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8. MODAL MODELS

Most interesting systems have multiple modes of operation. Changes in modes may be
triggered by external or internal events, such as user inputs, hardware failures, or sensor
data. For example, an engine controller in a car may have different behavior when the car
is in Park than when it is in Drive.

A modal model is an explicit representation of a finite set of behaviors (or modes) and
the rules that govern transitions between them. The rules are captured by a finite state
machine (FSM).

In Ptolemy II, the ModalModel actor is used to implement modal models. ModalModel is
a hierarchical actor, like a composite actor, but with multiple refinements instead of just
one. Each refinement specifies a single mode of behavior, and a state machine determines
which refinement is active at any given time. The ModalModel actor is a more general
form of the FSMActor described in Chapter 6; the FSMActor does not support state re-
finements. Modal models use the same transitions and guards described in Chapter 6, plus
some additional ones.

Example 8.1: The model shown in Figure 8.1 represents a communication channel
with two modes of operation: clean and noisy. It includes a ModelModel actor
(labeled “Modal Model”) with two states, clean and noisy. In the clean mode,
the model passes inputs to the output unchanged. In the noisy mode, it adds a
Gaussian random number to each input token. The top-level model provides an
event signal generated by a PoissonClock actor, which generates events at random
times according to a Poisson process. (In a Poisson process, the time between
events is given by independent and identically distributed random variables with an
exponential distribution.) A sample execution of this model, in which the Signal
Source actor provides an input sine wave, results in the plot shown in Figure 8.2.

This example combines three distinct models of computation (MoCs). At the top
level, the timed behavior of randomly occurring events is captured using the DE
domain. The next level down in the hierarchy, an FSM is used to capture mode
changes. The third level uses SDF to capture untimed processing of sample data.

The process of creating a modal model is illustrated in Figure 8.3. To create a modal
model in Vergil, drag in a ModalModel actor from the Utilities library and populate
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Figure 8.1: Simple modal model that has a normal (clean) operating mode, in
which it passes inputs to the output unchanged, and a faulty mode, in which it
adds Gaussian noise. It switches between these modes at random times deter-
mined by the PoissonClock actor. [online]
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Figure 8.2: Plot generated by the model in Figure 8.1.

it with ports. Open the modal model actor and add one or more states and transitions.
To create the transitions, hold the Control key (or the Command key on a Mac) and click
and drag from one state to the other. To add a refinement, right click on a state and select
Add Refinement. You can choose a Default Refinement or a State Machine

Refinement. The former is used in the above example; it will require in each refinement
a director and actors that process input data to produce outputs. The latter will enable
creation of a hierarchical FSM, as described in Chapter 6.

Ptolemaeus, System Design 277

http://Ptolemy.org


8.1. THE STRUCTURE OF MODAL MODELS

1. Drag 2. Customize/Ports
3. Commit

5. Drag

4. Open Actor

6. Control- or Command-Drag

7. Add Re�nement

8. Look Inside

9. Populate with a director and actors

Figure 8.3: How to create modal models.
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8. MODAL MODELS

8.1 The Structure of Modal Models

The general structure of a modal model is shown in Figure 8.4. The behavior of a modal
model is governed by a state machine, where each state is called a mode. In Figure 8.4,
each mode is represented by a bubble (like a state in a state machine) but it is colored to
indicate that it is a mode rather than an ordinary state. A mode, unlike an ordinary state,
has a mode refinement, which is an opaque composite actor that defines the mode’s
behavior. The example in Figure 8.1 shows two refinements, each of which is an SDF
model that processes input tokens to produce output tokens.

The mode refinement must contain a director, and this director must be compatible with
the director that governs the execution of the modal model actor. The example in Figure
8.1 has an SDF director inside each of the modes and a DE director outside the modal
model. SDF can generally be used inside DE, so this combination is valid.

Figure 8.4: General pattern of a modal model with two modes, each with its own
refinement.
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8.1. THE STRUCTURE OF MODAL MODELS

Like in a finite state machine, modes are connected by arcs representing transitions with
guards that specify when the transition should be taken.

Example 8.2: In Figure 8.1, the transitions are guarded by the expression
event isPresent, which evaluates to true when the event input port has an event.
Since that input port is connected to the PoissonClock actor, the transitions will be
taken at random times, with an exponential random variable governing the time
between transitions.

A variant of the structure in Figure 8.4 is shown in Figure 8.5, where two modes share
the same refinement. This is useful when the behavior in different modes differs only by
parameter values. For example, Exercise 2 constructs a variant of the example in Figure

Figure 8.5: Variant of the pattern in Figure 8.4 where two modes share the same
refinement.
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8. MODAL MODELS

8.1 where the clean refinement differs from the noisy refinement only by having a different
parameter value for the Gaussian actor. To construct a model where multiple modes have
the same refinement, add a refinement to one of the states, giving the refinement a name
(by default, the suggested name for the refinement is the same as the name of the state,
but the user can choose any name for the refinement). Then, for another state, instead of
choosing Add Refinement, choose Configure (or simply double click on the state)
and specify the refinement name as the value for the refinementName parameter. Both
modes will now have the same refinement.

Another variant is when a mode has multiple refinements. This effect can be accomplished
by executing Add Refinement multiple times or by specifying a comma-separated list
of refinement names for the refinementName parameter. These refinements will execute
in the order that they are added. This order can be changed by invoking Configure on
the state (or double clicking on it) and editing the comma-separated list of refinements.

Probing Further: Internal Structure of a Modal Model

In Ptolemy II, every object (actor, state, transition, port, parameter, etc.) can have at
most one container. Yet in a modal model, two states can share the same refinement,
which may seem to violate that general rule.

The key difference is that a ModalModel actor is actually a specialized composite
actor that contains an instance of FSMDirector, an FSMActor, and any number of com-
posite actors. Each composite actor can be a refinement for any state of the FSMActor.
The FSMActor is the controller, in the sense that it determines which mode is active at
any time. The FSMDirector ensures that input data is delivered to the FSMActor and
all active modes. This same structure is used for the hierarchical FSMs explained in
Section 6.3.

The Vergil user interface, however, hides this structure. When you execute an Open

Actor command on a ModalModel, the user interface skips a level of the hierarchy and
takes you directly the FSMActor controller. It does not show the layer of the hierarchy
that contains the FSMActor, the FSMDirector, and the refinements. Moreover, when
you Look Inside a state, the user interface goes up one level of the hierarchy and
opens all refinements of the selected state. This architecture balances expressiveness
with user convenience.
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8.2. TRANSITIONS

8.2 Transitions

All the transition types of Table 6.1 can be used with modal models. They have exactly the
same meaning given in that table. The transition types shown in Table 6.3, which are ex-
plained for hierarchical FSMs, however, have slightly different meanings for refinements
that are not FSMs. Refinements of a state in an FSM can be arbitrary opaque composite
actors (composites that contain a director). They can even be mixed, where some refine-
ments are FSMs and some are other kinds of models. The more general meanings for
such transitions are explained in this section, and then summarized in Table 8.1.

8.2.1 Reset Transitions

By default, a transition is a reset transition, which means that the refinements of the des-
tination state are initialized when the transition is taken. If the refinement is an FSM, as
explained in Section 6.3, this simply means that the state of the FSM is set to its initial
state. If that initial state itself has refinement state machines, then those too are set to
their initial states. In fact, the mechanism of a reset transition is simply that the initialize
method of the refinement is invoked. This causes all components within the refinement to
be initialized.

Example 8.3: For the example in Figure 8.1, it does not matter whether the tran-
sitions are history transitions or not because the refinements of the two states them-
selves have no state. The actors in the model (Gaussian and AddSubtract) have no
state, so initializing them does not change their behavior.

In the example in Figure 8.6, however, the Ramp actors have state. The example
shows the transitions being history transitions, which produces the plot in Figure
8.7(a). In this case, the Ramp actors will resume counting from where they last left
off when a state is re-entered.

If on the other hand we were to change the transitions to reset transitions, the result
would be the plot in Figure 8.7(b). Each time a transition is taken, the Ramp actors
are initialized (along with the rest of the refinement), so they begin again counting
from zero.
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8. MODAL MODELS

step = -1

Figure 8.6: A modal model whose behavior depends on whether transitions are
reset transitions or history transitions. [online]

8.2.2 Preemptive Transitions

For general modal models, preemptive transitions work the same way as for hierarchical
FSMs. If the guard is enabled, then the refinement does not execute. A consequence is
that the refinement does not produce output.

Example 8.4: In Figure 8.8, we have modified Figure 8.6 so that the transitions are
both preemptive. This means that when a guard evaluates to true, the refinement of
the current state does not produce output. In this particular model, no output at all
is produced in that iteration, violating the contract with SDF, which expects every
firing to produce a fixed, pre-determined number of tokens. An error therefore
arises, as shown in the figure. This error can be corrected by producing an output
on the transitions or by using a different director.
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Figure 8.7: (a) The plot resulting from executing the model in Figure 8.6, which
has history transitions. (b) The plot that would result from from changing the
transitions to reset transitions.
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step = -1

Figure 8.8: A modal model where preemptive transitions prevent the refinements
from producing outputs that are expected by the SDF director. [online]

8.2.3 Error Transitions

When executing a refinement, an error may occur that causes an exception to be thrown.
By default, an exception will cause the entire execution of the model to halt. This is not
always desirable. It might be possible to gracefully recover from an error. To allow for
this, Ptolemy II state machines include an error transition, which is enabled when an
error occurs while executing a refinement of the current state. An error transition may
also have a guard, output actions, and set actions. Some caution is necessary when using
output actions, however, because if the error occurs in the postfire phase of execution of
the refinement, then it may be too late to produce outputs. Most errors, however, will
occur in the fire phase, so most of the time this will not be a problem.

Example 8.5: A model with an error transition is shown in Figure 8.9. Like Ex-
ample 8.6, this model includes an InteractiveShell actor, which allows the user to
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Figure 8.9: A modal model with an error transition. [online]
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type in arbitrary text. In this model, what the user types is then sent to an Expres-
sionToToken actor, which parses what the user types, interpreting the text as an
expression in the Ptolemy II expression language (see Chapter 13). Of course, the
user may type an invalid expression, which will cause ExpressionToToken to throw
an exception.

In the FSM, the listening state has an error transition self loop. The error transition
is indicated by the red star at its stem. It is enabled when the refinement of the
listening state has thrown an exception and its guard (if there is a guard) is true. In
this case, the guard ensures that this transition is taken no more than three times.
After it has been taken three times, it will no longer be enabled.

An example of an execution of this model is shown at the bottom of the figure.
Here, the user first types in a valid expression, “2*3,” which produces the result 6.
Then the user types an invalid expression, “2*foo.” This is invalid because there
is no variable named “foo” in scope. This triggers an exception, which will be
caught by the error transition.

In this simple example, the error transition simply returns to the same state. In
fact, this transition is also a history transition, so the refinement is not reinitialized.
This could be dangerous with error transitions because an exception may leave
the refinement in some inconsistent state. But in this case, it is OK. Were this
a reset transition, then the InteractiveShell would be initialized after the error is
caught. This would cause the shell window to be cleared, erasing the history of the
interaction with the user.

On the fourth invalid expression, “3*baz,” the error transition guard is no longer
true, so the exception is not caught. This causes the model to stop executing and an
exception window to appear, as shown at the bottom of the figure.

Error transitions provide quite a powerful mechanism for recovering from errors in a
model. When an error transition is taken, two variables are set that may be used in the
guard or the output or set actions of this transition:

• errorMessage: The error message (a string).
• errorClass: The name of the class of the exception thrown (also a string).

In addition, for some exceptions, a third variable is set:
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• errorCause: The Ptolemy object that caused the exception.

For the above example, the errorCause variable will be a reference to the ExpressionTo-
Token actor. This is an ObjectToken on which you can invoke methods such as getName
in the guard or output or set actions of this transition (see Chapter 14).

8.2.4 Termination Transitions∗

A termination transition behaves rather differently when the state refinements are general
Ptolemy models rather than hierarchical FSMs. Such a transition is enabled when all
refinements of the current state have terminated, but for general Ptolemy models, it is
not possible to know whether the model has terminated prior to the postfire phase of
execution. As a consequence, if at least one of the refinements of the current state is a
default refinement (vs. a state machine refinement), then:

• the termination transition is not permitted to produce outputs, and
• the termination transition has lower priority than any other transition, including default

transitions.

The reason for these constraints is a bit subtle. Specifically, in many domains (SR and
Continuous, for example), the postfire phase is simply too late to be producing outputs.
The outputs will not be seen by downstream actors. Second, the guards on all other
transitions (non-termination transitions) will be evaluated in fire phase of execution, and
a transition may be chosen before it is even known whether the termination transition will
become enabled.

As a consequence of these constraints, termination transitions are not as useful for general
refinements as they are for hierarchical FSMs. Nevertheless, they do occasionally prove
useful.

Example 8.6: Figure 8.10 shows a model that uses a termination transition. The
key actor here is the InteractiveShell, which opens a dialog window into which
the user can type, as shown in Figure 8.11. The InteractiveShell asks the user to
type something, or to type “quit” to stop. When the user types “quit,” the postfire

∗Termination transitions are rather specialized. The reader may want to skip this subsection on a first
reading.
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method of the InteractiveShell returns false, which causes the bottom SDFDirector
to terminate the model (SDF terminates a model when any actor terminates because
the SDF contract to produce a fixed number of tokens can no longer be honored).

In the FSM, the transition from listening to check is a termination transition, so it
triggers when the user types quit. This transition has a set action of the form:

response = yesNoQuestion("Do you want to continue?")

which invokes the yesNoQuestion function to pop up a dialog asking the user a
question, as shown in Figure 8.11 (see Table 13.16 in Chapter 13 for information

Figure 8.10: A modal model with a termination transition. [online]
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Figure 8.11: An execution of the model in Figure 8.10.

about the yesNoQuestion function). If the user responds “yes” to the question,
then the transition sets the response parameter to true, and otherwise it sets it to
false. Hence, in the next iteration, the FSM will either take a reset transition back
to the initial listening state, opening another dialog, or it will transition to stop, a
final state. Transitioning to a final state will cause the top-level SDF director to
terminate.
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notation description
An ordinary transition. Upon firing, the refinement of the
source state is fired first, and then if the guard g is true
(or if no guard is specified), then the FSM will choose the
transition. It will produce the value y on output port x, over-
writing any value that the source state refinement might have
produced on the same port. Upon transitioning (in postfire),
the actor will set the variable a to have value b, again over-
writing any value that the refinement may have assigned to
a. Finally, the refinements of state s2 are initialized. For this
reason, these transitions are sometimes called reset transi-
tions.

A history transition. This is similar to an ordinary transi-
tion, except that when entering state s2, the refinements of
that state are not initialized. On first entry to s2, of course,
the refinements will have been initialized.

A preemptive transition. If the current state is s1 and the
guard is true, then the state refinement for s1 will not be iter-
ated prior to the transition.

An error transition. If any refinement of state s1 throws an
exception or a model error, and the guard is true, then this
transition will be taken. The output and set actions of the
transition can refer to special variables errorMessage, error-
Class, and errorCause, as explained in Section 8.2.3.
A termination transition. If all refinements of state s1 have
returned false on postfire, and the guard is true, then the tran-
sition is taken. Notice that since it cannot be known until the
postfire phase that this transition will be taken, the transition
cannot produce outputs. For most domains, postfire is too
late to produce outputs. Moreover, this transition has lower
priority than all other transitions, including default transi-
tions, because it cannot become enabled until postfire.

Table 8.1: Summary of modal model transitions and their notations. We assume
the state refinements are arbitrary Ptolemy II models, each with a director.
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8.3 Execution of Modal Models

Execution of a ModalModel is similar to the execution of an FSMActor. In the fire

method, the ModalModel actor

1. reads inputs;
2. evaluates the guards of preemptive transitions out of the current state;
3. if no preemptive transition is enabled, the actor

1. fires the refinements of the current state (if any); and
2. evaluates guards on non-preemptive transitions out of the current state;

3. chooses a transition whose guard evaluates to true, giving preference to preemptive
transitions; and

4. executes the output actions of the chosen transition;

In postfire, the ModalModel actor

1. postfires the refinements of the current state if they were fired;
2. executes the set actions of the chosen transition;
3. changes the current state to the destination of the chosen transition; and
4. initializes the refinements of the destination state if the transition is a reset transition.

The ModalModel actor makes no persistent state changes in its firemethod, so as long as
the same is true of the refinement directors and actors, a modal model may be used in any
domain. Its behavior in each domain may have subtle differences, however, particularly
in domains that use fixed-point iteration or when nondeterministic transitions are used. In
the next section (Section 8.4), we discuss the use of modal models in various domains.

Note that state refinements are fired before guards on non-preemptive transitions are eval-
uated. One consequence of this ordering is that the guards can refer to the outputs of the
refinements. Thus, whether a transition is taken can depend on how the current refinement
reacts to the inputs. The astute reader may have already noticed in the figures here that
output ports shown in the FSM do not look like normal output ports (notice the output
ports in Figures 8.1 and 8.4). In the FSM, these output ports are actually both an output
and an input. It serves both of these roles in the FSM. An output of the current state
refinement is also an input to the FSM, and guards can refer to this input.
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Example 8.7: Figure 8.12 shows a variant of the model in Figure 8.10 that includes
a guard that references an output from a refinement. This guard customizes the
response when the user types “hello,” as shown at the bottom of the figure.

The above example shows that the current state refinement and a transition’s output action
can both produce outputs on the same output port. Since execution of FSMs is strictly se-
quential, there is no ambiguity about the result produced on the output of the ModalModel.
It is always the last of the values written to the output in the firing. There could even be

Figure 8.12: A variant of the model in Figure 8.10 that includes a guard that
references an output from a refinement. [online]
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8.4. MODAL MODELS AND DOMAINS

a chain of immediate transitions, each passing through states that have refinements that
write to the same output port, and each transition also writing to the same output port.
These writes always occur in a well-defined order, and only the last of these writes will
be visible outside the modal model.

8.4 Modal Models and Domains

Our modal model examples so far have mostly used the SDF and DE domains in simple
ways. For the DE examples, such as that in Figure 8.1, the modal model fires when there
is an event on at least one of the input ports. Some inputs may be absent, and transitions
may be triggered by the presence (or absence) of an input. The modal model may or may
not produce an output on each output port; if it does not, then the output will be absent.
The only real subtlety with using modal models in DE concerns that passage of time,
which will be considered below in Section 8.5.

However, the role of modal models in some other domains is not so simple. In this section,
we discuss some of the subtleties.

8.4.1 Dataflow and Modal Models

Our SDF examples so far have all been homogeneous SDF, where every actor consumes
and produces a single token. When the modal model in these examples fires, all inputs to
the modal are present and contain exactly one token. And the firing of the modal model
results in one token produced on each output port, with the exception on of Figure 8.9,
where an error prevents production of the output token.

With some care, modal models can be used with multirate SDF models, as illustrated by
the following example.

Example 8.8: In the example shown in Figure 8.13, the refinements of each of
the states require 10 samples in order to fire, because of the SequenceToArray ac-
tor. This model alternates between averaging 10 input samples and computing the
maximum of 10 input samples. Each firing of the ModalModel executes the current
refinement for one iteration, which in this case processes 10 samples. As you can
see from the resulting plot, when the input is a sine wave, averaging sequences of
10 samples yields another sine wave, whereas taking the maximum does not.
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Probing Further: Concurrent and Hierarchical Machines

An early model for concurrent and hierarchical FSMs is Statecharts, developed by
Harel (1987). With Statecharts, Harel introduced the notion of and states, where a
state machine can be in both states A and B at the same time. On careful examination,
the Statecharts model is a concurrent composition of hierarchical FSMs under an SR
model of computation. Statecharts are therefore (roughly) equivalent to modal models
combining hierarchical FSMs and the SR director in Ptolemy II. Specifically, use of the
SR director in a mode refinement to govern concurrent actors, each of which is a state
machine, provides a variant of Statecharts. Statecharts were realized in a software tool
called Statemate (Harel et al., 1990).

Harel’s work triggered a flurry of activity, resulting in many variants of the model
(von der Beeck, 1994). One variant was adopted to become part of UML (Booch et al.,
1998). A particularly elegant version is SyncCharts (André, 1996), which provides a
visual syntax to the Esterel synchronous language (Berry and Gonthier, 1992).

One of the key properties of synchronous composition of state machines is that it
becomes possible to model a composition of components as a state machine. A straight-
forward mechanism for doing this results in a state machine whose state space is the
cross product of the individual state spaces. More sophisticated mechanisms have been
developed, such as interface automata (de Alfaro and Henzinger, 2001).

Hybrid systems (Chapter 9) can also be viewed as modal models, where the concur-
rency model is a continuous time model (Maler et al., 1992; Henzinger, 2000; Lynch
et al., 1996). In the usual formulation, hybrid systems couple FSMs with ordinary dif-
ferential equations (ODEs), where each state of the FSMs is associated with a particular
configuration of ODEs. A variety of software tools have been developed for specifying,
simulating, and analyzing hybrid systems (Carloni et al., 2006).

Girault et al. (1999) first showed that FSMs can be combined hierarchically with a
variety of concurrent models of computation. They called such compositions *charts
or starCharts, where the star represents a wildcard. Several active research projects
continue to explore expressive variants of concurrent state machines. BIP (Basu et al.,
2006), for example, composes state machines using rendezvous interactions. Alur et al.
(1999) give a very nice study of semantic questions around concurrent FSMs, including
various complexity questions. Prochnow and von Hanxleden (2007) describe sophisti-
cated techniques for visual editing of concurrent state machines.
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Figure 8.13: An SDF model where the ModalModel requires more than one token
on its input in order to fire. [online]

In order for multirate modal models to work, it is necessary to propagate the production
and consumption information from the refinements to the top-level SDF director. To do
this, you must change the directorClass parameter of the ModalModel actor, as shown
in Figure 8.14. The default director for a ModalModel makes no assertion about tokens
produced or consumed, because it is designed to work with any Ptolemy II director, not
specifically to work with SDF. The MultirateFSMDirector, by contrast, is designed to
cooperate with SDF and convey production and consumption information across levels of
the hierarchy.

In certain circumstances, it is even allowed for the consumption and production profiles of
the refinements to differ in different modes. This has to be done very carefully, however. If
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Figure 8.14: In order for the ModalModel to become an SDF actor with non-unit
consumption and production on its inputs and outputs, it has to use the special-
ized MultirateFSMDirector.

different modes have different production and consumption profiles, then the ModalModel
actor is actually not an SDF actor. Nevertheless, the SDF director will sometimes tolerate
it.

Example 8.9: In Figure 8.13, for example, you can get away with changing the
parameters of the SequenceToArray actor so that they differ in the two refinements.
Behind the scenes, each time a transition is taken, the SDF director at the top level
notices the change in the production consumption profile and compute a new sched-
ule.

This is a major subtlety, however, with relying on the SDF director to recompute the
schedule when an actor’s production and consumption profile changes. Specifically, the
SDF director will only recompute the schedule after a complete iteration has executed
(see Section 3.1.1). If the production and consumption profile changes in the middle of a
complete iteration, then the SDF director may not be able to finish the complete iteration.
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Figure 8.15: A model that calculates the Fibonacci sequence using a hete-
rochronous dataflow model. This model is due to Ye Zhou. [online]

You may see errors about actors being unable to fire due to insufficient input tokens or
errors about buffer sizes being inadequate.

The heterochronous dataflow (HDF) director provides a proper way to use multirate modal
models with SDF. With this director, it is necessary to select the HDFFSMDirector for
the directorClass of the ModalModel. These two directors cooperate to ensure that tran-
sitions of the FSM are taken only after each complete iteration. This combination is very
expressive, as illustrated by the following examples.
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Example 8.10: The model in Figure 8.15 uses HDF to calculate the Fibonacci
sequence. In the Fibonacci sequence, each number is the sum of the previous two
numbers. One way to generate such a sequence is to extract the Fibonacci numbers
from a counting sequence (the natural numbers) by sampling each number that
is a Fibonacci number. This can be done by a DownSample actor where the n-th
Fibonacci number is generated by downsampling with a factor given by the (n−2)th
Fibonacci number.

The calculation is illustrated in the following figure:

1 2 3 4 5 6 7 8 9 10 11 12 13

1 1 1 2 3 5

1 2 3 5 8 13

The top row shows the counting sequence from which we select the Fibonacci
numbers. The downward arrows show the amount of downsampling required at
each stage to get the next Fibonacci number. A downsampling operation simply
consumes a fixed number of tokens and outputs only the last one. The first two
downsampling factors are fixed at 1, but after that, the downsampling factor is itself
a previously selected Fibonacci number.

In the model, the FSM changes the factor parameter of a DownSample actor each
time it fires. The HDF director calculates a new schedule each time the downsam-
pling rate is changed, and the new schedule outputs the next Fibonacci number.

Example 8.11: Another interesting example is shown in Figure 8.16. In this
example, two increasing sequences of numbers are merged into one increasing se-
quence. In the initial state, the ModalModel consumes one token from each input
and outputs the smaller of the two on its upper output port, and the larger of the
two on its lower output port. The smaller, of course, is the first token of the merged
sequence. The larger of the two is fed back to the input port named previous of the
ModalModel.
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Figure 8.16: A heterochronous dataflow model that merges two numerically in-
creasing streams into one numerically increasing stream (due to Ye Zhou and
Brian Vogel). [online]
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If the larger input came from input1, then the FSM transitions to state1. The re-
finement of this state does not read a token at all from input1 (its consumption
parameter will be zero). Instead, it reads one from input2 and compares it against
the value that was fed back.

If instead the initial larger input came from input2, then the FSM transitions to
state2, which reads from input1 and compares that input against the value that was
fed back.

These examples demonstrate that HDF allows consumption and production rates to vary
dynamically. In each case, the production and consumption profiles of the modal models
are determined by the model inside the current state refinement.

The HDF model of computation was introduced by Girault et al. (1999), and the primary
author of the HDF director is Ye Zhou. It has many interesting properties. Like SDF,
HDF models can be statically analyzed for deadlock and bounded buffers. But the MoC
is much more flexible than SDF because data-dependent production and consumption
rates are allowed. In order to use it, however, the model builder has to fully understand
the notion of a complete iteration, because this notion will constrain when transitions are
taken in the FSM.

8.4.2 Synchronous-Reactive and Modal Models

The SR domain, explained in Chapter 5, can use modal models in very interesting ways.
The key subtlety, compared with DE or dataflow, is that SR models may have feedback
loops that require iterative convergence to a fixed point. An example of such a feedback
loop using FSMs is given in Section 6.4.

The key issue, then, is that when a ModalModel actor fires in the SR domain, some of its
inputs may be unknown. This not the same as being absent. When an input is unknown,
we don’t know whether it is absent or present.

In order for modal models to be useful in feedback loops, it is important that the modal
model be able to assert outputs even if some inputs are unknown. Asserting an output
means specifying that it is either absent or present, and if it is present, optionally giving
it a value. But the modal model has to be very careful to make sure that it does not make
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assertions about outputs that become incorrect when the inputs become known. This
constraint ensures that the actor is monotonic.

If a ModalModel actor fires with some inputs unknown, then it must make a distinction
between a transition that is known to not be enabled and one where it is not known whether
it is enabled. If the guard refers to unknown inputs, then it cannot be known whether a
transition is enabled. This makes it challenging, in particular, to assert that outputs are
absent. It is not enough, for example, that no transition be enabled in the current state.
Instead, the modal model has to determine that every transition that could potentially
make the output present is known to be not enabled.

This constraint becomes subtle with chains of immediate transitions, because all chains
emanating from the current state have to be considered. If in any transition in such a
chain has a guard that is not known to be true or false, then the possible outputs of all
subsequent transitions have to be considered. If there are state refinements in chains of
immediate transitions, then it becomes extremely difficult to assert that an output is absent
when not all inputs are known.

Because of these subtleties, we recommend avoiding using modal models in feedback
loops that rely on the modal model being able to assert outputs without knowing inputs.
The resulting models can be extremely difficult to understand, so that even recognizing
correct behavior becomes challenging.

8.4.3 Process Networks and Rendezvous

Modal models can be used with PN and Rendezvous, but only in a rather simple way.
When a ModalModel actor fires, it will read from each input port (in top-to-bottom order),
which in each of these domains will cause the actor to block until an input is available.
Thus, in both cases, a modal model always consumes exactly one token from each input.
Whether it produces a token on the output, however, will depend on the FSM.

8.5 Time in Modal Models

Many Ptolemy II directors implement a timed model of computation. The ModalModel
actor and FSMActor are themselves untimed, but they include features to support their
use in timed domains.

302 Ptolemaeus, System Design

http://Ptolemy.org


8. MODAL MODELS

The FSMs we have described so far are reactive, meaning that they only produce outputs
in reaction to inputs. In a timed domain, the inputs have time stamps. For a reactive FSM,
the time stamps of the outputs are the same as the time stamps of the inputs. The FSM
appears to be reacting instantaneously.

In a timed domain, it is also possible to define spontaneous FSM and modal models. A
spontaneous FSM or spontaneous modal model is one that produces outputs even when
inputs are absent.

Example 8.12: The model shown in Figure 8.17 uses the timeout function,
described in Section 6.2.1, in the guard expression to trigger a transition every 1.0
time units. This is a spontaneous FSM with no input ports at all.

Example 8.13: The model in Figure 8.18 switches between two modes every 2.5
time units. In the regular mode it generates a regularly spaced clock signal with
period 1.0 (and with value 1, the default output value for DiscreteClock). In the

0.0

0.5

1.0

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

TimedPlotter

Figure 8.17: A spontaneous FSM, which produces output events that are not
triggered by input events. [online]
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Figure 8.18: Another spontaneous modal model, which produces output events
that are not triggered by input events. [online]

irregular mode, it generates randomly spaced events using a PoissonClock actor
with a mean time between events set to 1.0 and value set to 2. The result of a
typical run is plotted in Figure 8.19, with a shaded background showing the times
during which it is in the two modes. The output events from the ModalModel are
spontaneous; they are not necessarily produced in reaction to input events.

This example illustrates a number of subtle points about the use of time in modal models.
In Figure 8.19, we see that two events are produced at time zero: one with a value of 1,
and one with a value of 2. Why? The initial state is regular, and the execution policy
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Figure 8.19: A plot of the output from one run of the model in Figure 8.18.
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Figure 8.20: A variant of Figure 8.18 where a preemptive transition prevents the
initial firing of the DiscreteClock.
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described in section 8.3 explains that the refinement of that initial state is fired before
guards are evaluated. That firing produces the first output of the DiscreteClock, with
value 1. If we had instead used a preemptive transition, as shown in Figure 8.20, then that
first output event would not appear.

The second event in Figure 8.19 (with value 2) at time zero is produced because the
PoissonClock, by default, produces an event at the time when execution starts. This event
is produced in the second iteration of the ModalModel, after entering the irregular state.
Although the event has the same time stamp as the first event (both occur at time zero),
they have a well-defined ordering. The event with value 1 appears before the event with
value 2.

As previously described, in Ptolemy II, the value of time is represented by a pair of num-
bers, (t, n) ∈ R × N, rather than a single number (see Section 1.7). The first of these
numbers, t, is called the time stamp. It approximates a real number (it is a quantized
real number with a specified precision). We interpret the time stamp t to represent the
number of seconds (or any other time unit) that have elapsed since the start of execution
of the model. The second of these numbers, n, is called the microstep, and it represents a
sequence number for events that occur at the same time stamp. In our example, the first
event (with value 1) has tag (0, 0), and the second event (with value 2) has tag (0, 1). If
we had set the fireAtStart parameter of the PoissonClock actor to false, then the second
event would not occur.

Notice further that the DiscreteClock actor in the regular mode refinement has period 1.0,
but produces events at times 0.0, 3.5, and 4.5, 8.0, 9.0, etc.. These are not multiples of 1.0
from the start time of the execution. Why?

The modal begins in the regular mode, but spends zero time there. It immediately tran-
sitions to the irregular mode. Hence, at time 0.0, the regular mode becomes inactive.
While it is inactive, its local time does not advance. It becomes active again at global time
2.5, but its local time is still 0.0. Therefore, it has to wait one more time unit, until time
3.5, to produce the next output.

This notion of local time is important to understanding timed modal models. Very simply,
local time stands still while a mode is inactive. Actors that refer to time, such as Timed-
Plotter and CurrentTime, can base their responses on either local time or global time, as
specified in the parameter useLocalTime (which defaults to false). If no actor accesses
global time, however, then a mode refinement will be completely unaware that it was ever
suspended. It does not appear as if time has elapsed.
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Figure 8.21: A variant of Figure 8.18 in which a reset transition causes the Pois-
sonClock to produce events when the irregular mode is reactivated.

Another interesting property of the output of this model is that no event is produced at
time 5.0, when the irregular mode becomes active again. This behavior follows from the
same principle described above. The irregular mode became inactive at time 2.5, and
hence, from time 2.5 to 5.0, its local notion of time has not advanced. When it becomes
active again at time 5.0, it resumes waiting for the right time (local time) to produce the
next output from the PoissonClock actor.†

If an event is desired at time 5.0 (when the irregular mode becomes active) then a reset
transition can be used, as shown in Figure 8.21. The initialize method of the Pois-
sonClock causes an output event to be produced at the time of the initialization. A reset
transition causes local time to match the environment time (where environment time is
the time of the model in which the modal model resides; these distinct time values are
discussed further in the next section). The time lag between local time and environment
time goes to zero.

†Interestingly, because of the memoryless property of a Poisson process, the time to the next event after
becoming active is statistically identical to the time between events of the Poisson process. But this fact has
little to do with the semantics of modal models.
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Figure 8.22: A modal model that switches between delaying the input by one time
unit and not delaying it. [online]

8.5.1 Time Delays in Modal Models

The use of time delays in a modal model can produce several interesting effects, as shown
in the example below.

Example 8.14: Figure 8.22 shows a model that produces a counting sequence of
events spaced one time unit apart. The model uses two modes, delay and non-Delay,
to delay every other event by one time unit. In the delay mode, a TimeDelay actor
imposes a delay of one time unit. In the noDelay mode, the input is sent directly
to the output without delay. The result of executing this model is shown in Figure
8.23. Notice that the value 0 is produced at time 2. Why?
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Figure 8.23: The result of executing the model in Figure 8.22.

The model begins in the delay mode, which receives the first input. This input has
value 0. However, the modal model transitions immediately out of that mode to
the noDelay mode, with zero elapsed time. The delay mode becomes active again
at time 1, but its local time is still time 0. Therefore, it must delay the input with
value 0 by one time unit, to time 2. Its output is produced at time 2, just before
transitioning to the noDelay mode again.

8.5.2 Local Time and Environment Time

As shown in the previous examples, modal models may have complex behaviors, partic-
ularly when used in timed domains. It is useful to step back and ponder the principles
that govern the design choices in the Ptolemy II implementation of modal models. The
key idea behind a mode is that it specifies a portion of the system that is active only part
of the time. When it is inactive, does it cease to exist? Does time pass? Can its state
evolve? These are not easy questions to answer because the desired behavior depends on
the application.
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In a modal model, there are potentially four distinct times that can affect the behavior of
the model: local time, environment time, global time, and real time. Local time is the
time within the mode (or other local actor). Environment time is the time within the
model that contains the modal model. Global time is the model time at the top level of a
hierarchical model. Real time is the wall-clock time outside the computer executing the
model.

In Ptolemy II, the guiding principle is that when a mode is inactive, local time stands still,
while environment time (and global time) passes. An inactive mode is therefore in a state
of suspended animation. Local time within a mode will lag the time in its environment by
an accumulated suspend time or lag that is non-decreasing.

The time lag in a mode refinement is initially the difference between the start time of
the environment of the modal model and the start time of the mode refinement (normally
this difference is zero, but it can be non-zero, as explained below in Section 8.5.3). The
lag increases each time the mode becomes inactive, but within the mode, time seems
uninterrupted.

When an event crosses a hierarchical boundary into or out of the mode, its time stamp is
adjusted by the amount of the lag. That is, when a mode refinement produces an output
event, if the local time of that event is t, then the time of event that appears at the output
of the modal model is t+ τ , where τ is the accumulated suspend time.

A key observation is that when a submodel is inactive, it does not behave in the same man-
ner as a submodel the receives inputs and then ignores them. This point is illustrated by
the model of Figure 8.24. This model shows two instances of DiscreteClock, labeled Dis-
creteClock1 and DiscreteClock2, which have the same parameter values. DiscreteClock2
is inside a modal model labeled ModalClock, and DiscreteClock1 is not inside a modal
model. The output of DiscreteClock1 is filtered by a modal model labeled ModalFilter
that selectively passes the input to the output. The two modal models are controlled by the
same ControlClock, which determines when they switch between the active and inactive
states. Three plots are shown. The top plot is the output of DiscreteClock1. The middle
plot is the result of switching between observing and not observing the output of Dis-
creteClock1. The bottom plot is the result of activating and deactivating DiscreteClock2,
which is otherwise identical to DiscreteClock1.

The DiscreteClock actors in this example are set to produce a sequence of values, 1, 2, 3,
4, cyclically. Consequently, in addition to being timed, these actors have state, since they
need to remember the last output value in order to produce the next output value. When
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DiscreteClock2 is inactive, its state does not change, and time does not advance. Thus,
when it becomes active again, it simply resumes where it left off.
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Figure 8.24: A model that illustrates that putting a timed actor such as Discrete-
Clock inside a modal model is not the same as switching between observing and
not observing its output. [online]
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8.5.3 Start Time in Mode Refinements

Usually, when we execute a timed model, we want it to execute over a specified time
interval, from a start time to a stop time. By default, execution starts at time zero, but the
startTime parameter of the director can specify a different start time.

When a DE model is inside a mode refinement, however, by default, the start time in the
submodel is the time at which is initialized. Normally, this is the same as the start time
of the enclosing model, but when a reset transition is used, then the submodel may be
reinitialized at an arbitrary time.

When a submodel is reinitialized by a reset transition, occasionally it is useful to restart
execution at a particular time in the past. This can be accomplished by changing the
startTime parameter of the inside DEDirector to something other than the default (which
is blank, interpreted as the time of initialization).

Example 8.15: This use of the startTime parameter is illustrated in Figure 8.25,
which implements a resettable timer. This example has a modal model with a
single mode and a single reset transition. The startTime of the inside DEDirector
is set to 0.0, so that each time the reset transition is taken, the execution of the
submodel begins again at time 0.0.

In this example, a PoissonClock generates random reset events that cause the reset
transition to be taken. The refinement of the mode has a SingleEvent actor that is
set to produce an event at time 0.5 with value 2.0. As shown in the plot, this modal
model produces an output event 0.5 time units after receiving an input event, unless
it receives a second input event during the 0.5 time unit interval. The second event
resets the timer to start over. Thus, the event at time 1.1 does not result in any
output because the event at time 1.4 resets the timer.

When a reset transition is taken and the destination mode refinement has a specified start-
Time, the accumulated suspend time increases by t, where t is the current time of the
enclosing model. After the reset transition is taken, the lag between local time and global
time is larger by t than it was before the transition was taken.
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Figure 8.25: A resettable timer implemented by using a reset transition to restart
a submodel at time zero. [online]

8.6 Summary

FSMs and modal models in Ptolemy II provide a very expressive way to build up complex
modal behaviors. As a consequence of this expressiveness, it takes some practice to learn
to use them well. This chapter is intended to provide a reasonable starting point. Readers
who wish to probe further are encouraged to examine the documentation for the Java
classes that implement these mechanisms. Many of these documents are accessible when
running Vergil by right clicking and selecting Documentation.
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EXERCISES

Exercises

1. In the following model, the only signal (going from the output of FSMActor back
to its input) has value absent at all ticks.

Explain why this is correct.

2. Construct a variant of the example in Figure 8.1 where the clean and noisy states
share the same refinement, yet the behavior is the same.

3. This problem explores the use of the SDF model of computation together with
modal models to improve expressiveness. In particular, you are to implement a
simple run-length coder using no director other than SDF, leveraging modal models
with state refinements. Specifically, given an input sequence, such as

(1, 1, 2, 3, 3, 3, 3, 4, 4, 4)

you are to display a sequence of pairs (i, n), where i is a number from the input
sequence and n is the number of times that number is repeated consecutively. For
the above sequence, your output should be

((1, 2), (2, 1), (3, 4), (4, 3)).

Make sure your solution conforms with SDF semantics. Do not use the non-SDF
techniques of section 3.2.3. Note that this pattern arises commonly in many coding
applications, including image and video coding.
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