introduced in LabVIEW, a design tool devel-
oped by National Instruments (Kodosky et al., 1991). In addition to providing a condi-
tional operation similar to that of Figure 3.14, LabVIEW provides structured dataflow
constructs for iterations (analogous to for and do-while loops in an imperative lan-
guage), and for sequences (which cycle through a finite set of submodels). Iterations
can be achieved in Ptolemy II using the higher-order actors of Section 2.7. Sequences
(and more complicated control constructs) can be implemented using modal models, dis-
cussed in Chapter 8. Ptolemy II supports structured recursion using the ActorRecursion
actor, found in DomainSpecific→DynamicDataflow (see Exercise 3). However,
without careful constraints, boundedness again becomes undecidable with recursion
(Lee and Parks, 1995).

120 Ptolemaeus, System Design

http://Ptolemy.org


3. DATAFLOW

true default true default

Figure 3.14: Structured dataflow approach to conditional firing. [online]

Example 3.13: Consider the if-then-else example in Figure 3.10, discussed in Ex-
ample 3.10. The iterations parameter of the director is set to 40, and indeed the
plot has 40 points. This is because a parameter named requiredFiringsPerIteration
has been added to the SequencePlotter actor and assigned the value 1. As a con-
sequence, each iteration must include at least one firing of the SequencePlotter. In
this case, no other actor in the model has a parameter named requiredFiringsPerIt-
eration, so this parameter ends up determining what constitutes an iteration.

When multiple actors within a model have parameters named requiredFiringsPerItera-
tion, or when there are no such parameters, the situation is more subtle. In these cases,
DDF still has a well-defined iteration, but the definition is complex, and can surprise the
designer (see sidebar on page 124).

Ptolemaeus, System Design 121

http://ptolemy.org/systems/models/dataflow/Case/index.html
http://Ptolemy.org


3.2. DYNAMIC DATAFLOW

Example 3.14: Consider again the if-then-else example in Figure 3.10. If we re-
move the requiredFiringsPerIteration from the SequencePlotter, then 40 iterations
of the model will produce only nine plotted points. Why? Recall from Section 3.2.1
that BooleanSelect fires twice for each output it produces. Absent any constraints
in the model, the DDF director will not fire any actor more than once in an iteration.

Example 3.15: Figure 3.15 shows a DDF model that replaces all instances of the
SequencePlotter actor with instances of the Test actor for all Ptolemy models in a
directory (see box on page 126 for why you might want to do this). This model uses
the DirectoryListing actor (see box on page 128) to construct an array of file names
for actors in a specified directory. Ptolemy models are identified by files whose
names match the regular expression .*.xml, which matches any file name that
ends with .xml. The firingCountLimit parameter of the DirectoryListing ensures
that this actor fires only once. It will produce one array token on its output, and
then will refuse to fire again. Once the data in that array have been processed, there
are no more tokens to process, so the model deadlocks, and stops execution.

Figure 3.15: A DDF model that replaces all instances of the SequencePlotter
actor with instances of the Test actor for all Ptolemy models in a directory.

122 Ptolemaeus, System Design

http://Ptolemy.org


3. DATAFLOW

The ArrayToSequence actor (see box on page 106) converts the array of file names
into a sequence of tokens, one string-valued token for each file name. Notice that
the enforceArrayLength parameter is set to false for this actor. If we were to know
exactly how many XML files were in the directory in question, would could have
left this parameter with its default value true, set the arrayLength parameter to the
number of files, and used the SDF director instead of the DDF director. The Array-
ToSequence actor would consume one token and produce a fixed, known number
of output tokens, and hence would be an SDF actor. But since we do not know in
general how many matching files there will be in the directory, the DDF director is
more useful.

The FileReader actor (see box on page 128) reads the XML file and outputs its con-
tents as a single string. The StringReplace actor (see box on page 125) replaces all
instances of the full classname for the SequencePlotter actor with the full classname
for the Test actor.

The second StringReplace actor, named StringReplace2, is used to create a new
filename from the original file name. For example, the filename Foo.xml will
become FooTest.xml. The FileWriter actor then writes the modified filename to
a file with the new file name.

Note that we could have used the IterateOverArray actor and the SDF director in-
stead (see Section 2.7.2). We leave this as an exercise (see Problem 2 at the end of
this chapter).

3.2.3 Combining DDF with Other Domains

Although a system may be best modeled as DDF overall, it may contain some subsystems
that can be modeled as SDF. Thus, a DDF model may contain an opaque composite actor
that has an SDF director. This approach can improve efficiency and provide better control
over the amount of computation done in an iteration.

Conversely, a DDF model may be placed within an SDF model if it behaves like SDF
at its input/output boundaries. That is, to be used within an SDF model, a DDF opaque
composite actor should consume and produce a fixed number of tokens. It is not gen-
erally possible for the DDF director to determine from the model how many tokens are
produced and consumed at the boundary (this question is undecidable in general) so it is

Ptolemaeus, System Design 123

http://Ptolemy.org


3.2. DYNAMIC DATAFLOW

Sidebar: Defining a DDF Iteration

An iteration in DDF consists of the minimum number of basic iterations,(defined be-
low) that satisfy all constraints imposed by requiredFiringsPerIteration parameters.

In one basic iteration, the DDF director fires all enabled and non-deferrable actors
once. An enabled actor is one that has sufficient data at its input ports, or has no input
ports. A deferrable actor is one whose execution can be deferred because its execution
is not currently required by a downstream actor. This is the case when the downstream
actor either already has enough tokens on the channel connecting it to the deferrable
actor, or the downstream actor is waiting for tokens on another channel or port. If
there are no enabled and non-deferrable actors, then the director fires those enabled
and deferrable actors that have the smallest maximum number of tokens on their output
channels that will satisfy the demands of destination actors. If there are no enabled
actors, then a deadlock has occurred. The above strategy was shown by Parks (1995)
to guarantee that buffers remain bounded in an unbounded execution if there exists an
unbounded execution with bounded buffers.

The algorithm that implements one basic iteration is as follows. Let E denote the
set of enabled actors, and let D denote the set of deferrable enabled actors. One basic
(default) iteration then consists of the following, where the notation E \D means “the
set of elements in E that are not in D”:

if E \D 6= ∅ then
fire actors in (E \D)

else if D 6= ∅ then
fire actors in minimax(D)

else
declare deadlock

end if
The function “minimax(D)” returns a subset ofD with the smallest maximum number

of tokens on their output channels that satisfy the demand of destination actors. This will
always include sink actors (actors with no output ports).

124 Ptolemaeus, System Design

http://Ptolemy.org


3. DATAFLOW

up to the model designer to assert the production and consumption rates. If they are not
equal to a value of 1 (which need not be explicitly asserted), then the model designer can
assert consumption and production rates by creating a parameter in each input port called
tokenConsumptionRate and assigning it an integer value. Similarly, output ports should
be given a parameter called tokenProductionRate.

Once the rates at the boundary are set, it is up to the model designer to ensure that they
are respected at run time. This can be accomplished using the requiredFiringsPerItera-
tion parameter, as explained above in Section 3.2.2. In addition, the DDF director has a
parameter runUntilDeadlockInOneIteration that, when set to true, defines an iteration to
be repeated invocations of a basic iteration (see sidebar on page 124). until deadlock is
reached. If this parameter is used, it overrides any requiredFiringsPerIteration that may
be present in the model.

DDF conforms with the loose actor semantics, meaning that if a DDF director is used in
opaque composite actor, its state changes when its fire method is invoked. In particular,

Sidebar: String Manipulation Actors

The String library provides actor for manipulating strings:

The StringCompare actor compares two strings, determine whether they are equal, or
if one string starts with, ends with, or contains another string. The StringMatches
actor checks whether a string matches a pattern given as a regular expression. The
StringFunction actor can trim white space around a string or convert it to lower case
or upper case. The StringIndexOf actor searches for a substring within a string a re-
turns the index of that substring. The StringLength actor outputs the length of a string.
StringReplace replaces a substring that matches a specified pattern with a specified re-
placement string. StringSplit divides a string at specified separators. StringSubstring
extracts a substring, given a start and stop index.

Ptolemaeus, System Design 125

http://Ptolemy.org


3.2. DYNAMIC DATAFLOW

dataflow actors consume input tokens in their fire method. Once the tokens have been
consumed, they are no longer available in the input buffers. Thus, a second firing will
see new data, regardless of whether postfire has been invoked. For this reason, DDF
and SDF composite actors should not be used within domains that require strict actor
semantics, such as SR and Continuous, unless the model builder can ensure that these

Sidebar: Building Regression Tests

When developing nontrivial models and when extending Ptolemy II, good engineer-
ing practice requires creating regression tests. Regression tests guard against future
changes that may change behavior in ways that can invalidate applications that were
created earlier. Fortunately, in Ptolemy II, it is extremely easy to create regression tests.
Key components are found in MoreLibraries→RegressionTest:

The Test actor compares the inputs against the value specified by the correctValues
parameter. The actor has a trainingMode parameter, which when set to true, simply
records the inputs it receives. Therefore, a typical use is to put the actor in training
mode, run the model, take the actor out training mode, and then save the model in some
directory where all models are executed as part of daily testing. (This is how the vast
majority of the rather extensive regression tests for the Ptolemy II itself are created.)
The model will throw an exception if the Test actor receives any input that differs from
the ones it recorded. Note that one of the key advantages of determinate models is the
ability to construct such regression tests.

The NonStrictTest is similar, except that it tolerates (and ignores) absent inputs, and
it tests the inputs in the postfire phase of execution rather than the fire phase. It is useful
for domains such as SR and Continuous, which iterate to a fixed point.

Sometimes, a model is expected to throw an exception. A regression test for such a
model should include an instance of TestExceptionAttribute, which also has a training
mode. The presence of this attribute in a model causes the model to throw an exception
if the execution of the model does not throw an exception, or if the exception it throws
does not match the expected exception.

126 Ptolemaeus, System Design

http://Ptolemy.org


3. DATAFLOW

composite actors will not be fired more than once in an iteration of the SR of Continuous
container.

Note that any SDF model can be run with a DDF Director. However, the notion of iteration
may be different. Sometimes, a DDF model may be run with an SDF director even when
there is data-dependent iteration. Figure 3.14 shows one example, where the Case actor
facilitates this combination. However, it is sometimes possible to use this combination
even when a Switch is used. The SDF scheduler will assume the Switch produces one
token on every output channel, and will construct a schedule accordingly. While executing
this schedule, the director may encounter actors that it expects to be ready to fire but which
do not actually have sufficient input data to fire. Many actors can be safely iterated even
if they have no input data. Their prefire method returns false, indicating to the director
that they are not ready to fire. The SDF director will respect this, and will simply skip over
that actor in a schedule. However, this technique is rather tricky and is not recommended.
It can result in unintended sequences of actor execution.

3.3 Summary

Dataflow is a simple and versatile model of computation in which the execution of actors
is driven by the availability of input data. It is particularly useful for expressing streaming
applications, where long sequences of data values are routed through computations, such
as is common in signal processing and multimedia applications.

SDF is a simple (though restrictive) form of dataflow that enables extensive static analysis
and efficient execution. DDF is more flexible, but also more challenging to control and
more costly to execute, because scheduling decisions are made during run time. The two
can be mixed within a single model, so the extra costs of DDF may be incurred only where
they are absolutely required by the application. Both SDF and DDF are useful in modal
models, as explained in Chapter 8. Using SDF and DDF within modal models provides a
versatile concurrent programming model.

Ptolemaeus, System Design 127

http://Ptolemy.org


3.3. SUMMARY

Sidebar: IO Actors

The following key input/output actors are in the IO library:

FileReader and FileWriter read and write files from the local disk or from a remote
location specified via a URL or URI. For FileReader, the entire contents of the file is
produced on a single output string token. For FileWriter, each input string token is
written to a file, overwriting the previous contents of the file. In both cases, a new file
name can be given for each firing. To read from standard input, specify System.in as the
file name. To write to standard output, specify System.out as the file name. LineReader
and LineWriter are similar, except that they read and write a line at a time.

CSVReader and CSVWriter read and write files or URLs that are in CSV format, or
comma-separated values (actually, the separator can be anything; it need not be com-
mas). CSV files are converted into record tokens, and record tokens are converted
into CSV files. The first line of the file defines the field names of the records. To
use CSVReader, you need to help the type system to determine the output type. The
simplest way to do this is to enable backward type inference (see Section 14.1.4). This
sets the data type of the output port of the CSVReader actor to be the most general type
that is acceptable to the actors downstream. Thus, for example, if the actors downstream
extract fields from the record, then the type constraints will automatically require those
fields to be present and to have compatible types. You can also coerce the output type
using the [Customize→Ports] context menu command.

The following actors are also in the IO library:

ArrowKeySensor produces outputs that respond to the arrow keys on the keyboard.
DirectoryListing produces on its output an array of file names in a specified directory
that match an (optional) pattern.

128 Ptolemaeus, System Design

http://Ptolemy.org


3. DATAFLOW

Exercises

1. The multirate actors described in the box on page 106 and the array actors de-
scribed in the boxes on page 88 and 86 are useful with SDF to construct collective
operations, which are operations on arrays of data. This exercise explores the im-
plementation of what is called an all-to-all scatter/gather using SDF. Specifically,
construct a model that generates four arrays with values:

{"a1", "a2", "a3", "a4"}
{"b1", "b2", "b3", "b4"}
{"c1", "c2", "c3", "c4"}
{"d1", "d2", "d3", "d4"}

and converts them into arrays with values

{"a1", "b1", "c1", "d1"}
{"a2", "b2", "c2", "d2"}
{"a3", "b3", "c3", "d3"}
{"a4", "b4", "c4", "d4"}

Experiment with the use of ArrayToElements and ElementsToArray, as well as Ar-
rayToSequence and SequenceToArray (for the latter, you will also likely need Com-
mutator and Distributor). Comment about the relative merits of your approaches.
Hint: You may have to explicitly set the channel widths of the connections to 1.
Double click on the wires and set the value. You may also experiment with Multi-
InstanceComposite.

2. Consider the model in Figure 3.15, discussed in Example 3.15. Implement this
same model using the IterateOverArray actor and only the SDF director instead of
the DDF director (see Section 2.7.2).

3. The DDF director in Ptolemy II supports an actor called ActorRecursion that is a
recursive reference to a composite actor that contains it. For example, the model
shown in Figure 3.16 implements the sieve of Eratosthenes, which finds prime num-
bers, as described by Kahn and MacQueen (1977).

Use this actor to implement a composite actor that computes Fibonacci numbers.
That is, a firing of your composite actor should implement the firing function

Ptolemaeus, System Design 129

http://Ptolemy.org


EXERCISES

f : N→ N defined by, for all n ∈ N,

f(n) =


0 if n = 0
1 if n = 1
f(n− 1) + f(n− 2) otherwise

When ActorRecursion fires, it clones the composite actor above it in the hierarchy
(i.e., its container, or its container’s container, etc.) whose name matches the value
of its recursionActor parameter. The instance of ActorRecursion is populated with
ports that match those of that container. This actor should be viewed as a highly ex-
perimental realization of a particular kind of higher-order actor. It is a higher-order
actor because it is parameterized by an actor that contains it. Its implementation,
however, is very inefficient. The cloning of the actor it references on each firing is
expensive in terms of both memory and time. A better implementation would use
an approach similar to the stack frame approach used in procedural programming
languages. Instead, the approach it uses is more like copying the source code at run
time and then interpreting it. In an attempt to make execution more efficient, this
actor avoids creating the clone if it has previously created it. Also, the visual repre-
sentation of the recursive reference is inadequate. There is no way, looking only at
the image in Figure 3.16, to tell what composite actor the ActorRecursion instance
references. Thus, you cannot really read the program from its visual representation.

Figure 3.16: The sieve of Eratosthenes, using ActorRecursion in DDF. [online]

130 Ptolemaeus, System Design

http://ptolemy.org/systems/models/dataflow/Eratosthenes/index.html
http://Ptolemy.org

