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An ontology in information science refers to an explicit organization of knowledge. An
ontology can be organized into a graph as a set of concepts and the relations between
those concepts. By constructing an ontology over a specific domain, a user is formalizing
information of that domain in a way that can be shared with others. Models can have
annotations added to them that express how they are used with respect to an ontology.
Ontology-based annotations are a form of model documentation. Like type signatures,
they can express the intended use of a model, but with respect to the domain of the ontol-
ogy rather than to the type system.

A static analysis of a program or model is a check that can be run at compile time.
Ptolemy II’s type checker (see Chapter 14) is one example of a static analysis. It infers
the data types used throughout a model and checks for consistency. In fact, the Ptolemy II
type system is an ontology. It is an organization of knowledge about the data that a model
operates on. The ontology checker described in this chapter also performs inference based
on the annotations, and then checks consistency. But it is not constrained to checking data
types. Instead, ontologies can be used to express static analyses from a variety of user-
defined domains, including, for example:

e units checking: determining whether the units of data are consistent;

e constant analysis: determining what data in a model is constant, and what data varies
in time;

e taint analysis: determining whether values in a data stream are influenced by an un-
trusted source; and

e semantics checking: determining whether the meaning of data produced by one com-
ponent is consistent with the meaning assumed by another component that uses the
data.

Such analyses can expose a variety of modeling errors.

Example 15.1: A portion of a model of a multi-tank fuel system in an aircraft
(Moir and Seabridge, 2008) is shown in Figure 15.1. This model has three actors,
where the ports are labeled with names that suggest the intended meaning and units
of the data that are exchanged between actors. The model has three types of errors.
It has units errors, where for example one component gives the level of a tank in
gallons to a component that assumes that the level is being given in kilograms.
(The latter is often a better choice, since amount of fuel in gallons varies with
temperature, whereas the amount in kilograms does not.) It also has semantics
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Figure 15.1: An illustration of some of the sorts of errors that can be caught by
an ontology system.

errors, where a component gives the level of mid tank to a component that assumes
it is seeing the level of the aft tank. And it has a transposition error, where a level
and a flow are exchanged.

Such modeling errors are extremely easy to make and can have devastating consequences.
This chapter gives an overview of how to construct ontologies and use them to prevent
such errors.

15.1 Creating and Using Ontologies

The ontologies package provides an analysis that can be run on top of an existing model,
so the first step is to create a Ptolemy II model on which we can run our analysis. In
this section, we use a rather trivial model and a rather trivial ontology to illustrate the
mechanics of construction of an ontology and the use of a solver. We will then illustrate
a less trivial ontology that is practical and useful for catching certain kinds of modeling
errors.
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Example 15.2: Figure 15.2, shows a simple model with both constant and non-
constant actors. The constant actors produce a sequence of output values that are
all the same. For this model, we will show how to create a simple analysis that
checks which signals in the model are constant. To do this, we will first define an
ontology that distinguishes the concept of “constant” from “non constant.” We will
then define constraints for actors used by the model, and finally, we will invoke the
solver.

Sidebar: Background on the Ontology Framework

The approach to ontologies described in this chapter was first given by Leung et al.
(2009). They build on the theory of Hindley-Milner type systems (Milner, 1978), the
efficient inference algorithm of Rehof and Mogensen Rehof and Mogensen (1996), the
implementation of this algorithm in Ptolemy II (Xiong, 2002), and the application of
similar mathematical foundations to formal concept analysis (Ganter and Wille, 1998).

An interesting extension of this basic mechanism, devised by Feng (2009), uses on-
tologies to guide model-based model transformation, where a Ptolemy II model mod-
ifies the structure of another Ptolemy II model. For example, the constant analysis de-
scribed in Section 15.1 can guide a model optimization that replaces all constant sub-
systems with a Const actor. Also, Lickly et al. (2011) show how an infinite lattice can
be used to not just infer that a signal is constant, but also to infer its value. Lickly et al.
(2011) also show various other ways to use infinite lattices, including unit systems. They
also show how ontologies work with structured types such as records.

The Web Ontology Language (OWL) is a widely-used family of languages endorsed
by the World Wide Web Consortium (W3C) for specifying ontologies. OWL ontologies,
like ours, form a partial order with a top and bottom element, but unlike ours, they
are not constrained to be a lattice. Hence, the efficient inference algorithm of Rehof
and Mogensen cannot always be applied. Nevertheless, a very useful extension of the
mechanisms described in this chapter would be to export and import OWL ontologies.
The Eclipse Modeling Framework (EMF) also specifies ontologies through the notion
of classes and subclasses. Many Eclipse-based tools have been developed supporting it,
so again it would be useful to build bridges.
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Figure 15.2: A simple Ptolemy model made of constant and non-constant actors
and containing an ontology solver that can determine which signals are constant.

15.1.1 Creating an Ontology

In order to create the analysis, the first step will be to add the solver that will perform our
analysis. In this case, we will drag in the LatticeOntologySolver actor to our model, as
shown in Figure 15.3. This is where we will add all of the details of how our analysis
works. These include the lattice that represents the concepts that we are interested in, and
the constraints that actors impose on those concepts. In our case, the lattice will specify
whether a signal is constant or not, and the constraints will provide information about
which actors produce constant or non-constant signals.

As shown in Figure 15.3, if you open the LatticeOntologySolver, you get an editor with a
customized library for building analyses. At a minimum, an analysis requires an ontology.
Figure 15.4 illustrates the steps in constructing one. First, drag into the blank editor an
Ontology. Open the ontology and drag Concepts into it from the library provided by the
ontology editor.

First, we should assign meaningful names to our concepts. In Figure 15.5, we have re-
named Top to NonConstant, Bottom to Unused, and Concept to Constant. We have also
edited the parameters to the NonConstant concept to change its color to a light red, and to
check the isAcceptable parameter, which visually removes the bold outline. These con-
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Figure 15.3: A model with a blank ontology solver.
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Figure 15.4: Steps in the construction of an ontology.
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NonConstant

Figure 15.5: The lattice used for constant analysis.

cepts will be associated with ports in our model, and when isAcceptable is unchecked (the
outline on the concept is bold), then it is an error in the model for any port to be associated
with the concept. In our case, it is not an error for a port to be NonConstant, so we make
the value of this parameter true.

Here, we include not only the concepts of Const and NonConst, but also explicitly in-
clude a notion of Unused. This concept will be associated with ports that are simply not
participating in the analysis. We will use the NonConstant concept to represent any sig-
nal that may or may not be constant, so a better name might be PotentiallyNonConst or
NotNecessarilyConst.

The last step in building an ontology is to establish relationships between the concepts.
Do this by holding the control key (command key on a Mac) and dragging from the lower
concept to the higher one. In this case, the relation between Constant and NonConstant is
a generalization relation. The relations define an order relation between concepts (see
sidebar on page 513), where if the arrow goes from concept a to concept b, then a < b. In
this case, Constant < NonConstant, and Unused < Constant.

The meanings of these relations can vary with ontologies, but it is common for them to
represent subclassing, a subset relation, or as an “is a” relation. In the subset interpreta-
tion, a concept represents a set, and concept A is less than another B if everything in A is
also in B. The “is a” relation interpretation is similar, but doesn’t require a formal notion
of a set. E.g., if the concept A represents “dog” and the concept B represents “mammal,”
then it is reasonable to establish on ontology where A < B under the “is a” interpretation.
A dog is a mammal.
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Example 15.3: In Figure 15.5, NonConstant represents anything that may or may
not be constant. Hence, something that is actually constant “is a” NonConstant.

The interpretation of the bottom element, Unused in the example, is a bit trickier. Pre-
sumably, anything that makes no assertion about whether it is constant or not “is a”” Non-
Constant. Indeed, since the order relation is transitive, this statement is implied by Figure
15.5. But why make a distinction between Unused and NonConstant? We could build
an ontology that makes no such distinction, but in such an ontology, the inference engine
would infer Constant for any port that imposes no constraints at all. This is probably an
error. The bottom element, therefore, is used to indicate that the inference engine has no
usable information at all. If a port resolves to Unused, then it is not playing the game. If
we wish to force all ports to play the game, then we should set the isAcceptable parameter
of Unused to false.

The Ptolemy II type system is an ontology, as shown in Figure 14.4. Here, the order
relations represent subtyping, which in the case of Ptolemy II is based on the principle of
lossless type conversion.

With the concepts as nodes and the relations as edges, the ontology forms a mathematical
graph. The structure of this graph is required to conform with that a mathematical lattice
(see sidebar on page 513). Specifically, the structure is a lattice if given any two concepts
in the ontology, these two concepts have a least upper bound and a greatest lower bound.
In this case, conformance is trivial. For example, the least upper bound of Constant and
NonConstant is NonConstant. The greatest lower bound is Constant. But it is easy to
construct an ontology that is not a lattice.

Example 15.4: Figure 15.6 shows an ontology that is not a lattice. Consider the
two concepts, Dog and Cat. There are three concepts that are upper bounds for
these two concepts, namely Pet, Mammal, and Animal. But of those three, there is
no least upper bound. A least upper bound must be less than all other upper bounds.

If you build an ontology that is not a lattice, then upon invoking the solver, you will get
an error message.
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Figure 15.6: An ontology that is not a lattice.

15.1.2 Creating Constraints

Now that we have an ontology, to use it, we need to create constraints on the association
between objects in the model and the concepts in the ontology. The most straightforward
way to do this is with manual annotations in the model. With large models, however,
this technique does not scale well. A more scalable technique is to define constraints that
apply broadly to all actors of a class, and to specify default constraints that apply when
no other constraints are specified. We begin with the manual annotations, because they
are conceptually simplest.

Manual Annotations

The simplest way to relate objects in a model to concepts in the ontology is through man-

ual annotations. Manual annotations take the form of inequality constraints. To create

such constraints, find the Constraint annotation in the MoreLibraries—Ontologies

library, and drag it into the model. Then specify an inequality constraint of the form

object >= concept Or concept >= object, where object is an object in the model
(a port or parameter) and concept is a concept in the ontology.

Example 15.5: Figure 15.7 elaborates the model of Figure 15.3 by adding four
annotations. Each of these has the form

port >= concept.
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Specifically, the output ports of each Const actor are constrained to be greater than
or equal to Constant, whereas the output port of the Ramp actor is constrained to be
greater than or equal to NonConstant. The latter constraint, in effect, forces the port
to NonConstant, since there is nothing greater than NonConstant in the ontology.
The former constraints could be elaborated to force the ports to resolve to Constant
by adding the complementary inequality, like

Constant >= Const.output.

However, this additional constraint is unnecessary. The solver will find the /east
solution that satisfies all the constraints, so in this case, since there are no other
constraints on the output ports of the Const actors, they will resolve to Constant
anyway.
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Figure 15.7: A model with manual constraints, using the ontology in Figure 15.5.
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Once we have created all the constraints needed in our model, the next step is to run
the analysis. The analysis can be run by right-clicking on the LatticeOntologySolver
and selecting Resolve Concepts, as shown in Figure 15.8. Because this is a common
operation, double-clicking on the LatticeOntologySolver will also run the analysis.

Example 15.6: Figure 15.8 includes the results of running the analysis. Notice that
each port is annotated with the concept that it is now associated with. In addition,
the port is highlighted with the same color specified for the concept in the ontology
of Figure 15.5. The output ports of the Const actors, as expected, have resolved
to Constant, and the the output of the Ramp has resolved to NonConstant. But
more interestingly, downstream ports have also resolved in a reasonable way. The
output of the MultiplyDivide is Constant (because both its inputs are Constant),
and the the output of MultiplyDivide2 is NonConstant (because one of its inputs is
NonConstant). These results are due to default constraints associated with actors,
which as explained below, can be customized in an ontology.

SDF Director
LatticeOntologySolver

I:I Double click to

Const Apply Ontolog
ﬁ N Customize >
Documentation [

MultiplyDivide Appearance >

Const2 X Listen to Attribute
Constan Constan .
Ip 8 e —consapy + Open Model 3L
Const3 Clear Concepts

Resolve Concepts

AddSubtract Display

Ramp
Unusedi~

init (Unused)pg
step (Unused)>

MultiplyDivide2

NonConstant

+ NonConstant _NonConstanty ~—
'NonCons(an( NonConstantD L ——
Unusedb;
O

@ Constraint: Const.output >= Constant
@ Constraint2: Const2.output >= Constant

@ Constraint3: Const3.output >= Constant
@ Constraint4: Ramp.output >= NonConstant

Figure 15.8: Running an analysis. [online]
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Figure 15.9: Adding actor constraints to an ontology.

Actor-level Constraints

The manual annotations in Figure 15.7 could become very tedious to enter in a large
model. Fortunately, there is a convenient shortcut. As part of defining an ontology, we
can specify constraints that will be associated with all instances of a particular actor class.
Figure 15.9 shows how to do this. Inside the LatticeOntologySolver, we add one instance
of ActorConstraints for each actor for which we want to specify default constraints.

Setting the actorClassName parameter of the ActorConstraints to the fully qualified class
name of the actors to be constrained causes both the name and the icon of the instance of
ActorConstraints to change to match the class of actors that it will constrain.
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Example 15.7: Figure 15.9 shows two instances of ActorConstraints that have
been dragged into the LatticeConstraintsSolver. The top one has the actorClass-
Name parameter set to ptolemy.actor.lib.Ramp, the class name of the Ramp
actor. (To see the class name of an actor, linger over it in Vergil.)

Once the class name has been set, upon re-opening the parameter dialog, a new set of
parameters will have appeared, one for each port belonging to instances of the actor class,
and one for each parameter of the actor.

Example 15.8: Figure 15.9 shows these parameters for the Ramp actor. Here
we can see that constraints have been set that will force the output port to be
greater than or equal to NonConstant, and that all other constraints have been set
to IGNORE_ELEMENT. Once a similar constraint has been added to the ConstActor-
Constraints component, constraining the output ports of instances of Const to be
>= Constant, then the four constraints at the bottom of Figure 15.7 are no longer
necessary. They could be removed, and the results of the analysis will be the same
as in Figure 15.8.

The constraints associated with a port or parameter can take any one of the following
forms:

NO_CONSTRAINTS (the default)
IGNORE_ELEMENT

>= concept

<= concept

= concept

By default, the ActorConstraints actor will set NO_.CONSTRAINTS as the constraint of
each port and parameter. This means that instances of the actor allow their ports and
parameters to be associated with any concept. In this ontology, the association will always
result in Unused, so we could equally well have left all the constraints at the default
NO_CONSTRAINTS, except those for the output ports.

546
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Default Constraints

Notice in Figure 15.8 that not only have the outputs of the Const and Ramp actors re-
solved to the appropriate concepts, but so have those of downstream actors, including
MultiplyDivide and AddSubtract. How did this come about?

With respect to this analysis, both the MultiplyDivide actor and the AddSubtract actors
behave the same way. Given only constant inputs, they produce a constant output, but
given any non-constant input, they produce a (potentially) non-constant output. In terms
of the ontology lattice (Figure 15.5), the output concept will always be greater than or
equal to all of the input concepts. In other words, the output should be constrained to be
greater than or equal to the least upper bound of all the inputs. It turns out that this type of
inference behavior is a very common one. For this reason it is the default constraint for all
actors. Actors that do not have explicit constraints will inherit this default constraint. This
means that we can omit specifying any more ActorConstraints, since the global default
constraint is sufficient for all of our remaining actors.

15.1.3 Abstract Interpretation

Identifying signals as either constant or non-constant is a particularly simple form of
abstract interpretation (Cousot and Cousot, 1977). In abstract interpretation, instead
of actually computing the values of variables, we classify the variables in more abstract
terms, such as whether their values vary over time. Ontologies can be used to systemat-
ically apply more sophisticated abstractions, determining for example whether variables
are always positive, negative, or zero. This can be used to expose errors in designs, and
also to optimize design by removing unnecessary computations.

Example 15.9: The model in Figure 15.10 produces a constant stream of zeros.
Were we to apply the same Constant-NonConstant analysis as before to this model,
we would be able to determine that the output is constant. But it would not tell us
that the output is a constant stream of zeros.

To address this problem, we can use the more elaborate ontology shown in Figure 15.11.
This ontology is used to abstract numeric variables as positive, negative, or zero-valued

Ptolemaeus, System Design 547


http://Ptolemy.org

15.1. CREATING AND USING ONTOLOGIES

LatticeOntologySolver
DDF Director .
Double click to
Apply Ontology

Const4

lrigger BooleanSelect
:
Const >

Display

=

trigger 10
i 10 % l MultiplyDivide ¢ goer ECO”“S [_D—FA | .
Const2 X
trigger.- .+ ¥

Comparator
Const3 Scale
ons _
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Figure 15.11: An ontology that tracks the sign of numeric variables and the value

of boolean variables.
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Figure 15.12: Result of applying an analysis based on the ontology in Figure
15.11 to the model in Figure 15.10. [online]

numbers, in addition to whether they are constant or non constant. For boolean-valued
variables, if the variable is constant, then it also tracks whether the constant is true or
false. With appropriate actor constraints, this ontology can be used to produce the result
shown in Figure 15.12, which determines that the output is a constant stream of zeros.

15.2 Finding and Minimizing Errors

In this section, we discuss how to use an analysis to identify errors, and discuss tools
available to help in correcting the errors. For this discussion, let us consider the ontology
in Figure 15.13. This ontology models physical dimensions. Specifically, it distinguishes
the concepts of time, position, velocity, and acceleration. We will show that with appro-
priate actor constraints, it can use properties of these dimensions in inference.

Example 15.10: Figure 15.14 shows a piece of a larger model that shows interest-
ing inference of dimensions. This is a model of a car with a cruise control, where
the input is a desired speed, and the outputs are acceleration, speed, and position.
In this model, when velocity is divided by time, the result is acceleration. When
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acceleration is integrated over time, the result is velocity. When velocity is inte-
grated over time, the result is position. This analysis relies on actor constraints for
arithmetic operations and integrators.

The ontology in Figure 15.13 explicitly includes the concepts Unknown and Conflict.
The difference between Unknown and Conflict is subtle and deserves mention. Conflict

(Dimensionless) (Time) (Position) (Velocity)

Acceleration )

Figure 15.13: An ontology for analyzing physical dimensions.

@ initialPosition: 10.0 e timeConstant: 10.0
@ initialSpeed: 0.0 @ Constraint: timeConstant >= Time
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Figure 15.14: A piece of a larger model that shows interesting inference of di-
mensions. [online]
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Figure 15.15: A model analyzing physical dimensions with too few annotations.
Running the analysis reveals where additional annotations are needed. [online]

represents a situation where the analysis has detected that a given signal cannot have any
of the dimensions; thus, the analysis has found an error in the model due to conflicting use
of dimensions. For this reason, in this ontology, the isAcceptable parameter of Conflict is
set to false, resulting in a bold outline in Figure 15.13. In addition, if any port resolves to
Conflict, then running the analysis will report an error.

In the ontology in Figure 15.13, Unknown represents a case where the analysis cannot say
conclusively anything about the given signal; this means that the property being analyzed
cannot be proved with the given assumptions. Unknown in this case plays a similar role
as Unused in Figure 15.5. When a port resolves to Unknown, this can point to there not
being enough constraints in the model. This may or may not be an error, so isAcceptable
is left at its default value of true.

Example 15.11: An example of an underconstrained model is shown in Fig-
ure 15.15. Here, the model divides a velocity by a time to get an acceleration, but
the constraint specifying the dimension of the time value produced by the Const
actor has been omitted. When running the analysis, we get results shown the fig-
ure. The lack of information propagates throughout the model. This can be fixed,
of course, by adding a manual annotation to the model as shown in Figure 15.16.
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DistanceCovered LatticeOntologySolver

»m esition MultiplyDivide Double click to

Positi . Apply Ontology
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MultiplyDivide2 Display
Const X i i ZI
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@ Constraint: DistanceCovered.output >= Position
@ Constraint2: Duration.output >= Time
@ Constraint3: Const.output >= Time

Figure 15.16: Adding an additional constraint allows for a complete analysis. [on-
line]

LatticeOntologySolver

Double click to
Apply Ontology

MultiplyDivide2 Display

Duration

MultiplyDivide

@ Constraint: DistanceCovered.output >= Position
@ Constraint2: Duration.output >= Time
@ Constraint3: Const.output >= Time

Figure 15.17: An example model with conflicting dimensions due to an error in
the model. Running the analysis on this model shows that the whole model is in
conflict. [online]
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In general, overconstrained models can be more difficult to deal with.

Example 15.12: An example of an overconstrained model is shown in Fig-
ure 15.17. Here, the model builder has incorrectly divided a time by a posi-
tion, where presumably the reverse operation was intended. The result is conflicts
throughout the model.

The conflict in the previous example arises because of the ActorConstraints that are de-
fined for the MultiplyDivide actor as part of the ontology (see Figure 15.9). Specifically,
the ontology gives for the outputPortTerm the following expression:

>=
multiply == Unknown || divide == Unknown) ? Unknown :

(

(multiply == Position && divide == Time) ? Velocity :
(multiply == Velocity && divide == Time) ? Acceleration :
(multiply == Position && divide == Velocity) ? Time
(multiply == Velocity && divide == Acceleration) ? Time :
(divide == Dimensionless) ? multiply

Conflict

This constrains the output concept as a function of the input concepts. If the multiply
input is Position and the divide input is Time, for example, this expression evaluates to
Velocity. If divide input is Dimensionless, then it evaluates to whatever multiply is. If
multiply is Time and divide is Position, it evaluates to Conflict.

In the example of Figure 15.17, notice that conflicts propagate upstream as well as down-
stream. In this example, we have set the solverStrategy of the LatticeOntologySolver to
bidirectional.* The default value of this parameter is forward, which means that
when there is a connection from an output port to an input port, then the concept associ-
ated with the input port is constrained to be greater than or equal to the concept associated
with the output port. When the parameter value is set to bidirectional, then the two
concepts are required to be equal. With the bidirectional setting, constraints propa-
gate upstream in a model just as easily as downstream. So although this is reasonable to

*Since double clicking on the LatticeOntologySolver runs the analysis, double clicking cannot be used to
access the parameters. Instead, hold the alt key while you click to access the parameters.
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do for dimension analysis, it makes it difficult to see which part of the model is causing
the error.

By default, the solver finds the least solution that satisfies all the constraints.” Hence,
the way that our analysis deals with conflicting information is to promote signals to the
least upper bound of the conflicting concepts (or greatest lower bound when computing
greatest fixed points).

The analysis is able to correctly detect the error, as shown in Figure 15.17, but there is a
problem. Unlike the underconstrained case in which the error was relatively contained, in
this case Conflict propagates throughout the model, making it very difficult to see where
the source of the error is. In this simple example it is not too difficult to find the error, but
as models grow, so does the difficulty in tracking down the source of an error of this type.

In order to address this problem, we have introduced an error minimization algorithm.
This algorithm is implemented in the DeltaConstraintSolver actor, which is a subclass
of LatticeOntologySolver. It can be found in the same MoreLibraries—Ontologies
library. The DeltaConstraintSolver offers a Resolve Conflicts item in the context
menu in addition to the Resolve Concepts that we used before.

Given a model in which at least one signal resolves to an unacceptable solution, the algo-
rithm realized by Resolve Conflicts finds a subset of those constraints with the prop-
erty that removing any additional constraint does not produce any error. Highlighting the
result of running the analysis with these constraints will highlight only a subsection of the
model that contains an error. In practice, this means in contrast to the full analysis, where
the highlighted result shows many errors throughout the model as shown in Figure 15.17,
the modified algorithm highlights only a single path through the model that contains an
error, as shown in Figure 15.18. In this example, only the Duration, DistanceCovered,
and MultiplyDivide actors (each of which is an instance of Const) are highlighted, since
they are sufficient to cause the error. The unhighlighted actors (in this case the Const,
MultiplyDivide2, and Display) are not necessary to cause the error, so the model builder
can ignore them in trying to find the cause of the error.

In this case, the port that was highlighted with the erroneous concept (Conflict) was the
location of the error, but in general, this need not be the case. The only guarantee that
is made is that there is an error somewhere in the path of all highlighted signals. This

TThis can be changed by changing the solvingFixedPoint parameter of the LatticeOntologySolver from
the default least to greatest. In that case, the solver will find the highest solution in the lattice that
satisfies all the constraints.
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@ Constraint: DistanceCovered.output >= Position

@ Constraint2: Duration.output >= Time
@ Constraint3: Const.output >= Time

Figure 15.18: With our error minimization algorithm, finding errors is easier. [on-
line]

means that in general, all of the signals that are highlighted may need to be checked in
order to find the source of the error. The gain of this technique comes from the many
unhighlighted actors in the model that can be completely ignored.

15.3 Creating a Unit System

In the previous section, we saw an analysis that checked that the dimensions of a system
were being used in a consistent way, to avoid errors such as integrating a velocity and
expecting to get an acceleration value out. A similar but more insidious type of error is
when two signals have the same dimensions, but different units, such as feet vs. meters,
or pounds vs. kilograms. Since this is a more subtle problem — results can deviate by
only a small scaling factor — it is even more desirable to check these types of properties
automatically. Section 13.7 describes a built-in unit system provided in Ptolemy II. But a
units system is just another ontology, and the ontology framework can be used to create
specialized units systems.
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Dimensionless

( Time }j (Position)v (Velocity)) (Acceleration —):
| N

Figure 15.19: A unit system for physical units.

15.3.1 What are Units?

In order to discuss what units are, we first need to discuss how units differ from one an-
other. There are two ways that units can differ. They can be different measures of the
same quantity, like feet and meters, or they can be measures of fundamentally different
quantities, like feet and seconds. Differences of the second type are exactly what is cap-
tured in the dimension ontology, so our approach to units will be similar, but extended to
deal with different units within a single dimension.

Ptolemy II supports creating a units system ontology with the same freedom as other
ontologies. Users can choose the units and dimensions that are appropriate to analyze
the model at hand, and thus make the ontology only as complicated as it needs to be
to perform the desired analysis. Since we have already discussed a physical dimension
ontology that had concepts for Position, Velocity, Acceleration, etc., we will continue
to use an example unit ontology where the units are drawn from the same dimensions,
as shown in Figure 15.19. However, instead of building our ontology using only simple
instances of Concept, we use instances of DerivedDimension and Dimensionless. These
are concepts specialized to support units, and are selected from the Dimension/Unit
System Concepts sublibrary provided by the ontology editor (see Figure 15.4).

As shown in Figure 15.19, DerivedDimension has a slightly different icon, a double oval,
suggestive that it is in fact a representative concept, a single object that stands in for a
family of concepts. DerivedDimension has some parameters that we set and parameters
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that we must add to build a unit system. We outline what this looks like here, but to build
a unit system from scratch, you will need to refer to the documentation.

15.3.2 Base and Derived Dimensions

The dimensions from which units are drawn are split into two types, base dimensions,
and derived dimensions. Base dimensions are dimensions that cannot be broken down
into any smaller components, such as Time, whereas derived dimensions can be expressed
in terms of other dimensions. For example, Acceleration can be expressed in terms of
Position and Time. Note that there is no restriction on which dimensions can be base
dimensions or derived dimensions. There is no technical reason that a model builder
could not define Acceleration to be a base dimension and derive Position, although it is
not the natural choice in this situation. When defining a base dimension, the user only
needs to specify the units within that dimension. This is done by adding parameters to the
DerivedDimension concept.

Example 15.13: Figure 15.20 shows parameters that have been added to the Time
dimension of Figure 15.19. Here, the user specifies the scaling factor of all units

secFactor: 1.0

hrFactor: 3o00*secFactor

dayFactor: 24*hrFactor

sec: { Factor = secFactor }

ms: { Factor = 0.001*secFactor }

us: { Factor = 1E-06*secFactor }

ns: { Factor = 1E-09*secFactor }
minute: { Factor = 60*secFactor }

hr: { Factor = hrFactor }

day: { Factor = dayFactor }
yrCalendar: { Factor = 365.2425*dayFactor }
yr5idereal: { Factor = 31558150%secFactor }
yrTropical: { Factor = 31556930%secFactor }

Figure 15.20: An example of the specification of the Time base dimension.
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within that dimension with respect to one another, using named constants as needed
to make the calculations clearer.

The Time dimension is a base dimension. The definition of a derived dimension is slightly
more involved, since a derived dimension must explicitly state which dimensions it is
derived from. Derived dimensions must specify both how the derived dimension is derived
from other dimensions, and how each of its individual units are derived from units of those
other dimensions.

Example 15.14: Figure 15.21 shows an example of the specification of the Accel-
eration dimension of Figure 15.19. Here, the first lines show that an Acceleration
is built from the Time and Position base dimensions, and that an acceleration has
units of position/time?. The rest of the specification shows how individual units
of acceleration are related to units of position and time.

The main benefit of specifying units this way is that we can infer the constraints for
multiplication, division, and integration, which are used in many actors.

dimensionArray: { {Dimension = "LengthConcept”, Exponent = 1}, {Dimension = "TimeConcept”, Exponent = -2} }
LengthConcept: Position

TimeConcept: Time

m_per_sec2: { LengthConcept = {"m"}, TimeConcept = {"sec", "sec"} }

cm_per_secz: { LengthConcept = {"cm"}, TimeConcept = {"sec", "sec"} }

ft_per_sec2: { LengthConcept = {"ft"}, TimeConcept = {"sec”, "sec"} }

kph_per_sec: { LengthConcept = {"km"}, TimeConcept = {"hr", "sec"} }

mph_per_sec: { LengthConcept = {"mi"}, TimeConcept = {"hr", "sec"} }

Figure 15.21: An example of the specification of the Acceleration derived dimen-
sion.
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15.3.3 Converting Between Dimensions

In the case that units are used inconsistently, there is a error in the model. Not all units
errors are the same, however. Units errors that result from interchanging signals with
different dimensions point to a model whose connections must be changed, but unit errors
from interchanging signals with different units of the same dimensions can be fixed by
simply converting the units from one form to another. While it is technically possible to
perform this type of conversion automatically, Ptolemy does not do this. Unit errors are
an error in modeling, and model errors should never be concealed from model builders.

In keeping with this philosophy, a UnitsConverter actor’ must be explicitly added to a
model in order to perform conversion between two units of the same dimension. This
conversion happens both during the analysis, when the actor creates constraints on the
units of its input and output ports, and during runtime, when the actor performs the linear
transform from one unit to the other. Since the ontology knows the conversion factors be-
tween components, model builders need only specify the units to convert between, rather
than the logic for conversion that would need to be specified in order to do conversion
completely manually.

The parameters of the UnitsConverter actor, shown in Figure 15.22, include the unitSys-
temOntologySolver, which refers to the name of the LatticeOntologySolver of the units
system analysis. (The name in this case is DimensionAnalysis.) Since it is only possible

twhich can be found in MoreLibraries—Ontologies

(. TaNe Edit parameters for UnitsConverter
| o unitSystemOntologySolver: DimensionAnalysis|
dimensionConcept: Velocity
inputUnitConcept: m_per_sec
outputUnitConcept: mph
£ Cancel Y f Help Y [ Preferences ) ( Defaults ) ( Remove ) [ Add 3 ( Commit )

Figure 15.22: Using the UnitsConverter requires setting the name of the associ-
ated solver, as well as the input and output units.
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to convert between units of the same dimension, the dimension is only specified once,
in the dimensionConcept parameter, and the individual units of the input and output are
specified in the inputUnitConcept and outputUnitConcept parameters respectively.

Example 15.15: Assume that we have a model that makes the unit error shown in
Figure 15.23, where a velocity is provided in meters per second rather than miles
per hour. By adding in a UnitsConverter as shown in Figure 15.24, and setting the
parameters to convert from Velocity_mph to Velocity_m_per_sec as shown in Fig-
ure 15.22, we can create a model that both passes our units analysis and performs
the conversion at runtime. Since the ontology analysis is not required to pass before
running a model, the version of the model in Figure 15.23 without the UnitsCon-
verter actor can still run. It produces an incorrect output value, however, since it
treats the velocity value in Const as expressed in miles per hour as one in meters
per second.

15.4 Summary

One of the key challenges in building large, heterogeneous models is ensuring correct
composition of components. The components are often designed by different people, and
their assumptions are not always obvious. Customized, domain-specific ontologies offer
a powerful way to make assumptions clearer. Applying such ontologies in practice, how-
ever, can be very tedious, because they typically require the model builders to extensively
annotate the model, decorating every element of the model with ontology information.
The infrastructure described in this chapter leverages a very efficient inference algorithm
that can significantly reduce the effort required to apply an ontology to a model. Far fewer
annotations are required than is typical because most ontology associations are inferred.

Domain-specific ontologies and the associated constraints, however, can get quite sophis-
ticated. The vision here is that libraries of ontologies, constraints, and analyses will be
built up and re-used. This is certainly possible with the unit systems and dimension sys-
tems, but it also seems possible to construct libraries of analyses that are industry- or
application-specific. Since these analyses are simply model components, they are easy to
share among models within an enterprise.
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Figure 15.23: An example that adds a quantity in miles per hour to one in me-

ters per second without conversion, resulting in conflicts throughout the model.
[online]
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Figure 15.24: A model that uses the UnitsConverter actor to convert from meters
per second to miles per hour. [online]
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More interestingly, simple ontologies can be systematically combined to create more so-
phisticated ontologies, including ones where there are constraints that reference more than
one ontology. For example, the ontology in Figure 15.11 could be factored into two sim-
pler ontologies, once that refers to scalars and one that refers to booleans, and a product
ontology could be defined in terms of these two simpler ontologies. The interested reader
is referred to the Combining Ontologies chapter of Lickly (2012).
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