
cba

This is a chapter from the book

System Design, Modeling, and Simulation using Ptolemy II

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported
License. To view a copy of this license, visit:

http://creativecommons.org/licenses/by-sa/3.0/,

or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View,
California, 94041, USA. Permissions beyond the scope of this license may be available
at:

http://ptolemy.org/books/Systems.

First Edition, Version 1.0

Please cite this book as:

Claudius Ptolemaeus, Editor,
System Design, Modeling, and Simulation using Ptolemy II, Ptolemy.org, 2014.

http://ptolemy.org/books/Systems.

http://creativecommons.org/licenses/by-sa/3.0/
http://ptolemy.org/books/Systems
http://ptolemy.org/books/Systems

10
Modeling Timed Systems

Janette Cardoso, Patricia Derler, John C. Eidson, Edward A. Lee, Slobodan Matic,
Yang Zhao, Jia Zou

Contents
10.1 Clocks . 357
10.2 Clock Synchronization . 361
10.3 Modeling Communication Delays 365

Sidebar: Precision Time Protocols 367
10.3.1 Constant and Independent Communication Delays 368
10.3.2 Modeling Contention for Shared Resources 368
Sidebar: Decorators . 373
10.3.3 Composite Aspects . 375

10.4 Modeling Execution Time . 378
10.5 Ptides for Distributed Real-Time Systems 380

10.5.1 Structure of a Ptides Model 381
Sidebar: Background of Ptides . 382
10.5.2 Ptides Components . 389
Sidebar: Safe-to-Process Analysis 390

10.6 Summary . 393
10.7 Acknowledgements . 393

355

This chapter is devoted to modeling timing in complex systems. We begin with a dis-
cussion of clocks, with particular emphasis on multiform time. We then illustrate how to
use multiform time in three particular modeling problems. First, we consider clock syn-
chronization, where network protocols are used to correct clocks in distributed systems to
ensure that the clocks progress at approximately the same rates. Second, we consider the
problem of assessing the effect of communication delays on the behavior of systems. And
third, we consider the problem of assessing the effect of execution time on the behavior
of systems. We then conclude the chapter with an introduction to a programming model
called Ptides that makes possible systems whose behavior is unaffected by variations in
the timing of computation and networking, up to a point of failure. The Ptides model of
computation enables much more deterministic cyber-physical systems.

As a preface to this chapter, we issue a warning to the reader. Discussing the modeling
of timing in cyber-physical systems can be very confusing, because in such models, time
is intrinsically multiform. Several distinct views and measurements of time may simulta-
neously coexist, making the use of words like “when” and phrases such as “at the same
time” treacherous.

The most obvious source of temporal diversity is in the distinction between real time and
model time. By “real time” we mean here the time that elapses while a model executes,
or while the system that the model is supposed to model executes. If the execution of
the model is a simulation of some physical system, then “real time” may refer to the
time elapsing in the world where the simulation is executing (e.g. the time that your
wristwatch measures while you watch a simulation run on your laptop). Model time, by
contrast, exists within the simulation and advances at a rate that bears little relationship
with real time.

But even this can be confusing, because the physical system being simulated may be a
real-time system, in which case, model time is a simulation of real time. But not the
same real time that your wristwatch is measuring. Worse, within a simulation of a cyber-
physical system, there may be a multiplicity of time measuring devices. There is no
single wristwatch. Instead, there are clocks on microcontroller boards and in networking
infrastructure. These may or may not be synchronized, but even if they are synchronized,
the synchronization is inevitably imperfect, and modeling the imperfections may be an
important part of the model. As a consequence, a single model may have several distinct
timelines against which the components of the system are making progress. Moreover,
as discussed in Chapter 8, modal models lead to some timelines becoming frozen, while
others progress. Keeping these multiple timelines straight can be a challenge. This is the
primary topic of this chapter.

356 Ptolemaeus, System Design

http://Ptolemy.org

10. MODELING TIMED SYSTEMS

10.1 Clocks

As explained in Section 1.7, Ptolemy II provides a coherent notion of time across domains.
Ptolemy II supports multiform time. Every director contains a local clock that keeps track
of the local time. The local time is initialized with the startTime of the director and evolves
at a given clockRate. The clockRate can change.

The parameter dialogue of a simple director is shown in figure 10.1 (most directors have
more parameters than these, but every director has at least these). The startTime param-
eter, if given, specifies the time of the local clock when the model is initialized. If it is
not given, then the time at initialization will be set to the time of the environment (the
enclosing director, or the next director above in the hierarchy), or will be set to zero if
the director is at the top level of the model. When the local time of the director reaches
the value described by stopTime, the director will request to not be fired anymore (by
returning false from its postfire method).

The parameter dialog of a director also contains a Configure button for configuring the
local clock, as shown in Figure 10.1. This can be used to set the time resolution, which
is explained in Section 1.7.3, and the clock rate. The clockRate parameter specifies how
rapidly the local clock progresses relative to the clock of the enclosing director. A direc-
tor refers to the time of the enclosing director as the environment time. If there is no
enclosing director, then advancement of the clock is entirely controlled by the director.

Figure 10.1: The director parameters for the local clock.

Ptolemaeus, System Design 357

http://Ptolemy.org

10.1. CLOCKS

For example, if a DE director has an enclosing director, then the clockRate is used to
translate the time stamps of input events from the environment into local time stamps.
If it has no enclosing director, then all events are generated locally, and the director will
always advance time to the least time stamp of unprocessed events.

Every director in Ptolemy has a local clock. If an untimed director such as SDF or SR has
no enclosing director, then the clock value never changes (unless its period parameter is
set to a non-zero value).

Example 10.1: Figure 10.2 shows four different time lines of clocks c1 through
c4. The clock c1 (solid red line) represents a clock that evolves uniformly with
the environment time. Clocks c2 through c4 have varying clock rates, clock values
and offsets. During the first 5 time units, all clocks evolve with the same rate as
the environment time. Clock c3 starts with an offset of −5.0, i.e. it is 5 time units
behind environment time. At environment time 5, the clock rates of c2 and c3 are
modified; the clock rate of c2 is increased and the clock rate of c3 is decreased.
Clock c4 is suspended, so that its value does not change during the next 3 time
units. At time 8, c4 is resumed. At time 10, the value of c3 is set to 10 to match
the environment time. Because the clock rate of c3 is still less than 1.0, the clock
immediately starts lagging.

These different clock behaviors can be modeled in Ptolemy. We can perform the following
actions on clocks: define an offset, change the clock value, suspend and resume the
clock, and change the clock rate.

Example 10.2: The model that generates the plot shown in Figure 10.2 is presented
in Figure 10.3. The clock rate is modified by changing the parameter clockRate of
the parameter localClock in a director. In the Fast composite actor at the upper right,
that parameter is set equal to the port parameter rate, so that each time a new rate is
provided on that input port, the rate of the local clock changes. RegularToFast is a
DiscreteClock actor that starts the clock with rate 1.0 at time 0.0, then changes the
rate to 1.5 at time 5.0.

The clock value is modified by changing the value of the parameter startTime of
a director. Modifying the parameter startTime any time during the simulation will

358 Ptolemaeus, System Design

http://Ptolemy.org

10. MODELING TIMED SYSTEMS

set the current value of the clock to the value in the startTime parameter. The
SlowWithOffset composite actor at the middle right has a port parameter called
clockValue, and its director’s startTime is set to the expression clockValue to ref-
erence the port parameter. Whenever a new value arrives at that port parameter, the
clock value gets set. The Offset actor at the left sets the clock to −5.0 at environ-
ment time 0.0, to 2.5 at environment time 10.0, and to 10.0, again at environment
time 10.0. The latter update leverages the superdense time model in Ptolemy II to
instantaneously change the clock value from one value to another, as indicated by
the vertical dashed line segment in Figure 10.2.

c1 (environment)
c2 (regular - fast)

c3 (slow with offset)
c4 (suspend - resume)

-6

-4

-2

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12

Timed Plotter

environment time

lo
ca

l t
im

e

change clock rate

clock rate > 1.0

clock rate
 = 1.0

resume
clock

clock rate < 1.0offset

suspend
clock

initialize at -5

reset to 10

Figure 10.2: Clocks progressing at different rates relative to environment time.

Ptolemaeus, System Design 359

http://Ptolemy.org

10.1. CLOCKS

The SupendAndResume actor at the lower right is a modal model where the clock
of the inside Continuous director is suspended when the state machine is not in the
active state, resulting in the horizontal segment of the dash-dot line in Figure 10.2.
Notice that the transition entering the active state is a history transition to prevent
the local clock from being reset to its start time (if given) or the environment time
(if a start time is not given).

The local time of a director can be plotted by using a CurrentTime actor with the
useLocalTime parameter set to true (which is the default). If the useLocalTime
parameter is set to false, then the output produced will be the environment time of
the top level of the model. The time lines in Figure 10.2 are obtained by periodically
triggering these CurrentTime actors.

Figure 10.3: The model that generates the plot of Figure 10.2. [online]

360 Ptolemaeus, System Design

http://ptolemy.org/systems/models/modelingtime/TimePlot/index.html
http://Ptolemy.org

10. MODELING TIMED SYSTEMS

10.2 Clock Synchronization

Many distributed systems rely on a common notion of time. A brute-force technique
for providing a common notion of time is to broadcast a clock over the communication
network. Whenever any component needs to know the time, it consults this broadcast
clock. A well-implemented example of this is the global positioning system (GPS),
which with some care can be used to synchronize widely distributed clocks to within about
100 nanoseconds. This system relies on atomic clocks deployed on a network of satellites,
and careful calculations that even take into account relativistic effects. GPS, however,
is not always available to systems (particularly indoor systems), and it is vulnerable to
spoofing and jamming. More direct and self-contained realizations of broadcast clocks
may be expensive and difficult to implement, since lack of control over communication
delays can render the resulting clocks quite inaccurate. In addition, avoiding brittleness
in such systems, where the source of the clock becomes a single point of failure that can
bring down the entire system, may be expensive and a significant engineering challenge
(Kopetz, 1997; Kopetz and Bauer, 2003).

A more modern technique that improves robustness and precision is to use precision
time protocols (PTP) to provide clock synchronization. Such protocols keep a network
of loosely coupled clocks synchronized by exchanging time-stamped messages that each
clock uses to make small corrections in its own rate of progress. This technique is more
robust, because sporadic failures in communication have little effect, and even with per-
manent failures in communication, clocks can remain synchronized for a period of time
that depends on the stability of the clock technology.

This technique is also usually more precise than what is achieved by a broadcast clock;
for most such protocols, the achievable precision does not depend on the communication
delays, but rather instead depends on the asymmetry of the communication delays. That is,
if the latency of communication from pointA to pointB is exactly the same as the latency
of the communication from point B to point A, then perfect clock synchronization is
theoretically possible. In practice, such protocols can come quite close to this theoretical
limit over practical networks. The White Rabbit project at CERN, for example, claims
to be able synchronize clocks on a network spanning several kilometers to under 100
picoseconds (Gaderer et al., 2009). This means that if you simultaneously ask two clocks
separated by, say, 10 kilometers of networking cable, what time it is, their response will
differ by less than 100 picoseconds. Over standard Ethernet-based local area networks, it
is routine today to achieve precisions well under tens of nanoseconds using a PTP known

Ptolemaeus, System Design 361

http://Ptolemy.org

10.2. CLOCK SYNCHRONIZATION

as IEEE 1588 (Eidson, 2006). Over the open Internet, it is common to use a PTP known
as NTP (Mills, 2003) to achieve precisions on the order of tens of milliseconds.

Typically, one or several master clocks are elected (and reelected in the event of failure),
and slaves synchronize their clocks to the master by messages sent over the network.
This guarantees a common notion of time across all platforms, with a well-defined error
margin. The following example simulates the effects of imperfect clock synchronization.

Example 10.3: In electric power systems, a transmission line may span many
kilometers. When a fault occurs, for example due to a lightning strike, finding the
location of the fault may be very expensive. Hence, it is common to estimate the
location of the fault based on the time that the fault is observed at each end of the
transmission line. Assume a transmission line of length 60 kilometers between sub-
station A and substation B. When a fault occurs, both substations will experience
an observable event. Assuming that electricity travels through the transmission line

Figure 10.4: Line fault detection model. [online]

362 Ptolemaeus, System Design

http://ptolemy.org/systems/models/modelingtime/LineFaultModel/index.html
http://Ptolemy.org

10. MODELING TIMED SYSTEMS

Figure 10.5: Line fault detection — Substation A, the clock master.

Figure 10.6: Line fault detection — Substation B, the clock slave.

at a known speed, then the time difference between when substation A observes the
event and substation B observes the event can be used to calculate the location of
the event.

Ptolemaeus, System Design 363

http://Ptolemy.org

10.2. CLOCK SYNCHRONIZATION

LetX denote the location of the fault event along the transmission line (the distance
from substation A). Then X satisfies the following equations,

s× (TA − T0) = X

s× (TB − T0) = D −X

where T0 is time of fault (which is unknown), TA is the time of fault detection at
substation A, TB is the time of fault detection at substation B, s is the speed of
propagation along the transmission line (the speed of light), D is the distance from
A to B, and D − X is the distance from B to the fault. Subtracting the above
equations and solving for X yields

X = ((TA − TB)× s+D)/2.

Of course, this calculation is only correct if the clocks at the two substations are per-
fectly synchronized. Suppose that the substations use a PTP to synchronize their
clocks, and that substation A is the master. Then periodically, A and B will ex-
change messages that can be used to compute the discrepancy between their clocks.
To see how this is done, see the sidebar on page 367 or Eidson (2006). Here, we will
assume that this done perfectly (something that is only possible if the communica-
tion latency between A and B is perfectly symmetric). We focus in this model only
on the effects of the control strategy that uses this information to adjust the clock
of substation B. The model shown in Figure 10.4 shows SubstationA periodically
sending its local time to SubstationB, where the period is given by the syncPeriod
parameter, set to 20.0 seconds.

In that model, the LineFaultGenerator produces faults at times 50, 100, 150, etc.,
and the fault is assumed to occur 20 kilometers from substation A. The substation
actors send the local times at which they observe the faults to a ComputeFaultLoca-
tion composite actor, whose task it is to determine the fault location using the above
formulas. Since the measured fault times arrive at the ComputeFaultLocation actor
at different times, a Synchronizer is used to wait until one data value from each
substation has been received before it will do a calculation. Note that inputs will be
misaligned if one of the substations fails to detect the event and provide an input,
so a more realistic model needs to be more sophisticated.

The substation models are depicted in Figures 10.5 and 10.6. SubstationA is mod-
eled very simply as, from top to bottom, responding to a fault input by sending
the time of the fault, responding to a getLocalTime input with the local time, and
periodically sending the local time to the sync output.

364 Ptolemaeus, System Design

http://Ptolemy.org

10. MODELING TIMED SYSTEMS

Substation B is a bit more complicated. When it receives a sync signal from the
master, it calculates the discrepancy with its local clock; this calculation is not
realistic, since there is an unknown time delay in receiving the sync signal, but PTP
protocols take care of making this calculation, so this detail is not modeled here.
Instead, the model focuses on what is done with the information, which is to use a
PID controller to generate a correction to the local clock. The correction is added to
the local clock rate and then stored in the clockRate parameter using a SetVariable
actor. The director’s clock uses this same parameter for the rate of its clock, so each
time a correction is made, the rate of the local clock will change.

Figure 10.7 shows the simulation result. The upper plot shows the errors in the
clocks. Since substation A is the master, it has no error, so its error is a constant
zero. At the start of simulation, the clock of B is drifting linearly with respect to
A. At 20 seconds, B receives the first sync input, and the PID controller provides a
correction that reduces the rate of drift. At 40 seconds, another sync signal further
reduces the rate of drift. The lower plot shows the estimated locations of the faults
occurring at times 50, 100, 150, etc. The correct fault location is 20 km, so we can
see that as the clocks get synchronized, the estimate converges to 20 km.

Figure 10.8 shows what happens if there is no clock synchronization (the sync sig-
nal never arrives at B). In this case, the clock of B drifts linearly with respect to A,
and the error in the estimated fault location grows without bound.

10.3 Modeling Communication Delays

In design-space exploration, designers evaluate whether their designs work well on a
given architecture. Part of the architecture is the communication network, which intro-
duces delays that can affect the behavior of a system. A communication network in-
troduces delay. It is straightforward to model constant communication delays that are
independent of one another, but it is much more interesting (and realistic) to take into
account shared resources, which result result in correlated and variable delays. We begin
with the simpler models, and then progress to the more interesting ones.

Ptolemaeus, System Design 365

http://Ptolemy.org

10.3. MODELING COMMUNICATION DELAYS

2x10

A
B

-1.0
-0.8
-0.6
-0.4
-0.2
-0.0
0.2

x10-4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time Difference in Substations A and B vs. Environment Time

Environment time in seconds

Ti
m

e
di

ffe
re

nc
e

2x10

2.0
2.5

3.0

x104

0.5 1.0 1.5 2.0 2.5 3.0 3.5

Estimated Fault Location

Substation A (master)

Substation B (slave)

Figure 10.7: Line fault detection with clock synchronization.

2x10

A
B

0
1
2
3
4
5
6
7

x10-7

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time Difference in Substations A and B vs. Environment Time

Environment time in seconds

Ti
m

e
di

ffe
re

nc
e

Substation A (master)

Substation B (slave)

2x10

1.992
1.994

1.996

1.998

x104

0.5 1.0 1.5 2.0 2.5 3.0 3.5

Estimated Fault Location

Figure 10.8: Line fault detection without clock synchronization.

366 Ptolemaeus, System Design

http://Ptolemy.org

10. MODELING TIMED SYSTEMS

Sidebar: Precision Time Protocols

The figure at the right shows how a typical PTP
works. The clock master A initiates an exchange of
messages. The first message is sent at time t1 (by
the master clock) and contains the value of t1. That
message is received by the slave B at time t2 (by the
master clock), but since the slave does not have ac-
cess to the master clock, the slave records the time
t′2 that it receives the message according to its own
clock. If its clock is off by e vs. the master clock,
then

t′2 = t2 + e.

The slave responds by sending a message back to the
master at time t′3 according to its clock, or t3 accord-
ing to the master’s clock, so

master slave
A B

t1

t2+e

t3+e

t4

t1

t4

t′3 = t3 + e.

The master receives this second message at t4, and replies with a third message
containing the value of t4. The slave now has t1, t′2, t

′
3, and t4. Now notice that the

round trip communication latency (the time that a message fromA toB and a reply
message spend in transport) is

r = (t2 − t1) + (t4 − t3) = (t4 − t1)− (t3 − t2).

At B, this value can be calculated even though t2 and t3 are not known, because
(t3−t2) = (t′3−t′2), and slaveB has t′2, and t′3. If the communication latencies are
symmetric, then the one way latency is r/2. To correct the clock of B, we simply
need to estimate e. This will tell us whether the clock is ahead or behind, so we
can slow it down or speed it up, respectively. If the communication channel has
symmetric delays (i.e. t2 − t1 = t4 − t3), then a very good estimate is given by

ẽ = t′2 − t1 − r/2.

In fact, if the communication latency is exactly symmetric, then ẽ = e, the exact
clock error. B can now adjust its local clock by ẽ.

Ptolemaeus, System Design 367

http://Ptolemy.org

10.3. MODELING COMMUNICATION DELAYS

10.3.1 Constant and Independent Communication Delays

In the DE domain, network delays that are independent of one another can be easily
modeled using the TimeDelay actor.

Example 10.4: The line fault detector of Figure 10.4 idealizes the calculation of
the clock error in substation B. In practice, calculating clock discrepancies is not
trivial. A typical technique implemented in a PTP is described in the sidebar on
page 367 and implemented in the model in Figure 10.9.

In Figure 10.9, substation A periodically initiates a sequence of messages that are
used to calculate the clock discrepancy. First, at master time t1, it sends the value
of this time to substation B. Substation B responds. Substation A responds to
the response with the time t4 that it receives the response. When substation B has
received this final message, it has enough information to estimate the discrepancy
between its clock and that of the master. The Synchronizer actor ensures that this
estimate is only calculated after all the requisite information has been received.

Figure 10.9 has three TimeDelay actors that can model network latency in the com-
munication of synchronization messages. Interestingly, if all three delays are set
to the same value, even a rather large value such as 1.0 seconds, then the perfor-
mance of the model in identifying the location of the fault is essentially identical
to that of the idealized model. However, if, as shown, one of the delays is changed
only slightly, to 1.0001, then the performance degrades considerably, as shown in
Figure 10.10. The slave clock settles into a substantial steady-state error, and the
estimated fault location converges to approximately 13 kilometers, quite different
from the actual fault location at 20 kilometers. Clearly, if the communication chan-
nel is expected to be asymmetric, then the designer has work to do to improve the
control algorithm. A different choice of parameters for the PID controller would
probably help, but perhaps at the expense of lengthening the convergence time.

10.3.2 Modeling Contention for Shared Resources

In the model in Figure 10.9, each connection between actors has a fixed communication
delay. This is not very realistic for practical communication channels, where the delay

368 Ptolemaeus, System Design

http://Ptolemy.org

10. MODELING TIMED SYSTEMS

Figure 10.9: Line fault detection with communication delays in the PTP imple-
mentation. [online]

Ptolemaeus, System Design 369

http://ptolemy.org/systems/models/modelingtime/LineFaultModelWithDelays/index.html
http://Ptolemy.org

10.3. MODELING COMMUNICATION DELAYS

2x10

A
B

-6
-4
-2
0
2
4
6
8

x10-5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time Difference in Substations A and B vs. Environment Time

Environment time in seconds

Ti
m

e
di

ffe
re

nc
e

Substation A (master)

Substation B (slave)

2x10

1.0
1.5

2.0

2.5
x104

0.5 1.0 1.5 2.0 2.5 3.0 3.5

Estimated Fault Location

Figure 10.10: Line fault detection performs poorly with PTP when network laten-
cies are asymmetric.

will depend on other uses of the channel. Most communication channels have shared
resources (radio bandwidth, wires, buffer space in routers, etc.), and the latency through
the network can vary significantly depending on other uses of these resources.

The model in Figure 10.9 could be modified to route all the messages through a single,
more elaborate network model. However, this leads to considerable modeling complexity.
Suppose for example that we wish to model the network using a single Server actor,
perhaps the most basic model for a shared resource. Then all messages that traverse
the channel would have to be merged into a single stream to feed to the Server actor.
These streams would then have to be separated after emerging from the Server actor, so
destination addresses would have to be encoded in the messages before the streams are
merged. The model suddenly becomes very complicated.

Fortunately, Ptolemy II has a much cleaner mechanism for handling shared resources.
We use aspect-oriented modeling (AOM), which is based on aspect-oriented program-
ming (Kiczales et al., 1997), to map functionality to implementation. This way of asso-
ciating functional models with implementation models and schedulers was introduced in
Metropolis (Balarin et al., 2003), where the mechanism was called a quantity manager.
In Ptolemy II, an aspect is an actor that manages a resource; it is associated with the ac-
tors and ports that share the resource. In a simulation run, the aspect actor schedules the

370 Ptolemaeus, System Design

http://Ptolemy.org

10. MODELING TIMED SYSTEMS

use of the resource. The association between the resource and the users of the resource
is done via parameters, not by direct connections through ports. As a consequence, as-
pects are added to an existing model without changing the interconnection topology of
the existing model. The next example shows how communication aspects can be used to
cleanly model shared communication resources.

Example 10.5: Figure 10.11 shows a variant of the line fault detector model
where we have dragged into the model a communication aspect called Bus. In this
example, the PTP communications between SubstationA and SubstationB use the
shared bus. This is indicated in the figure by the annotation “Aspects: Bus” on the
input ports, and by red fill in the port icon.

The Bus has a serviceTime parameter that specifies the amount of time that it takes
a token to traverse the channel. During that time, the Bus is busy, so any further
attempts to use the Bus will be delayed. The Bus therefore acts like a Server actor
with an unbounded buffer, but since it is an aspect, there is no need for the model
to explicitly show all the communication paths passing through a single instance of
a Server.

Figure 10.11: Line fault detection where communication uses a shared bus, mod-
eled using a communication aspect. [online]

Ptolemaeus, System Design 371

http://ptolemy.org/systems/models/modelingtime/LineFaultModelWithQM/index.html
http://Ptolemy.org

10.3. MODELING COMMUNICATION DELAYS

In this example, the communications latencies are symmetric, because there is no
contention for the bus. Hence, the line fault detection algorithm performs well,
behaving similarly to Figure 10.7. If, on the other hand, you enable use of the bus
for other communication paths in the model, such as at the input ports of Compute-
FaultLocation, then the performance will degrade considerably, because contention
for the bus will introduce asymmetries in the communication latencies.

To use an aspect for modeling communication, simply drag one into the model from the
library and assign it a meaningful name. The Bus, along with several others that are (as of
this writing) still rather experimental, can be found in the MoreLibraries→Aspects

library.

An aspect is a decorator, which means that it endows elements of the model with param-
eters (see sidebar on page 373). In the case of the Bus, it decorates ports with an enable
and messageLength parameter, as shown in Figure 10.12. When an input port has the Bus
enabled, then messages sent to that input port will be delayed by at least the product of the
messageLength parameter of the port and the serviceTimeMultiplicationFactor parameter
of the Bus. The delay is at least this, because if the bus is busy when the message is sent,
then the message has to wait until the bus becomes free.

You can add any number of aspects to a model. Each is a decorator, and each can be
independently enabled. If an input port enables multiple communication aspects, then

Figure 10.12: The Bus aspect decorates ports with an enable and message-
Length parameter. This figure shows a parameter editor for a port in model in
Figure 10.14, which has two busses.

372 Ptolemaeus, System Design

http://Ptolemy.org

10. MODELING TIMED SYSTEMS

those aspects mediate the communication in the order in which the aspects are enabled.
Hence, aspects may be composed.

Example 10.6: In Figure 10.14, a second bus has been added to the model, and the
communication from SubstationB to SubstationA traverses Bus and Bus2, in that
order, as you can see from the annotation on the sync2 input port to SubstationA.
As a consequence, the communication latencies become asymmetric, and the line
fault detection algorithm performs poorly, yielding results similar to those in Figure

Sidebar: Decorators

A decorator in Ptolemy II is an object that adds to other objects in the model parame-
ters, and then uses those parameter values to provide some service. The simplest deco-
rator provided in the standard library is the ConstraintMonitor, which can be found in
the Utilities→Analysis library. The ConstraintMonitor is an attribute that, when
inserted in model, adds a parameter called value to actors in the model. The Constraint-
Monitor keeps track of the sum of all the values that are set for actors in the model,
displays that sum in its icon, and compares that sum against a threshold.

An example use of ConstraintMonitor is shown in Figure 10.13, where a Constraint-
Monitor has been dragged into a model with three actors and renamed “Cost.” Once that
ConstraintMonitor is in the model, then the parameter editing window for each actor
acquires a new tab, as shown at the top of the figure, where the label on the tab matches
the name of the ConstraintMonitor. The user can enter a cost for each actor in the model,
and the ConstraintMonitor will display the total cost in its icon.

The ConstraintMonitor has a parameter threshold, which specifies a limit on the sum
of the values. When the total approaches the limit, the color of the ConstraintMonitor
icon changes to yellow. When the total hits or exceeds the limit, if the warningEnabled
parameter is true, then the user is warned. The default value for threshold is Infinity,
which means no limit.

The ConstraintMonitor has two other parameters, as shown at the bottom of Figure
10.13. If includeOpaqueContents is true, then actors inside opaque composite actors
will also be decorated. Otherwise, they will not be decorated. If includeTransparents is
true, then transparent composite actors will be decorated. Otherwise, they will not be.

There are many other uses for decorators. A director can be a decorator. The aspects
described in this chapter are decorators.

Ptolemaeus, System Design 373

http://Ptolemy.org

10.3. MODELING COMMUNICATION DELAYS

Figure 10.13: A decorator in Ptolemy II is an object that adds to other objects in
the model parameters, and then uses those parameter values to provide some
service. In this example, a ConstraintMonitor (which has been renamed Cost) is
monitoring the total cost of components in the model, checking them against a
threshold of 100.0.

374 Ptolemaeus, System Design

http://Ptolemy.org

10. MODELING TIMED SYSTEMS

10.10. The decoratorHighlightColor parameter of Bus2 has been changed from red
to green, resulting in green highlighting of both the port and the bus icon.

10.3.3 Composite Aspects

The aspects discussed in the previous section are like atomic actors; their logic is de-
fined in a Java class. For a more flexible way of describing communication aspects, we
use the CompositeCommunicationAspect. This actor can be found in Ptolemy under
MoreLibraries→Aspects.

Example 10.7: Figure 10.15 shows the bus example implemented using a Com-
positeQuantityManager. In this case, the bus behavior is modeled using a discrete-
event subsystem with a Server actor. Requests to use the bus queue up at the input

Figure 10.14: Line fault detection where one of the communications traverses two
busses, yielding asymmetric communication. [online]

Ptolemaeus, System Design 375

http://ptolemy.org/systems/models/modelingtime/LineFaultModelWithTwoQMs/index.html
http://Ptolemy.org

10.3. MODELING COMMUNICATION DELAYS

Figure 10.15: A bus implemented as a composite communication aspect. [online]

to the server. When the server becomes free, the first queued input is delayed by
the serviceTime. The behavior is identical to that of the atomic Bus aspect.

Since a composite communication aspect is simply a Ptolemy II model, we have a great
deal of freedom in its design.

Example 10.8: In the example of Figure 10.15, the bus is being used not only
for the communication between SubstationA and SubstationB, but also in the com-
munication to the ComputeFaultLocation actor. Contention for the bus makes the
communication latencies asymmetric, degrading the performance of the clock syn-

376 Ptolemaeus, System Design

http://ptolemy.org/systems/models/modelingtime/LineFaultModelWithCQM/index.html
http://Ptolemy.org

10. MODELING TIMED SYSTEMS

Figure 10.16: A network that reduces contention implemented as a composite
aspect. At the bottom is shown how the decorator parameters of a port are used
to select the port of the aspect that handles the communication. [online]

Ptolemaeus, System Design 377

http://ptolemy.org/systems/models/modelingtime/LineFaultModelWithBetterCQM/index.html
http://Ptolemy.org

10.4. MODELING EXECUTION TIME

chronization, and resulting in very poor performance in computing the fault loca-
tion.

We can improve the performance with a better network, as shown in Figure 10.16.
In that figure, we have modified the Bus so that it is now a more sophisticated net-
work with two input ports and two distinct servers. By routing communication to
the two servers, contention can be reduced. Each input port involved in a com-
munication specifies which input port, in1 or in2, of the aspect should handle the
communication. At the bottom of the figure is shown how the decorator parameters
of a port are used to select the port of the aspect that handles the communication. In
the figure, the top input port of ComputeFaultLocation is using in2. If the bottom
port also uses in2, and the ports handling the communication between SubstationA
and SubstationB use in1, then contention is reduced enough to deliver excellent
performance, similar to that in Figure 10.7.

10.4 Modeling Execution Time

In addition to modeling network characteristics such as communication delays, one might
also want to model execution time, the time it takes it takes an actor to perform its func-
tion on a particular implementation platform. The joint modeling of an application’s
functionality and its performance on a model of the implementation platform is a very
powerful tool for design-space exploration. It makes it much easier to understand the
impact of choices in networking infrastructure and processor architecture.

In a discrete-event model, execution times can be simulated using a Server actor for each
execution resource (such as a processor), where the service time is the execution time.
Example 7.5 and Figure 7.8 illustrate this for a simple storage system. However, such
models are difficult to combine with models of complex functionality.

Fortunately, Ptolemy provides execution aspects, which, like communication aspects,
provide a form of aspect-oriented modeling. Execution aspects can be used to model con-
tention for resources that are required to execute an application model. The mechanisms
are similar to those of the communication aspects, as illustrated in the next example.

378 Ptolemaeus, System Design

http://Ptolemy.org

10. MODELING TIMED SYSTEMS

Figure 10.17: A model with two alternative execution aspects, one that models a
one-processor execution platform and one that models a two-processor execution
platform. [online]

Ptolemaeus, System Design 379

http://ptolemy.org/systems/models/modelingtime/GeneratorResourceScheduler/index.html
http://Ptolemy.org

10.5. PTIDES FOR DISTRIBUTED REAL-TIME SYSTEMS

Example 10.9: A variant of the generator model considered in Sec-
tion 1.9 is shown in Figure 10.17. This model includes two possible
implementation platforms, one with one processor, one with two proces-
sors, shown at the bottom of the figure. These two implementation plat-
forms are modeled using the CompositeResourceScheduler actor, found in
MoreLibraries→ResourceScheduler.

In this model, the Supervisor and Controller actors execute on one of the two pro-
cessor architectures. Which one is determined by the value of the useTwoPro-
cessors parameter in the model. If the value of this parameter is true, then the
2Processor aspect will be used to execute Supervisor and Controller. Otherwise,
1Processor will be used.

When this model is executed, the behavior changes with the value of useTwoProces-
sors. When two processors are used, there is no contention for resources, since Su-
pervisor and Controller can execute simultaneously, as modeled by the two Server
actors at the lower right in the figure. However, when only one processor is used,
the Supervisor and Controller compete for the use a single processor, as modeled
by the single server at the lower left. In that case, there is more delay in one of the
two feedback loops, which changes the dynamics of the model. In particular, with
certain choices of parameters and test conditions, the choice of processor architec-
ture could affect whether the over voltage protection conditions shown in the plot
in Figure 1.11 occurs.

Notice the use of RecordDisassembler actors in the composite execution aspects.
The input to the submodel in the composite aspect is a record that contains the val-
ues of the decorator parameter executionTime of the actor requesting an execution
resource. This execution time is extracted from the record and becomes the service
time of the Server.

10.5 Ptides for Distributed Real-Time Systems

So far, this chapter has focused on modeling and simulating timing behavior in system
implementations. Another role for timed models, however, is to specify timing behavior.
That is, a timed model may give the required behavior of an implementation without

380 Ptolemaeus, System Design

http://Ptolemy.org

10. MODELING TIMED SYSTEMS

completely describing the implementation. Towards this end, we focus for the remainder
of this chapter on a programming model for distributed real-time systems called Ptides.∗

Ptides models are designed to solve the problem identified in Example 10.9 above, where
the behavior of a system depends on the details of the hardware and software platform
that executes the system. A key goal in Ptides is to ensure that every correct execution of
a system delivers exactly the same dynamic behavior.

Example 10.10: In Example 10.9, choosing to execute Supervisor and Controller
on a single processor yields different dynamic behavior than choosing two proces-
sors. If these were Ptides models, the two behaviors would be identical, as long as
the processor resources were sufficient to deliver a correct execution. Moreover,
the execution times of the Supervisor and Controller will also not affect the dy-
namics until they get so large that a correct execution is no longer possible. Hence,
Ptides has the potential to reduce the sensitivity that a system has to implementation
details. Behavior is exactly the same over a range of implementations.

A Ptides model is a DE model with certain constraints on time stamps. Ptides is used
to design event-triggered distributed real-time systems, where events may be occurring
regularly (as in sampled-data systems) or irregularly. A key idea in Ptides is that, unlike
DE, time stamps have a relationship with real time at sensors and actuators (which are
the devices that bridge the cyber and the physical parts of cyber-physical systems). A
second key idea in Ptides is that it leverages network time synchronization (Johannessen,
2004; Eidson, 2006) to provide a coherent global meaning to time stamps in distributed
systems. The most interesting, subtle, and potentially confusing part about Ptides is the
relationship between multiple time lines. But herein also lies its power.

10.5.1 Structure of a Ptides Model

A Ptides model consists of one or more Ptides platforms, each of which models a com-
puter on a network. A Ptides platform is a composite actor that contains actors repre-
senting sensors, actuators, and network ports, and actors that perform computation and/or

∗The name comes from the somewhat tortured acronym for “programming temporally integrated dis-
tributed embedded systems.” The initial “P” is silent, as in Ptolemy, so the name is pronounced “tides.”

Ptolemaeus, System Design 381

http://Ptolemy.org

10.5. PTIDES FOR DISTRIBUTED REAL-TIME SYSTEMS

Sidebar: Background of Ptides

Ptides leverages network time synchronization (Johannessen, 2004; Eidson, 2006) to
provide a coherent global temporal semantics in distributed systems. The Ptides pro-
gramming model was originally developed by Yang Zhao as part of her Ph.D. research
(Zhao et al., 2007; Zhao, 2009). Zhao showed that, subject to assumed bounds on net-
work latency, Ptides models are deterministic. The case for a time-centric approach like
Ptides is elaborated by Lee et al. (2009b), and an overview of Ptides and an application
to power-plant control is given by Eidson et al. (2012),

A number of implementations followed the initial work. A simulator is described by
Derler et al. (2008), and an execution policy suitable for implementation in embedded
software systems by Feng et al. (2008) and Zou et al. (2009b). Zou (2011) developed
PtidyOS, a lightweight microkernel implementing Ptides on embedded computers, and
a code generator producing embedded C programs from models. Matic et al. (2011)
adapted PtidyOS and the code generator to demonstrate their use in smart grid technolo-
gies.

Feng and Lee (2008) extended Ptides with incremental checkpointing to provide a
measure of fault tolerance. They showed conditions under which rollback can recover
from errors, observing that the key constraint in Ptides is that actuator actions cannot
be rolled back. Ptides has also been used to coordinate real-time components written in
Java (Zou et al., 2009a).

A technique similar to Ptides was independently developed at Google for managing
distributed databases (Corbett et al., 2012). In this work, clocks are synchronized across
data centers, and messages sent between data centers are time stamped. The technique
provides a measure of determinacy and consistency in database accesses and updates.

Assuming that the network latency bounds are met, a correct implementation of Ptides
is deterministic in that a sequence of time-stamped events from sensors always results
in a unique and well-defined sequence of time-stamped events delivered to actuators.
However, this determinism does not provide any guarantee that events are delivered to
actuators on time (prior to the deadline given by the time stamp). The problem of deter-
mining whether events can be delivered on time to actuators is called the schedulability
problem. The question is, given a Ptides model, does there exist a schedule of the firing
of actors such that deadlines are met. Zhao (2009) solved this problem for a limited
class of models. The problem is further discussed by Zou et al. (2009b), and largely
solved by Matsikoudis et al. (2013).

382 Ptolemaeus, System Design

http://Ptolemy.org

10. MODELING TIMED SYSTEMS

Figure 10.18: Ptides model with two Ptides platforms, sensor, actuator and net-
work ports. [online]

modify time stamps. A Ptides platform contains a PtidesDirector and represents a sin-
gle device in a distributed cyber-physical system, such as a circuit board containing a
microcontroller and some set of sensor and actuator devices. For simulation purposes, a
Ptides platform is placed within a DE model that models the physical environment of the
platform.

Ptolemaeus, System Design 383

http://ptolemy.org/systems/models/modelingtime/PtidesSchema/index.html
http://Ptolemy.org

10.5. PTIDES FOR DISTRIBUTED REAL-TIME SYSTEMS

Example 10.11: A simple Ptides model is shown in Figure 10.18. This model
has two platforms connected to a physical plant (via sensors and actuators) and to a
network. The top-level director is a DE director, whereas the platform directors are
Ptides directors. The physical plant may internally be a Continuous model.

Ptides models leverage Ptolemy’s multiform time mechanism. A common pattern in such
models assumes the time line at the top-level of the model hierarchy represents an ide-
alized physical time line that advances uniformly throughout the system. This time line
cannot be directly observed by computational devices in the network, which must instead
use clocks to approximately measure it. We refer to such an idealized time at the top level
as the oracle time. In the MARTE time library, the same idealized concept of physical
time is referred to simply as ideal time (André et al., 2007).

Within a platform, a local clock maintains a time line called platform time, which ap-
proximates oracle time. Platform time is chronometric, an imperfect measurement of
oracle time. The builder of a Ptides model may choose to assume that platform time per-
fectly tracks oracle time or, more interestingly, to model imperfections in tracking and
discrepancies across the network, as illustrated in Section 10.2 above.

Example 10.12: In the Ptides model of Figure 10.18, the top-level director’s clock
represents oracle time. The clocks of the Ptides directors represent platform time.
These can be parameterized to drift with respect to each other and platform time
and to have offsets.

A key innovation in Ptides, however, is that a second time line called logical time plays a
key role in a platform. The notion of logical time in distributed systems was introduced by
Lamport et al. (1978), and is applied in Ptides to achieve determinism in distributed real-
time systems. Any actor that requests the current time from the PtidesDirector will be told
about logical time, not about platform time. The only actors that have access to platform
time are sensors, actuators, and network interfaces, i.e. the actors at the cyber-physical
boundary. Specifically, when a sensor produces an event in a Ptides model, the time stamp
of the event is a logical time value equal to the platform time at which the sensor takes its

384 Ptolemaeus, System Design

http://Ptolemy.org

10. MODELING TIMED SYSTEMS

measurement. That is, Ptides binds logical time to physical time (as measured by platform
time) at sensors.

Example 10.13: In the Ptides model of Figure 10.18, the sensor uses the platform
time of PtidesPlatform1 to construct a time stamp for each event that it produces.
Such an event represents a measurement made on the physical plant, and its (logi-
cal) time stamp is equal to the local measurement of time.

Let ts be the platform time at which a measurement is made by a sensor. The event
produced by that sensor actor will have logical time stamp ts.

A TimeDelay actor, however, operates in logical time. It simply manipulates the logical
time stamp. Platform time is not visible to it. If an input to a TimeDelay actor whose
delay value is d1 has (logical) time stamp t, then its output will have time stamp t+ d1.

Once an event from a sensor has been produced, it is processed by the Ptides model like
any other discrete event in a DE system. That is, events with logical time stamps are pro-
cessed by the PtidesDirector in time-stamp order, without particular concern for platform
time or oracle time. Actors are fired as they would be in simulation. A key property of
Ptides models is that this time-stamp-ordered processing of events is preserved despite
the distributed architecture and imperfect clocks. This key property delivers determinism.

An actuator port inside a Ptides platform acts as an output from the platform. When it
receives an event from the platform Ptides model, that event has a logical time stamp t.
The actuator interprets t as a deadline relative to platform time. That is, an event with
time stamp t sent to an actuator is a command to perform some physical action no later
than the (platform) time equal to t. Hence, actuators, like sensors, also bridge logical and
physical times.

Example 10.14: In the Ptides model of Figure 10.18, in PtidesPlatform1, assume
the SensorPort produces an event with time stamp ts. This represents the platform
time at which a sensor measurement is made. Assume further that Computation
is a zero-delay actor, and that it reacts to the event from SensorPort by producing
an output event with the same time stamp ts. The output of the TimeDelay actor,
therefore, will have time stamp ts + d1, where d1 is the delay of the TimeDelay

Ptolemaeus, System Design 385

http://Ptolemy.org

10.5. PTIDES FOR DISTRIBUTED REAL-TIME SYSTEMS

actor. That event goes to the ActuatorPort, which interprets the time stamp ts + d1
as a deadline. That is, the actuator should produce its actuation at platform time no
later than ts + d1.

By default, when executing a Ptides model, actors are assumed to be instantaneous (in
platform time). Hence, the deadline at ActuatorPort in Figure 10.18 will never be violated.
In fact, in the simulation, the ActuatorPort will be able to perform its actuation as early
as platform time ts. This is not very realistic, because any physical realization of this
platform will incur some latency. It cannot react instantaneously to sensor events. More
realistic simulation models can be constructed by combining the execution aspects of
Section 10.4 with Ptides, but we will not do that here. Instead, here, we will assume
that there is some variability in the latency introduced by the physical realization of the
platform, but that the deadline will nevertheless be met. Verifying this is a schedulability
problem.

The actuation of ActuatorPort in Figure 10.18 affects the physical plant, which in turn
affects the SensorPort. There is a feedback loop, and the closed-loop behavior will be
affected by the latency of the platform. If that latency is unknown or variable, then the
overall closed-loop behavior of the system will be unknown or variable, yielding a nonde-
terministic model. To regain determinism, Ptides actuators can be configured to perform
their actuation at the deadline rather than by the deadline. As long as events arrive at or
before the deadline, the actuator will be able to produce its actuation deterministically,
independent of the actual arrival time of the events, and hence independent of execution
time variability. The response of PtidesPlatform1 to a sensor event will a deterministic
actuator event (in platform time and oracle time). This makes the behavior of the en-
tire closed-loop system independent of variability in execution times (and, as we will
show below, network delays). To configure a Ptides actuator to provide this determinism,
set the actuateAtEventTimestamp parameter of the ActuatorPort to true. Ptides, there-
fore, provides a mechanism to hide underlying uncertainty and variability (up to a failure
threshold, when deadlines are not met), yielding deterministic closed-loop behavior.

A natural question arises now about what to do if the failure threshold is crossed. By
default, an actuator port in Ptides will throw an exception if it receives an event with time
stamp t and platform time has already exceeded t. Such an exception is an indication that
assumptions about the ability of the platform to meet the deadline have been violated. A
well-designed model will catch such exceptions, using for example error transitions in a
modal model (see Section 8.2.3). How to handle such exceptions, of course, is application

386 Ptolemaeus, System Design

http://Ptolemy.org

10. MODELING TIMED SYSTEMS

dependent. It might be necessary, for example, to switch to a safe but degraded mode of
operation. Or it might be necessary to restart some portion of the system, or to switch to
a backup system.

Multiple Ptides platforms in a model may communicate via a network. When such com-
munication occurs, logical time stamps are conveyed along with the data. Unlike an
actuator port, a network transmitter port always produces its output immediately when it
becomes available, rather than waiting for platform time to match the time stamp. The
logical time stamp of the event will be carried along with the event to the network receiver
port, which will then produce on its output an event with that same time stamp.

Like an actuator port, a network transmitter port treats the time stamp as a deadline and
will throw an exception if the platform time exceeds the time stamp value when the event
arrives.†

Example 10.15: In the Ptides model of Figure 10.18, in PtidesPlatform1, assume
that the sensor makes a measurement at platform time ts, and that consequently
the network transmitter port receives an event with time stamp ts + d1. Assume
further that it receives this event at platform time ts, because the execution time of
actors is (by default) assumed to be zero. Hence, the Network actor in Figure 10.18
will received an event containing as its payload both a value (the value of the event
delivered to the NetworkTransmitterPort) and a logical time stamp ts + d1.

The NetworkTransmitterPort will launch this payload into the network at platform
time ts. The network will incur some delay, simulated by the Network actor in
the figure, and will arrive at PtidesPlatform2 at some time t2, a local platform time
at PtidesPlatform2. The NetworkReceiverPort on PtidesPlatform2 will produce an
output event with (logical) time stamp ts + d1, extracted from the payload. In
Figure 10.18, this event will pass through another Computation actor and another
TimeDelay actor. Assuming the TimeDelay actor increments the time stamp by d2,
the ActuatorPort on PtidesPlatform2 will receive an event with time stamp ts +
d1 + d2. This deadline will be met if ts + d1 + d2 ≥ t2.

If the actuateAtEventTimestamp parameter of the ActuatorPort is true, and all
deadlines are met, then the overall latency from the sensor in platform 1 to the
actuator in platform 2 is deterministic and independent of the actual network delay

†This deadline may be modified to be earlier or later by changing the platformDelayBound parameter of
the network transmitter port, as explained below.

Ptolemaeus, System Design 387

http://Ptolemy.org

10.5. PTIDES FOR DISTRIBUTED REAL-TIME SYSTEMS

and actual computation times. This ability to have a fixed latency in a distributed
system is central to the power of the Ptides model.

As with the actuator on platform 1, if the deadline is not met at the actuator on platform
2, the ActuatorPort will throw an exception. This exception is an indication that some
timing assumption about the implementation has been violated; for example, an assumed
bound on the network latency has not been actually met by the network. This should be
handled by the model as an error condition, which could, for example, cause the model to
switch into a safe but degraded mode of operation.

Although the end-to-end latency from the sensor on platform 1 to the actuator on platform
2 is deterministic, it is not exactly clear from this model what that latency is. Nominally,
the latency is the logical time delay, d1 + d2. However, the time at which the actuation
occurs, ts + d1 + d2, is relative to the local platform clock at platform 2. This time,
however, also depends on the clock on platform 1, since ts is the time on platform 1 when
the sensor measurement is taken. Hence, to be useful, a distributed Ptides system requires
that clocks be synchronized (see Section 10.2). They need not be perfectly synchronized,
but if the error between them is not bounded, then there is no bound on the end-to-end
latency (in oracle time).

If these two platform clocks are perfectly synchronized, then the actual latency will be
exactly d1 + d2, relative to these platform clocks. The latency in oracle time, of course,
depends on the drift of these clocks relative to oracle time (see Figure 10.2). If these two
clocks progress at exactly the rate of oracle time, then the actual latency will be exactly
d1 + d2 in oracle time. Hence, with sufficiently good clocks and sufficiently good clock
synchronization, Ptides gives an overall timing behavior that is precise and deterministic
up to the precision of these clocks.

To help ensure that a realization meets the requirements of a specification, a network re-
ceiver port also imposes a constraint on timing. As mentioned above, the network trans-
mitter port will throw an exception if it receives an event at a platform time greater than
the time stamp of the event.‡ So if a network receiver port receives a message, it knows
that the message was transmitted at a platform time no later than the time stamp on the
message it receives. The receiver has a parameter networkDelayBound, which is an up-
per bound on the network delay that it assumes. When the network receiver receives a
‡This deadline may be modified to be earlier or later by changing the platformDelayBound parameter of

the network transmitter port, as explained below.

388 Ptolemaeus, System Design

http://Ptolemy.org

10. MODELING TIMED SYSTEMS

message, it checks that the platform time does not exceed the time stamp on the message
plus the networkDelayBound plus a fudge factor to account for clock discrepancies and
device delays, which also have assumed bounds specified by parameters, described be-
low. If the platform time is too large, then the network receiver knows that one of these
assumptions was violated (though it cannot know which one), and it throws an exception.
Although this constraint is very subtle, the consequences on models are relatively easy to
understand.

Example 10.16: In the Ptides model of Figure 10.18, along the path from the
sensor to the network receiver port, there cannot be a physical delay greater than
the logical delay along the same path. The logical delay along this path is simply
d1, the parameter of the TimeDelay actor. The physical delay is the sum of the
executions times of the actors along the path (which in simulation is assumed to
be zero by default) and the network delay. Hence, if the network imposes a delay
greater than d1, the model in this figure will fail with an exception (by default,
though other error handling strategies are also possible).

Notice that if we were to replace the Ptides directors in the platforms with DE directors,
then the behavior would be significantly different. In this case, the latency from the
sensor in platform 1 to the actuator in platform 2 would include the actual network delay.
A key property of Ptides is that network delays and computation times are segregated
from the logical timing of a model. The logical timing becomes a specification of timing
behavior, whereas network delays and computation times are part of the realization of
the system. Ptides models enable us to determine conditions under which realizations
will meet the requirements of the specification. And the simulator enables evaluation of
behavior under elaborate conditions that would be very difficult to validate analytically,
for example taking into account the complicated dynamics of PTP clock synchronization
protocols.

10.5.2 Ptides Components

Ptides ports. Ports in a Ptides platform represent devices that communicate with the en-
vironment or the network. Ptides ports can model device delays, although by default these
delays are zero. Every Ptides port has a deviceDelay and a deviceDelayBound parameter.
The deviceDelay d models delay of the device. For example, if a sensor makes a mea-

Ptolemaeus, System Design 389

http://Ptolemy.org

10.5. PTIDES FOR DISTRIBUTED REAL-TIME SYSTEMS

Sidebar: Safe-to-Process Analysis

The execution of actors inside a Ptides platform follows DE semantics. Actors must
process events in time-stamp order (unless they are memoryless). In simulation, it is
straightforward to ensure that events are processed in time-stamp order, but when Ptides
models are deployed, things get more complicated. In particular, a deployed system
cannot easily coordinate the scheduling of actor firings across platforms. Each platform
must be able to make its own scheduling decisions.

Consider the platform model shown in Figure 10.19. This example has a sensor port
and a network receiver port. Suppose that the sensor produces an event with time stamp
ts. If we assume that every sensor produces events in time-stamp order, then the sched-
uler can immediately fire Computation1. Suppose that firing produces another event
with time stamp ts, which then results in an event with time stamp ts + d1 available at
the top input of Computation3. When can Computation3 be fired to react to that event?
The scheduler has to be sure that no event with time stamp less than or equal to ts + d1
will later become available at the bottom input of Computation3.

A simple approach, developed by Chandy and Misra (1979) for distributed DE sim-
ulation, is to wait until there is an event available on the bottom input of Computation3
with time stamp greater than or equal to ts + d1. But this could result in quite a wait,
particularly if a fault occurs and the source of events on this path fails.

An alternative approach due to Jefferson (1985) fires Computation3 speculatively,
assuming no problematic event will later arrive, and if it does, reverses the computation
by restoring the state of the actor. This approach is fundamentally limited by the inability
to backtrack actuators.

The Ptides approach ensures that events are processed in order as long as all deadlines
are met. In our example, an event at the top input of Computation3 with time stamp
ts + d1 can be safely processed when the local platform time meets or exceeds ts + d1.
This is because schedulability requires that an event with time stamp ts + d1 or earlier
is required to arrive at the network receiver port at platform time ts + d1 or earlier.

Conversely, suppose an event with time stamp tn is at the bottom input of Computa-
tion3. That event is safe to process when platform time meets tn − d1 + s, where s is a
bound on the sensor delay, the time between a sensor event time stamp and the event be-
coming visible to the scheduler. See page 382 for citations that explain safe-to-process
analysis in more detail.

390 Ptolemaeus, System Design

http://Ptolemy.org

10. MODELING TIMED SYSTEMS

Figure 10.19: Simple Ptides example used to illustrate safe-to-process analysis.

surement at platform time ts, it will produce an event with time stamp ts. But that event
will not appear until platform time ts + d. For example, d might represent the amount of
platform time that it takes for the sensor device to raise an interrupt request, and for the
processor to respond to the interrupt request.

The deviceDelayBound dB gives an upper bound on the deviceDelay d. The Ptides frame-
work assumes that deviceDelay can vary during execution but will never exceed deviceDe-
layBound, which does not vary. This bound is used in safe to process analysis (see sidebar
on page 390), which ensures that events are processed in time-stamp order.

Sensors. A sensor port is a particular kind of Ptides port that looks like this:

It receives inputs from the environment and creates new events with the time stamp equal
to the current platform time (which is the current local time of the PtidesDirector) and
posts this event on the event queue. An event that is received by a sensor at platform time
ts is produced with logical time stamp ts at platform time ts + d.

Ptolemaeus, System Design 391

http://Ptolemy.org

10.5. PTIDES FOR DISTRIBUTED REAL-TIME SYSTEMS

Actuators. An actuator port is a particular kind of Ptides port that looks like this:

By default, an actuator port produces events on the output of the platform when the time
stamp of the event equals the current platform time. If you change actuateAtEventtimes-
tamp to false, then the event may be produced earlier if it is available earlier. The de-
viceDelayBound parameter specifies a setup time for the device. Specifically, the dead-
line for delivery of an event with time stamp t to an actuator is platform time t − dB ,
where dB is the value of deviceDelayBound. An exception is thrown if this deadline is
not met.

Network transmitters and receivers. Network transmitter ports and network re-
ceiver ports are also particular kinds of Ptides port that look like this:

The NetworkTransmitterPort takes an event from the inside of the Ptides platform and
sends to the outside a record that encodes the time stamp of the event and its value (the
payload). The NetworkReceiverPort extracts the time stamp and the payload and pro-
duces at the inside of the destination Ptides platform and event with the specified value
and time stamp.

The parameter networkDelayBound (dN) specifies the assumed maximum amount of time
an incoming token spends in the network before it arrives at the receiver. It is used to
determine whether an event can processed safely, or whether another event with a smaller
time stamp may still be in the network. If the actual network delay exceeds this bound
and the delay causes the message to be received too late, then the network receiver port
will throw an exception.

392 Ptolemaeus, System Design

http://Ptolemy.org

10. MODELING TIMED SYSTEMS

10.6 Summary

Modeling of complex timed systems is not easy. We all harbor a naive notion of a uni-
form fabric of time, shared by all participants in the physical world. But such a notion is a
fiction, and real systems are strongly affected by errors in time measurement and discrep-
ancies between logical and physical notions of time. A major focus of recent work in the
Ptolemy Project has been to provide a solid modeling foundation for the far-from-solid
realities of time.

10.7 Acknowledgements

The authors would like to thank Yishai Feldman and Stavros Tripakis for very helpful
suggestions for this chapter.

Ptolemaeus, System Design 393

http://Ptolemy.org

