©@®O
This is a chapter from the book
System Design, Modeling, and Simulation using Ptolemy II

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported
License. To view a copy of this license, visit:

http://creativecommons.org/licenses/by-sa/3.0/,

or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View,
California, 94041, USA. Permissions beyond the scope of this license may be available
at:

http://ptolemy.org/books/Systems.

First Edition, Version 1.0

Please cite this book as:

Claudius Ptolemaeus, Editor,
System Design, Modeling, and Simulation using Ptolemy II, Ptolemy.org, 2014.
http://ptolemy.org/books/Systems.

http://creativecommons.org/licenses/by-sa/3.0/
http://ptolemy.org/books/Systems
http://ptolemy.org/books/Systems

Process Networks and
Rendezvous

Neil Smyth, John S. Davis Il, Thomas Huining Feng, Mudit Goel, Edward A. Lee,
Thomas M. Parks, Yang Zhao

Contents
4.1 KahnProcessNetworks 132
Historical Notes: Process Networks 134
Sidebar: Process Networks and Dataflow 135
4.1.1 Concurrent Firings 136
Sidebar: Actors With Unbounded Firings 138
Sidebar: Useful Actors for PN Models 143
4.1.2 Stopping Executionof aPNModel 144
42 RendezvouS v v v v v vt vttt ittt e 145
Sidebar: Useful Actors for Rendezvous Models 146
4.2.1 Multiway Rendezvous 147
4.2.2 Conditional Rendezvous 148
4.2.3 Resource Management 150
43 SUMMATY . ¢ o v v v v vt o v e o o o o oo oo s oo oo soosaas 151
Exerciseso i it i i ittt e e e 152

131

4.1. KAHN PROCESS NETWORKS

Dataflow models of computation are concurrent. The order of the firings is constrained
only by data precedence, so the director has quite a bit of freedom to choose an ordering.
There is no reason that two actors that do not depend on each other’s data could not be
fired simultaneously. Indeed, there is a long history of schedulers that do exactly that, as
described in the sidebar on page 100. Nevertheless, the directors described in Chapter 3
fire actors one at a time. This chapter introduces two directors that fire actors concurrently.
Both are similar to dataflow, semantically, but they are used for very different purposes.

The directors in this chapter execute each actor in its own thread. A thread is a sequential
program that can potentially share variables with other threads that execute concurrently.
On a multicore machine, two threads may execute in parallel on separate cores. On a
single core, the instructions of each thread are arbitrarily interleaved. Understanding the
interactions between threads is notoriously difficult (Lee, 2006) because of this arbitrary
interleaving of instructions. The directors described in this chapter provide a way for
threads to interact in more understandable and predictable ways.

One possible motivation for using the directors in this chapter is to exploit the parallelism
offered by multiple cores. Every model described in the previous chapter, for example,
could also be executed with a PN director, described below, and actors will fire simulta-
neously on multiple cores. One could expect models to execute faster than they would
with an SDF director. However, this is not our experience. Our experience is that PN
models almost always run slower than SDF models, regardless of the number of cores.
The reason for this appears to be the cost of thread interactions associated with the mutual
exclusion locks that enable Ptolemy II models to be edited while they run. In principle,
this capability could be disabled, and one would then expect performance improvements.
But as of this writing, no mechanism has been built in Ptolemy II to do this. Hence, im-
proving performance is probably not an adequate reason to use the threaded directors of
this chapter over SDF or DDF when SDF or DDF is suitable.

Instead, we focus in this chapter on models where concurrent firing of actors is required
by the goals of the model. These examples show that these directors do in fact provide a
fundamental increment in expressiveness, and not just a performance improvement.

4.1 Kahn Process Networks

A model of computation that is closely related to dataflow models is Kahn process net-
works (variously called KPN, process networks or PN), named after Gilles Kahn, who

132 Ptolemaeus, System Design

http://Ptolemy.org

4. PROCESS NETWORKS AND RENDEZVOUS

introduced them (Kahn, 1974). The relationship between dataflow and PN is studied in
detail by Lee and Parks (1995) and Lee and Matsikoudis (2009), but the short story is
quite simple. In PN, each actor executes concurrently in its own thread. That is, instead
of being defined by its firing rules and firing functions, a PN actor is defined by a (typ-
ically non-terminating) program that reads data tokens from input ports and writes data
tokens to output ports. All actors execute simultaneously (conceptually; whether they
actually execute simultaneously or are interleaved is irrelevant to the semantics).

In the original paper, Kahn (1974) gave very elegant mathematical conditions on the ac-
tors that ensure that a network of such actors is determinate. In this, case “determinate”
means that the sequence of tokens on every connection between actors is uniquely de-
fined, and specifically is independent of how the processes are scheduled. Every legal
thread scheduling yields exactly the same data streams. Thus, Kahn showed that concur-
rent execution was possible without nondeterminism.

Three years later, Kahn and MacQueen (1977) gave a simple, easily implemented mech-
anism for programs that guarantees that the mathematical conditions are met to ensure
determinism. A key part of the mechanism is to perform blocking reads on input ports
whenever a process is to read input data. Specifically, blocking reads mean that if the
process chooses to access data through an input port, it issues a read request and blocks
until the data become available. It cannot test the input port for the availability of data
and then perform a conditional branch based on whether data are available, because such
a branch would introduce schedule-dependent behavior.

Blocking reads are closely related to firing rules. Firing rules specify the tokens required
to continue computing (with a new firing function). Similarly, a blocking read specifies
a single token required to continue computing (by continuing execution of the process).
Kahn and MacQueen showed that if every actor implements a mathematical function from
input sequences to output sequences (meaning that for each input sequence, the output
sequence is uniquely defined), then blocking reads are sufficient to ensure determinism.

When a process writes to an output port, it performs a nonblocking write, meaning that
the write succeeds immediately and returns. The process does not block to wait for the
receiving process to be ready to receive data.' This is exactly how writes to output ports
work in dataflow MoCs as well. Thus, the only material difference between dataflow and

!The Rendezvous director, discussed later in this chapter, differs at exactly this point, in that with that
director, a write to an output port does not succeed until the actor with the corresponding input port is ready
to read.

Ptolemaeus, System Design 133

http://Ptolemy.org

4.1. KAHN PROCESS NETWORKS

PN is that with PN, the actor is not broken down into firing functions. It is designed as a
continuously executing program. The firing of an actor does not need to be finite.

Historical Notes: Process Networks

The notion of concurrent processes interact-
ing by sending messages is rooted in Conway’s
coroutines (Conway, 1963). Conway described
software modules that interacted with one an-
other as if they were performing I/O operations.
In Conway’s words, “When coroutines A and B
are connected so that A sends items to B, B runs
for a while until it encounters a read command, Y W
which means it needs something from A. The Gilles Kahn (1946 — 2006)
control is then transferred to A until it wants to
write, whereupon control is returned to B at the
point where it left off’

The least fixed-point semantics is due to Kahn (1974), who developed the model
of processes as continuous functions on a CPO (complete partial order). Kahn
and MacQueen (1977) defined process interactions using non-blocking writes and
blocking reads as a special case of continuous functions, and developed a pro-
gramming language for defining interacting processes. Their language included
recursive constructs, an optional functional notation, and dynamic instantiation of
processes. They gave a demand-driven execution semantics, related to the lazy
evaluators of Lisp (Friedman and Wise, 1976; Morris and Henderson, 1976). Berry
(1976) generalized these processes with stable functions.

The notion of unbounded lists as data structures first appeared in Landin (1965).
This underlies the communication mechanism between processes in a process net-
work. The UNIX operating system, due originally to Ritchie and Thompson (1974)
includes the notion of pipes, which implement a limited form of process networks
(pipelines only). Later, named pipes provided a more general form.

Kahn (1974) stated but did not prove what has come to be known as the Kahn
principle, that a maximal and fair execution of process network yields the least
fixed point. This was later proved by Faustini (1982) and Stark (1995).

134 Ptolemaeus, System Design

http://Ptolemy.org

4. PROCESS NETWORKS AND RENDEZVOUS

Sidebar: Process Networks and Dataflow

Three major variants of dataflow have emerged in the literature: Dennis dataflow (Den-
nis, 1974), Kahn process networks (KPN) (Kahn, 1974), and dataflow synchronous lan-
guages (Benveniste et al., 1994). The first two are closely related, while the third is quite
different. This chapter deals with Kahn process networks, Dennis dataflow is addressed
in Chapter 3, and dataflow synchronous languages are addressed in Chapter 5.

In Dennis dataflow, the behavior of an actor is given by a sequence of atomic firings
that are enabled by the availability of input data. KPN, by contrast, has no notion of an
atomic firing. An actor is a process that executes asynchronously and concurrently with
others. Dennis dataflow can be viewed as a special case of KPN (Lee and Parks, 1995)
by defining a firing to be the computation that occurs between accesses to inputs. But
the style in which actors and models are designed is quite different. Dennis’ approach is
based on an operational notion of atomic firings driven by the satisfaction of firing rules.
Kahn’s approach is based on a denotational notion of processes as continuous functions
on infinite streams.

Dennis’ approach influenced computer architecture (Arvind et al., 1991; Srini, 1986),
compiler design, and concurrent programming languages (Johnston et al., 2004). Kahn’s
approach influenced process algebras (e.g. Broy and Stefanescu (2001)) and concur-
rency semantics (e.g. Brock and Ackerman (1981); Matthews (1995)). It has had
practical realizations in stream languages (Stephens, 1997) and operating systems (e.g.
Unix pipes). Interest in these MoCs has grown with the resurgence of parallel com-
puting, driven by multicore architectures (Creeger, 2005). Dataflow MoCs are being
explored for programming parallel machines (Thies et al., 2002), distributed systems
(Lzaro Cuadrado et al., 2007; Olson and Evans, 2005; Parks and Roberts, 2003), and
embedded systems (Lin et al., 2006; Jantsch and Sander, 2005). There are improved
execution policies (Thies et al., 2005; Geilen and Basten, 2003; Turjan et al., 2003; Lee
and Parks, 1995) and standards (Object Management Group (OMG), 2007; Hsu et al.,
2004).

Lee and Matsikoudis (2009) bridge the gap between Dennis and Kahn, showing that
Kahn’s methods extend naturally to Dennis dataflow, embracing the notion of firing.
This is done by establishing the relationship between a firing function and the Kahn
process implemented as a sequence of firings of that function. A consequence of this
analysis is a formal characterization of firing rules and firing functions that preserve
determinacy.

Ptolemaeus, System Design 135

http://Ptolemy.org

4.1. KAHN PROCESS NETWORKS

Kahn and MacQueen (1977) called the processes in a PN network coroutines for an inter-
esting reason. A routine or subroutine is a program fragment that is “called” by another
program. The subroutine executes to completion before the calling fragment can continue
executing. The interactions between processes in a PN model are more symmetric, in that
there is no caller and callee. When a process performs a blocking read, it is in a sense
invoking a routine in the upstream process that provides the data. Similarly, when it per-
forms a write, it is in a sense invoking a routine in the downstream process to process the
data. But the relationship between the producer and consumer of the data is much more
symmetric than with subroutines.

When using a conventional Ptolemy II actor with the PN director (vs. a custom-written
actor), the actor is automatically wrapped in an infinite loop that fires it until either the
model halts (see Section 4.1.2 below) or the actor terminates (by returning false from
its postfire method). When the actor accesses an input, it blocks until input is available.
When it sends an output, the output token goes into a FIFO queue (first-in, first-out)
that is (conceptually) unbounded. The tokens will be eventually delivered in order to the
destination actors.

An interesting subtlety arises when using actors that behave differently depending on
whether input tokens are available on the inputs. For example, the AddSubtract actor will
add all available tokens on its plus port, and subtract all available tokens on its minus
port. When executing under the PN director, this actor will not complete its operation
until it has received one token from every input channel. This is because accesses to
the inputs are blocking. When the actor asks whether a token is available on the input
(using the hasToken method), the answer is always yes! When it then goes to read that
token (using the get method of the input port), it will block until there actually is a token
available.

Just like dataflow, PN poses challenging questions about boundedness of buffers and about
deadlock. PN is expressive enough that these questions are undecidable. An elegant
solution to the boundedness question is given by Parks (1995) and elaborated by Geilen
and Basten (2003). The solution given by Parks is the one implemented in Ptolemy II.

4.1.1 Concurrent Firings

PN models are particularly useful when there are actors that do not return immediately
when fired. The InteractiveShell actor, for example, found in Sources—SequenceSources,
opens a window (like the top and bottom windows in Figure 4.1) into which a user can
enter information. When the actor fires, it displays in the window whatever input it has

136 Ptolemaeus, System Design

http://Ptolemy.org

4. PROCESS NETWORKS AND RENDEZVOUS

received, followed by a prompt (which defaults to “>>"). It then waits for the user to
enter a new value. When the user types a value and hits return, the actor outputs an event

containing that value.
When this actor fires in response to an input, the firing will not complete until a user

enters a value in the window that is opened. If a dataflow director is used (or any other
director that fires actors one at a time), then the entire model will block waiting for user

.AreYouReady.InteractiveShell 1

File Help
Are you ready?
>> no
Partner not ready. Are you ready now?
>> no
Partner not ready. Are you ready now?
>> yes
Let's go then!
>
PN Director
SampleDelay InteractiveShelll ,,.-~""”E><pression
{"Are you ready?’} e fistyl first == "yes" && second == "yes"?
"Let's go then!" [

secondpl,

: "Partner not ready. Are you ready now?"

InteractiveShell2

Prooipy

.AreYouReady.InteractiveShell2
File Help

Are you ready?

>> yes

Partner not ready. Are you ready now?
>> yes

Partner not ready. Are you ready now?
>> yes

Let's go then!

>>

Figure 4.1: A model with two instances of InteractiveShell, each of which blocks
waiting for user input. [online]

Ptolemaeus, System Design 137

http://ptolemy.org/systems/models/pn/AreYouReady/index.html
http://Ptolemy.org

4.1. KAHN PROCESS NETWORKS

input from just one InteractiveShell. No other actor can fire. For some models, this will
be a problem.

Example 4.1: Consider the model in Figure 4.1. This model emulates a dialog
with two users where it is seeking concurrence from both users before proceeding
with some other action. In this case, it simply asks each user “Are you ready?” It
waits for one response from each user, and if both users have respond “yes,” then
it responds “Let’s go then!” In this PN model, each instance of InteractiveShell
executes in its own thread. If this model were executed instead using the SDF
director, then the SDF director would fire one of these first, and would not even ask
the second user the question until the first one has responded.

Sidebar: Actors With Unbounded Firings

Below are a few actors that benefit particularly from use of the PN director because they
do not (necessarily) return immediately when fired:

FileReader HttpPost InteractiveShell ModelReference RunCompositeActor VisualModelReference

trigger, input,
> inpu > | 5;; | [~
fileOrURL | -, "y POSt P prompty P »

AN
=

e FileReader reads a file on the local computer or a URL (uniform resource locator
from the Internet. In the latter case, the actor may block for an indeterminate amount
of time while the server responds.

e HittpPost posts a record to a URL on the Internet, emulating what a browser typically
does when a user fills in an online form. The actor may block for an indeterminate
amount of time while the server responds.

o InteractiveShell opens a window and waits for user input.

e ModelReference executes a referenced model to completion (or indefinitely, if the
model does not terminate).

e RunCompositeActor executes a contained model to completion (or indefinitely, if the
model does not terminate).

e VisualModelReference opens a Vergil window to display a referenced model and ex-
ecutes the model to completion (or indefinitely, if the model does not terminate).

138 Ptolemaeus, System Design

http://Ptolemy.org

4. PROCESS NETWORKS AND RENDEZVOUS

In the previous example, the InteractiveShell actor interacts with the world outside the PN
model. It performs I/O, and in particular, it blocks while performing the I/O, waiting for
actions from the outside world. Another example that has this property is considered in
Exercise 5, which considers actors that collect data from sensors.

As explained above, a key property of Kahn process networks is that models are deter-
ministic. It may seem odd to assert that the model in Figure 4.1 is deterministic, however.
Clearly, the sequence of values generated by the Expression actor, for example, differs
from run to run, because it depends on what users type into the dialog windows that open.
Indeed, determinism requires that every actor implement a mathematical function from
input sequences to output sequences. Strictly speaking, InteractiveShell does not imple-
ment such a function. In two different runs, the same sequence of inputs will not generate
the same sequence of outputs, because the outputs depend on what a user types. Never-
theless, the Kahn property is valuable, because it asserts that if you fix the user behavior,
then the behavior of the model is unique and well defined. If on two successive runs, two
users type exactly the same sequence of responses, then the model will behave exactly the
same way. The behavior of the model depends only on the behavior of the users, and not
on the behavior of the thread scheduler.

In Ptolemy II, it is possible to build process networks that are nondeterminate using a
special actor called a NondeterministicMerge (see box on page 143). Such models can be
quite useful.

Example 4.2: Consider the example in Figure 4.2. This model emulates a chat
interaction between two users, where users can provide input in any order. In this
model, users type their inputs into the windows opened by the InteractiveShell ac-
tors, and their inputs are merged and displayed by the Display actor.

In this model, it is not true that if on two successive runs, users type the same
thing, that the results displayed will be the same. Indeed, if two users type things
nearly simultaneously, then the order in which their text appears at the output of
the NondeterministicMerge is undefined. Either order is correct. The order that
results will depend on the thread scheduler, not on what the users have typed. This
contrasts notably with the model in Figure 4.1.

The nondeterminism introduced in the previous model can be quite useful. But it comes
at a cost. Models like this are much harder to test, for example. There is no single correct

Ptolemaeus, System Design 139

http://Ptolemy.org

4.1. KAHN PROCESS NETWORKS

result of execution. For this reason, NondeterministicMerge should be used with caution,
and only when it is really needed. If a model can be built using deterministic mechanisms,
then it should be built using deterministic mechanisms.

Although the previous example emulates a chat session between two clients, it is not a
realistic implementation of a chat application. The two interactive shell windows are
opened on the same screen and run in the same process, so two distinct users cannot prac-

.LocalChat.InteractiveShell 1
File Help

Ready to Chat
>>Hello.

Hello.

>>Are you there?
Are you there?
>>

1 PN Director

SampleDelay InteractiveShelll

" " >.inputy] ‘/’/’
{"Ready to Chat"}
promqtb] -

Expression2

Display

\

SampleDelay?2

{"Ready to Chat"} —

.LocalChat.Display

'romt k'\
prompt

LocalChat.InteractiveShell2
File Help

Ready to Chat

>> Yes, I'm here.
Yes, I'm here.
>>

File Help

First: Hello.

First: Are you there?
Second: Yes, I'm here.

Figure 4.2: A model using a NondeterministicMerge to create a nondeterministic
process network. [online]

140 Ptolemaeus, System Design

http://ptolemy.org/systems/models/pn/LocalChat/index.html
http://Ptolemy.org

4. PROCESS NETWORKS AND RENDEZVOUS

PN Director @ URL: http://localhost:8078/chat

o clientlD: Claudius
Display

SampleDelay2

FileReader
trigger

fileOrURL - !

fileOrURL: $URL/$clientiD

InteractiveShell

.ChatClient2.Display

File Help

Claudius: Hello. Is anybody out there?
Prolemaeus: Yes, I'm here.

Ptolemaeus: What can | do for you?

inputy] RecordAssembler

bk

prompt'b

" .._StringConst

[$clientlD

trigger

SampleDelay
; {"Welcome to PtChat"}

HttpPost

Post

.ChatClient.InteractiveShell

File Help

Welcome to PtChat

>> Hello. Is anybody out there?
sent

>>

Figure 4.3: A model that implements a chat client. [online]

tically chat. PN can be used to build to build an actual chat client using only deterministic

mechanisms.

Example 4.3: The model in Figure 4.3 implements a chat client. This model
assumes that a server has been deployed at the URL specified by the URL parameter
of the model. An implementation of such a server is developed in Exercise 1 of

Chapter 16.

This client assumes that the server provides two interfaces. An HTTP Get request
is used to retrieve chat text that will include text entered by the user of this model

Ptolemaeus, System Design

141

http://ptolemy.org/systems/models/pn/ChatClient/index.html
http://Ptolemy.org

4.1. KAHN PROCESS NETWORKS

interleaved with text provided by any other participant in the chat session. The
upper feedback loop in Figure 4.3 issues this HI'TP Get using a FileReader actor.
Normally, the server will not respond immediately, but rather will wait until it has
chat data to provide. Hence, the FileReader actor will block, waiting for a response.
Upon receiving a response, the model will display the response using the Display
actor, and then issue another HTTP Get request.

This technique, where Get requests block until there are data to provide, is called
long polling. In effect, it provides a simple form of push technology, where the
server pushes data to a client when there are data to provide. Of course, it only
works if the client has issued a Get request, and if the client can patiently wait for
a response, rather than, say, timing out.

The lower feedback loop in Figure 4.3 is used for this client to supply chat text to
the chat session. It uses an InteractiveShell to provide a window into which a user
can enter text. When the user provides text, it assembles a record containing the
text and user ID and posts the record to the server using an HttpPost actor. When
the server replies, the model provides a confirmation to the user, “sent,” and waits
for the user to enter new text.

In the meantime, the server will normally respond to the HTTP Post by issuing a
reply to all pending instances of HTTP Get. In the example execution shown in
Figure 4.3, the local user, Claudius, first types “Hello. Is anybody there?”” Another
user, Ptolemaeus, somewhere else on the Internet, replies “Yes, I’'m here.” The
remote user then further types “What can I do for you?” That text is “pushed” to
this chat client using the long polling technique, and hence appears on the display
spontaneously.

The previous example shows a use of PN to create two simultaneously executing tasks,
each of which can block. This model is deterministic, in that for any sequence of outputs
produced by the FileReader and InteractiveShell, all signals in the model are uniquely de-
fined. The behavior of the model, therefore, depends only on user input, and not on thread
scheduling, unlike the example in Figure 4.2. This form of determinism is very valuable.
Among the many benefits is that models can be tested by defining input sequences and
checking the responses.

142 Ptolemaeus, System Design

http://Ptolemy.org

4. PROCESS NETWORKS AND RENDEZVOUS

Sidebar: Useful Actors for PN Models

A few actors that are particularly useful in PN models are shown below:

NondeterministicMerge OrderedMerge Sequencer Starver Synchronizer

» » - ERO

All of these can be found in DomainSpecific—ProcessNetworks, but some of
them also appear in Actors—FlowControl.

NondeterministicMerge. Merge sequences of tokens by arbitrarily interleaving
their tokens onto a single stream.

OrderedMerge. Merge two monotonically increasing sequences of tokens into
one monotonically increasing sequence of tokens.

Sequencer. Take a stream of input tokens and stream of sequence numbers and
re-order the input tokens according to the sequence numbers. On each iteration,
this actor reads an input token and a sequence number. The sequence numbers are
integers starting with zero. If the sequence number is the next one in the sequence,
then the token read from the input port is produced on the output port. Otherwise,
it is saved until its sequence number is the next one in the sequence.

Starver. Pass input tokens unchanged to the output until a specified number of
tokens have been passed. At that point, consume and discard all further input
tokens. This can be used in a feedback loop to limit the execution to a finite data
set.

Stop. Stop execution of a model when a true token is received on any input
channel.

Synchronizer. Synchronize multiple streams so that they produce tokens at the
same rate. That is, when at least one new token exists on every input channel,
exactly one token is consumed from each input channel, and the tokens are output
on the corresponding output channels.

Ptolemaeus, System Design 143

http://Ptolemy.org

4.1. KAHN PROCESS NETWORKS

4.1.2 Stopping Execution of a PN Model
A PN model in Ptolemy II executes until one of the following occurs:

e All actors have terminated. An actor terminates when its postfire method returns
false. Many actors in the Ptolemy II library have a firing CountLimit parameter (e.g.,
the Const actor). Setting this parameter to a positive integer will cause the actor’s
process to terminate after the actor has fired the specified number of times.

e All processes are blocked on reads of input ports. This is a deadlock, similar to the
ones that can occur in dataflow models. A deadlock may occur due to an error in
the model, or it may be deliberate. For example, the firingCountLimit parameter
mentioned above and the Starver actor (see box on page 143) can be used to create
a starvation condition, where actors that have not terminated are blocked on reads
that will never be satisfied. Despite the pejorative tone of the words “deadlock” and
“starvation,” these are perfectly reasonable and useful techniques for terminating
the execution of a PN model.

e The Stop actor reads a true-valued input token on its one input port. Upon reading
this input, the Stop actor will coordinate with the director to stop all executing
threads. Specifically, any thread that is blocked on a read or write of a port will
terminate immediately, and any thread that is not blocked will terminate on its next
attempt to perform a read or write. The Stop actor can be found in the Actors
—FlowControl—ExecutionControl library.

e A buffer overflows. This occurs when the number of unconsumed tokens on a com-
munication channel exceeds the value of the maximumQueueCapacity parameter of
the director. Note that if you set maximumQueueCapacity to 0 (zero), then this will
not occur until the operating system denies the Ptolemy system additional memory,
which typically occurs when you have run out system memory.

e An exception occurs in some actor process. Other threads are terminated in a man-
ner similar to what the Stop actor does.

e A user presses the stop button in Vergil. All threads are terminated in a manner
similar to what the Stop actor does.

These are the only mechanisms for stopping an execution. How to use them is explored
in Exercise 6.

144 Ptolemaeus, System Design

http://Ptolemy.org

4. PROCESS NETWORKS AND RENDEZVOUS

Even so, there are some limitations. The FileReader actor, for example, used in Fig-
ure 4.3, sadly, cannot be interrupted if it is blocked on a read. Stopping the model
in Figure 4.3, therefore, is difficult. If you hit the stop button, it will eventually time
out, but the wait may be considerable. This appears to be a limitation in the underlying
java.net. URLConnection class that is used by this actor.

4.2 Rendezvous

In the Rendezvous domain in Ptolemy II, like PN, each actor executes in its own thread.
Unlike PN, communication between actors is by rendezvous rather than message passing
with unbounded FIFO queues. Specifically, when an actor is ready to send a message via
an output port, it blocks until the receiving actor is ready to receive it. Similarly if an
actor is ready to receive a message via an input port, it blocks until the sending actor is
ready to send it. Thus, this domain realizes both blocking writes and blocking reads.

This domain supports both conditional and multiway rendezvous. In conditional ren-
dezvous, an actor is willing to rendezvous with any one of several other actors.” In mul-
tiway rendezvous, an actor requires rendezvous with multiple other actors at the same
time.> When using conditional rendezvous, the choice of which rendezvous occurs is
nondeterministic, in general, since which rendezvous occurs will generally depend on the
thread scheduler.

The Rendezvous domain is based on the communicating sequential processes (CSP)
model first proposed by Hoare (1978) and the calculus of communicating systems (CCS),
given by Milner (1980). It also forms the foundation for the Occam programming lan-
guage (Galletly, 1996), which enjoyed some success for a period of time in the 1980s and
1990s for programming parallel computers.

Rendezvous-based communication is also known as synchronous message passing, but
we avoid this term to avoid confusion with the SR (synchronous-reactive) domain, de-
scribed in Chapter 5, and the SDF domain, described in Chapter 3.

2For those fameliar with the Ada language, this is similar to the select statement.
3Multiway rendezvous is also called barrier synchronization, since it blocks each participating thread
until all participating threads have reached a barrier point, indicated by a send or a get via a port.

Ptolemaeus, System Design 145

http://Ptolemy.org

4.2. RENDEZVOUS

Sidebar: Useful Actors for Rendezvous Models

A few particularly useful actors in Rendezvous models are shown below:

Barrier Ve
9 ResourcePool

Buffer
: (1

e Barrier. A barrier synchronization actor. This actor will accept inputs only when the
sending actors on all input channels are ready to send.

o Buffer. A FIFO buffer. This actor buffers data provided at the input, sending it to the
output when needed. The actor is willing to rendezvous with the output whenever the
buffer is not empty. It is willing to rendezvous with the input as long as the buffer is
not full. Inputs are delivered to the output in FIFO (first-in, first-out) order. You can
specify a finite or infinite capacity for the buffer.

e Merge. A conditional rendezvous. This actor merges any number of input sequences
onto one output sequence. It begins with a rendezvous with any input. When it re-
ceives an input, it will then rendezvous with the output. After successfully delivering
the input token to the output, it returns again to being willing to rendezvous with any
input.

e ResourcePool. A resource contention manager. This actor manages a pool of re-
sources, where each resource is represented by a token with an arbitrary value. Re-
sources are granted on the grant output port and released on the release input port.
These ports are both multiports, so resources can be granted to multiple users of the
resources, and released by multiple actors. The initial pool of resources is provided
by the initialPool parameter, which is an array of arbitrary type. At all times during
execution, this actor is ready to rendezvous with any other actor connected to its re-
lease input port. When such a rendezvous occurs, the token provided at that input
is added to the resource pool. In addition, whenever the resource pool is non-empty,
this actor is ready to rendezvous with any actor connected to its grant output port. If
there are multiple such actors, this will be a conditional rendezvous, and hence may
introduce nondeterminism into the model. When such an output rendezvous occurs,
the actor sends the first token in the resource pool to that output port and removes that
token from the resource pool.

146 Ptolemaeus, System Design

http://Ptolemy.org

4. PROCESS NETWORKS AND RENDEZVOUS

4.2.1 Multiway Rendezvous

In multiway rendezvous, an actor performs a rendezvous with multiple other actors at the
same time. Two mechanisms are provided by the Rendezvous director for this. First, if
an actor sends an output to multiple other actors, the communication forms a multiway
rendezvous. All destination actors must be ready to receive the token before any destina-
tion actor will receive it. And the sender will block until all destination actors are ready
to receive the token.

Example 4.4: The model in Figure 4.4 illustrates multiway rendezvous. In this
example, the Ramp is sending an increasing sequence of integers to the Display.
However, the transfer is constrained to occur only when the Sleep actor reads in-
puts, because in the Rendezvous domain, sending data to multiple recipients via a
relation is accomplished via a multiway rendezvous. The Sleep actor reads data,
then sleeps an amount of time given by its bottom input before reading the next
input data token. In this case, it will wait a random amount of time (given by the
Uniform random-number generator) between input readings. This has the side ef-
fect of constraining the transfers from the Ramp to the Display to occur with the
same random intervals.

Relation results
RendezvousDirector Ramp in multi-way

Displa
triggerp [rendezvous. pay
initN.

stepKl]

=]

Sleep

Uniform

trigger,
lowerBound
upperBound Random wait time.

Figure 4.4: An illustration of multiway rendezvous, where the timing of the com-
munication between the Ramp and the Display is controlled by the Sleep actor.
[online]

Ptolemaeus, System Design 147

http://ptolemy.org/systems/models/pn/WriteRegulator/index.html
http://Ptolemy.org

4.2. RENDEZVOUS

The Barrier actor (see box on page 146) also performs multiway rendezvous.

Example 4.5: The model in Figure 4.5 illustrates multiway rendezvous using the
Barrier actor. In this example, the two Ramp actors are sending increasing se-
quences of integers to the Display actors. Again, the transfer is constrained to
occur only when both the Barrier actor and the Sleep actor read inputs. Thus, a
multiway rendezvous between the two Ramp actors, the two Display actors, the
Barrier actor, and the Sleep actor constrains the two transfers to the Display actors

to occur simultaneously.

4.2.2 Conditional Rendezvous

In conditional rendezvous, an actor is willing to rendezvous with any one of several other
actors. Usually, this results in nondeterministic models.

RendezvousDirector

trigger
lowerBound|
upperBound

Ramp Display
trigger
e ‘]> ¢+ o=
Ramp2 Display2
trigger
ol]> o]

Barrier

Figure 4.5: An illustration of multiway rendezvous using the Barrier actor. [online]

148

Ptolemaeus, System Design

http://ptolemy.org/systems/models/pn/Barrier/index.html
http://Ptolemy.org

4. PROCESS NETWORKS AND RENDEZVOUS

Example 4.6: The model in Figure 4.6 illustrates conditional rendezvous. This
model uses the Merge actor (see box on page 146). The top Ramp actor will pro-
duce the sequence 0, 1, 2, 3,4, 5, 6, 7 on its output. The bottom Ramp will produce
the sequence -1, -2, -3, -4, -5, -6, -7, -8. The Display actor will display a nondeter-
ministic merging of these two sequences.

The example in Figure 4.6 includes a parameter SuppressDeadlockReporting with value
true. The Ramp actors starve the model by specifying a finite firing CountLimit, thus pro-
viding a stopping condition similar to the ones we would use with PN (see Section 4.1.2).
By default, the director will report the deadlock, but with the SuppressDeadlockReporting
parameter, it silently stops the execution of the model. This parameter indicates that the
deadlock is a normal termination and not an error condition.

Suppose that, unlike the previous example, we wish to deterministically interleave the
outputs of the two Ramp actors, alternating their outputs to get the sequence 0, -1, 1, -2,
2, ... One way to accomplish that, due to Arbab (2006), is shown in Figure 4.7. This model
relies on the fact that the input to the Buffer actor (see box on page 146) participates in a
multiway rendezvous with both instances of Ramp and the top channel of the Merge actor.
Since it has capacity one, it forces this rendezvous to occur before it provides an input to

RendezvousDirector

o SuppressDeadlockReporting: true

Rampl

trigger
init
step

firingCountLimit: 8

Ramp?2 Merge

Display

=

trigger
init
step

init: -1

step: -1
firingCountLimit: 8

Figure 4.6: An illustration of conditional rendezvous for nondeterministic merge.
[online]

Ptolemaeus, System Design 149

http://ptolemy.org/systems/models/pn/RendezvousMerge/index.html
http://Ptolemy.org

4.2. RENDEZVOUS

RendezvousDirector

o SuppressDeadlockReporting: true

Ramp1 Merge

trigger |
initE»
step 4
Barrier

firingCountLimit: 8

Display

=

Ramp?2

trigger |
initkJ
step K]

init: -1
step: -1
firingCountLimit: O

Buffer
apacity: 1

Figure 4.7: Anillustration of conditional rendezvous used to create a deterministic
merge. [online]

the bottom channel of the merge, and it blocks subsequent instances of this rendezvous
until after it has provided the bottom input to the Merge.

Although this model is extremely clever, it is using nondeterministic mechanisms to ac-
complish deterministic aims. In fact, it is easy to construct a much simpler model that
accomplishes the same goal without any nondeterministic mechanisms (see Exercise 7).

4.2.3 Resource Management

The conditional rendezvous mechanism provided by the Rendezvous director is ideally
suited to resource management problems, where actors compete for shared resources.
Generally, nondeterminism is acceptable and expected for such models. The Resource-
Pool actor (see box on page 146) is ideal for such applications.

Example 4.7: The model in Figure 4.8 illustrates resource management where a
pool (in this case containing only one resource) provides that resource nondeter-
ministically to one of two Sleep actors. The resource is represented by an integer
that initially has value 0. This value will be incremented each time the resource is

150 Ptolemaeus, System Design

http://ptolemy.org/systems/models/pn/RendezvousOrderedMerge/index.html
http://Ptolemy.org

4. PROCESS NETWORKS AND RENDEZVOUS

Displayl
RendezvousDirector
* E]
Sleepl Expressionl
ResourcePool 100L in+ 1
:Dinitial pool:
{0} Sleep2 Expression2
150L in+ 1)
Display2

. =

Figure 4.8: An illustration of conditional rendezvous for resource management.
[online]

used. The Sleep actor that gets the resource holds it for a fixed amount of time (100
and 150 ms, respectively). After this time, it releases the resource, sending it to an
Expression actor, which increments the value of the resource and then returns it to
the resource pool.

The input and output ports of the ResourcePool actor both realize a conditional ren-
dezvous. Hence, it is nondeterministic which Sleep actor will acquire the resource
when both are ready for the resource. Note that there is no assurance of fairness
in this system, and in fact it is possible for only one of the two Sleep actors to get
access to the resource.

4.3 Summary

The two domains described in this chapter, PN and Rendezvous, both execute each actor
in a model in its own thread. A PN model is deterministic as long as it does not include an
instance of NondeterministicMerge. The Rendezvous domain is not generally determinis-
tic. PN is particularly useful when models include actors that may block for indeterminate
amounts of time, and where we don’t wish to block the entire the model when this oc-
curs. Rendezvous is particularly useful for resource management problems, where there
is contention for limited resources, and for models where the timing of concurrent actions
needs to be synchronized.

Ptolemaeus, System Design 151

http://ptolemy.org/systems/models/pn/ResourcePool/index.html
http://Ptolemy.org

EXERCISES

Exercises

The purpose of these exercises is to develop some intuition about the process networks
model of computation and how programming with it differs from programming with an
imperative model.* For all of the following exercises, you should use the PN Director and
“simple” actors to accomplish the task. In particular, the following actors are sufficient:

Ramp and Const (in Sources)

Display and Discard (in Sinks)

BooleanSwitch and BooleanSelect (in FlowControl—BooleanFlowControl)
SampleDelay (in FlowControl—SequenceControl)

Comparator, Equals, LogicalNot, or LogicGate (in Logic)

Feel free to use any other actor that you believe to be “simple.” Also, feel free to use any
other actors, simple or not, for testing your composite actors, but stick to simple ones for
the implementation of the composite actors.

1. The SampleDelay actor produces initial tokens. In this exercise, you will create a
composite actor that consumes initial tokens, and hence be thought of as a negative
delay.

(a) Create a PN model containing a composite actor with one input port and one
output port, where the output sequence is the same as the input sequence ex-
cept that the first token is missing. That is, the composite actor should discard
the first token and then act like an identity function. Demonstrate by some
suitable means that your model works as required.

(b) Augment your model so that the number of initial tokens that are discarded is
given by a parameter of the composite actor. Hint: It may be useful to know
that the expression language® (see Chapter 13) includes a built-in function
repeat, where, for example,

“You may want to run vergil with the -pn option, which gives you a subset of Ptolemy II that is more than
adequate to do these exercises. To do this on the command line, simply type “vergil -—pn”. If you are
running Ptolemy II from Eclipse, then in the toolbar of the Java perspective, select Run Configurations. In
the Arguments tab, enter -pn.

SNote that you can easily explore the expression language by opening an ExpressionEvaluator window,
available in the [F'1i1e—New] menu. Also, clicking on Help in any parameter editor window will provide
documentation for the expression language.

152 Ptolemaeus, System Design

http://Ptolemy.org

4. PROCESS NETWORKS AND RENDEZVOUS

repeat (5, 1) = {1, 1, 1, 1, 1}

2. This problem explores operations on a stream of data that depend on the data in the
stream.

(a) Create a PN model containing a composite actor with one input port and one
output port, where the output sequence is the same as the input sequence ex-
cept that any consecutive sequence of identical tokens is replaced by just one
token with the same value. That is, redundant tokens are removed. Demon-
strate by some suitable means that your model works as required.

(b) Can your implementation run forever with bounded buffers? Give an argu-
ment that it can, or explain why there is no implementation that can run with
bounded buffers.

3. Create an implementation of an OrderedMerge actor using only “simple” PN ac-
tors. (Note that there is a Java implementation of OrderedMerge, which you should
not use, see box on page 143.) Your implementation should be a composite actor
with two input ports and one output port. Given any two numerically increasing
sequences of tokens on the input ports, your actor should merge these sequences
into one numerically increasing sequence without losing any tokens. If the two se-
quences contain tokens that are identical, then the order in which they come out
does not matter.

4. In Figure 4.9 is a model that generates a sequence of numbers known as the Ham-
ming numbers. These have the form 2"3™5*, and they are generated in numer-
ically increasing order, with no redundancies. This model can be found in the
PN demos (labeled as OrderedMerge). Can this model run forever with bounded
buffers? Why or why not?

For this problem, assume that the data type being used is unbounded integers, rather
than what is actually used, which is 32 bit integers. With 32 bit integers, the num-
bers will quickly overflow the representable range of the numbers, and wrap around
to negative numbers.

5. A common scenario in embedded systems is that multiple sensors provide data at
different rates, and the data must be combined to form a coherent view of the phys-
ical world. In general, this problem is called sensor fusion. The signal processing
involved in forming a coherent view from noisy sensor data can be quite sophisti-
cated, but in this exercise we will focus not on the signal processing, but rather on
the concurrency and logical control flow. At a low level, sensors are connected to

Ptolemaeus, System Design 153

http://Ptolemy.org

EXERCISES

PN Director This model, whose structure is due to Kahn and MacQueen, calculates
integers whose prime factors are only 2, 3, and 5, with no redundancies.
It uses the OrderedMerge actor, which takes two monotonically increasing
input sequences and merges them into one monotonically increasing
output sequence.

Scale5

SampleDelay

OrderedMerge

Scale3 SampleDelay3

OrderedMerge2

SampleDelay?2

The output is an ordered
sequence of integers of the
form 2An * 3Am * 5Ak,
where n, m and k are
non-negative integers.

Display

=]

Figure 4.9: Model that generates a sequence of Hamming numbers. [online]

embedded processors by hardware that will typically trigger processor interrupts,
and interrupt service routines will read the sensor data and store it in buffers in
memory. The difficulties arise when the rates at which the data are provided are
different (they may not even be related by a rational multiple, or may vary over
time, or may even be highly irregular).

Assume we have two sensors, SensorA and SensorB, both making measurements
of the same physical phenomenon that happens to be a sinusoidal function of time,
as follows:

VteR, z(t)=sin(2nt/10)

Assuming time ¢ is in seconds, this has a frequency of 0.1 Hertz. Assume further
that the two sensors sample the signal with distinct sampling intervals to yield the

154 Ptolemaeus, System Design

http://ptolemy.org/systems/models/pn/HammingNumbers/index.html
http://Ptolemy.org

4. PROCESS NETWORKS AND RENDEZVOUS

SDF Director Model of a sensor sensing a sinusoidal signal with .
the specified frequency and phase at the specified o frequency: 1.0
sampling frequency. This composite actor simulates o phase: 0.0
real-time behavior by sleeping the amount of time given by @ samplingPeriod: 0.1
the samplingPeriod (in seconds) before producing an output. @ noiseStandardDeviation: 0.1

mggerb

AddSubtract TrigFunction
+

AddSubtract2
Sleep output

i- >—l+ roundToInt(sampIAingPeriod *1000) H

Gaussian

mggerE /\

Figure 4.10: Model of a real-time sensor. [online]

following measurements:
VneZ, xa(n)=axz(nTy)=sin(2rnTy/10),

where T4 is sampling interval of SensorA. A similar set of measurements is taken
by SensorB, which samples with period T'5.

A model of such a sensor for use with the PN director of Ptolemy II is shown
in figure 4.10. You can create an instance of that sensor in Vergil by invoking
the [Graph—Instantiate Entity] menu command, and filling in the boxes as
follows:

class: SensorModel
location (URL): http://embedded.eecs.berkeley.edu/
concurrency/models/SensorModel . xml

Create two instances of the sensor in a Ptolemy II model with a PN director.

The sensor has some parameters. The frequency you should set to 0.1 to match the
equations above. The samplingPeriod you should set to 0.5 seconds for one of the
sensor instances, and 0.75 seconds for the other. You are to perform the following
experiments.°

You may find the actors described in the sidebars on pages 106, 107, and 119 useful.

Ptolemaeus, System Design 155

http://ptolemy.org/systems/models/pn/SensorModel/index.html
http://Ptolemy.org

EXERCISES

(a) Connect each sensor instance to its own instance of the SequencePlotter. Exe-
cute the model. You will likely want to change the parameters of the Sequen-
cePlotter so that fillOnWrapup is £alse, and you will want to set the X Range
of the plot to, say, “0.0, 50.0” (do this by clicking on the second button from
the right at the upper right of each plot). Describe what you see. Do the two
sensors accurately reflect the sinusoidal signal? Why do they appear to have
different frequencies?

(b) A simple technique for sensor fusion is to simply average sensor data. Con-
struct a model that averages the data from the two sensors by simply adding
the samples together and multiplying by 0.5. Plot the resulting signal. Is this
signal an improved measurement of the signal? Why or why not? Will this
model be able to run forever with bounded memory? Why or why not?

(c) The sensor fusion strategy of averaging the samples can be improved by nor-
malizing the sample rates. For the sample periods given, 0.5 and 0.75, find
a way to do this in PN. Comment about whether this technique would work
effectively if the sample periods did not bear such a simple relationship to one
another. For example, suppose that instead of 0.5 seconds, the period on the
first sensor was 0.500001.

(d) When sensor data is collected at different rates without a simple relationship,
one technique that can prove useful is to create time stamps for the data and to
use those time stamps to improve the measurements. Construct a model that
does this, with the objective simply of creating a plot that combines the data
from the two sensors in a sensible way.

6. In this problem, we explore how to use the mechanisms of Section 4.1.2 to de-

156

terministically halt the execution of a PN model. Specifically, in each case, we
consider a Source actor feeding a potentially infinite sequence of data tokens to a
Display actor. We wish to make this sequence finite with a specific length, and we
wish to ensure that the Display actor displays every element of the sequence.

(a) Suppose that you have a Source actor with one output port and no parameters
whose process iterates forever producing outputs. Suppose that its outputs
are read by a Display actor, which has one input port and no output ports.
Find a way to use the Stop actor to deterministically stop the execution, or
argue that there is no way to do so. Specifically, the Source actor should
produce a specified number of outputs, and every one of these outputs should
be consumed and displayed by the Display actor before execution halts.

Ptolemaeus, System Design

http://Ptolemy.org

4. PROCESS NETWORKS AND RENDEZVOUS

(b) Most Source actors in Ptolemy II have a firingCountLimit parameter that lim-
its the number of outputs they produce. Show that this can be used to deter-
ministically halt the execution without the help of a Stop actor.

(c) Many Source actors in Ptolemy II have trigger input ports. If these inputs are
connected, then the actor process will read a value from that input port before
producing each output. Show how to use this mechanism, with or without
the Stop actor, to achieve our goal of deterministically halting execution, or
argue that it is not possible to do so. Again, the Source should produce a pre-
specified amount of data, and the Display should consume and display all of
that data. You may use Switch, Select, or any other reasonably simple actor.
Be sure to explain each actor you use, unless you are sure it is exactly the
actor provided in the Vergil library.

7. Figure 4.7 shows a model that deterministically interleaves the outputs of two Ramp
actors. That model uses a nondeterministic mechanism (the conditional rendezvous
of the Merge actor), and then carefully regulates the nondeterminism using a mul-
tiway rendezvous and a Buffer actor. The end result is deterministic. However, the
same objective (deterministically interleaving two streams in an alternating, round-
robin fashion) can be accomplished with purely deterministic mechanisms. Con-
struct a Rendezvous model that does this. Hint: Your model will probably work
unchanged with using the PN or SDF directors instead of Rendezvous.

Ptolemaeus, System Design 157

http://Ptolemy.org

