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11. PTERA: AN EVENT-ORIENTED MODEL OF COMPUTATION

FSMs and DE models, covered in Chapters 6 and 7, focus on events and the causal rela-
tionships between those events. An event is atomic, conceptually occurring at an instant
in time. An event-oriented model defines a collection of events in time. Specifically, it
generates events, typically in chronological order, and defines how other events are trig-
gered by those events. If there are externally provided events, the process also defines
how those events may trigger additional events. In the DE domain, the timing of events is
controlled by timed sources and delay actors (see sidebars on pages 241 and 243). Models
in the FSM domain primarily react to externally provided events, but may also generate
timed events internally using the timeout function in a guard (see Table 6.2 on page 196).

There are many ways other ways to specify event-oriented models (see sidebar on page
396). This chapter describes a novel one called Ptera (for Ptolemy event relationship
actors), first given by Feng et al. (2010). Ptera is designed to interoperate well with other
Ptolemy II models of computation, to provide model hierarchy, and to handle concurrency
in a deterministic way.

11.1 Syntax and Semantics of Flat Models

A flat (i.e., non-hierarchical) Ptera model is a graph containing vertices connected with
directed edges, such as shown in Figure 11.1, which contains two vertices and one edge.
A vertex contains an event, and a directed edge represents the conditions under which
one event will cause another event to occur. Vertices and edges can be assigned a range
of attributes and parameters, as described later in this chapter.

Figure 11.1: A simple Ptera model with two events. [online]
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11.1. SYNTAX AND SEMANTICS OF FLAT MODELS

In a hierarchical Ptera model, vertices can also represent submodels, which may be other
Ptera models, FSMs, actor models using some other Ptolemy II director, or even custom
Java code. The only requirement is that their behavior must be defined to conform with
the actor abstract semantics, as explained below.

Sidebar: Notations, Languages for Event-Oriented Models

Many notations and languages have been developed for describing event-oriented
models. A popular one today is the UML activity diagram, a derivative of the clas-
sical flowcharts that date back to the 1960s (see http://en.wikipedia.org/
wiki/Activity_diagram). In an activity diagram, a block represents an activity,
and an arrow from one activity to another designates the causality relationship between
the two. A diamond-shaped activity tests for a condition, and causes the activity on one
of its outgoing branches to occur. Activity diagrams include split and join activities,
which spawn multiple concurrent activities, and wait for their completion. As is com-
mon with UML notations, the semantics of concurrency (and even of activities) is not
clear. Activities may be interpreted as events, in which case they are atomic, or they may
take time, in which case the triggering of an activity and its completion are events. The
meaning of an activity diagram also becomes unclear when connections are made into
and out of concurrent activities, and the model of time is not well defined. Nevertheless,
activity diagrams are often easy to understand intuitively, and hence prove useful as a
way to communicate event-oriented models.

Another relevant notation is the business process model and notation (BPNL),
which, like UML, is now maintained and developed by the OMG. BPNL makes a dis-
tinction between events and activities, allowing both in a diagram. It also offers a form
of hierarchy and concurrency, with rather complicated interaction and synchronization
mechanisms.

A third related notation is control flow graphs, introduced by Allen (1970), which
today are widely used in compiler optimizations, program analysis tools, and electronic
design automation. In a CFG, the nodes in a graph represent basic blocks in a program,
which are sequences of instructions with no branches or flow control structures. These
basic blocks are treated as atomic, and hence can be considered events. Connections
between basic blocks represent the possible flow control sequences that a program may
follow.
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11. PTERA: AN EVENT-ORIENTED MODEL OF COMPUTATION

Sidebar: Background of Ptera

Ptera is derived from event graphs, given by Schruben (1983). Blocks in an event
graph (which he called vertices) contain events, which can include actions to be per-
formed when that event is processed. Connections between events (called “directed
edges”) represent scheduling relations that can be guarded by Boolean and temporal ex-
pressions. Event graphs are timed, and time delays can be associated with scheduling
relations. Each event graph has an event queue, although it is not explicitly shown in the
visual representation. In multi-threaded execution, multiple event queues may be used,
in principle. In each step of an execution, the execution engine removes the next event
from the event queue and processes it. The event’s associated actions are executed, and
additional events specified by its scheduling relations are inserted into the event queue.

The original event graphs do not support hierarchy. Schruben (1995) gives two ap-
proaches for supporting hierarchy. One is to associate submodels with scheduling rela-
tions, in which the output of a submodel is a number used as the delay for the scheduling
relation. Another approach is to associate submodels with events instead of scheduling
relations (Som and Sargent, 1989). Processing such an event causes the unique start
event in the submodel to be scheduled, which in turn may schedule further events in the
submodel. When a predetermined end event is processed, the execution of the submodel
terminates, and the event that the submodel is associated with is considered processed.
Buss and Sanchez (2002) report a third attempt to support hierarchy, in which a listener
pattern is introduced as an extra gluing mechanism for composing event graphs.

Ptera is based on event graphs, but extends them to support heterogeneous, hierarchi-
cal modeling. Composition of Ptera models forms a hierarchical model, which can be
flattened to obtain an equivalent model without hierarchy. Ptera models conform with
the actor abstract semantics, which permits them to contain or be contained by other
types of models, thus enabling hierarchical heterogeneous designs. Ptera models can be
freely composed with other models of computation in Ptolemy II.

Ptera models include an externally visible interface with parameters, input and output
ports. Changes to parameters and the arrival of data at input ports can potentially trigger
events within the Ptera model, in which case it becomes an actor. In addition, event
actions can be customized by the designer with programs in an imperative language
(such as Java or C) conforming to a protocol.
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11.1. SYNTAX AND SEMANTICS OF FLAT MODELS

11.1.1 Introductory Examples

Example 11.1: An example Ptera model is shown in Figure 11.1. This model
includes two vertices (events), Init and Increase, and one variable, P, with an initial
value of 0. When the model is executed, this variable may be updated with new
values. Init is an initial event (its initial parameter is set to true), as indicated by a
filled rounded rectangle with a thick border.

At the start of execution, all initial events are scheduled to occur at model time 0. (As
discussed later, even when events occur at the same time conceptually, there is still a
well-defined order of execution.) The model’s event queue holds a list of scheduled event
instances. An event instance is removed from the event queue and processed when the
model time reaches the time at which the event is scheduled to occur (i.e., at the time
stamp of that event).

Ptera events may be associated with actions, which are shown inside brackets in the
vertex.

Example 11.2: In Figure 11.1, for example, Init specifies the action “P = 0”,
which sets P to 0 when Init is processed. The edge (connection) from the Init
event to the Increase event is called a scheduling relation. It is guarded by the
Boolean expression “P < 1” (meaning that the transition will only be taken when
this condition is met) and has a delay of 1.0 units of time (represented by the δ
symbol). After the Init event is processed, if P’s value is less than 1 (which is true
in this case, since P is initially set to 0), then Increase will be executed at time 1.0.
When Increase is processed at time 1.0, its action “P = P + 1” is executed and P’s
value is increased to 1.

After processing the Increase event, the event queue is empty. Since no more events
are scheduled, the execution terminates.

In this simple example, there is at most one event in the event queue (either Init or In-
crease) at any time. In general, however, an unbounded number of events can be sched-
uled in the event queue.
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11. PTERA: AN EVENT-ORIENTED MODEL OF COMPUTATION

Figure 11.2: A model with multiple events in the event queue. [online]

Example 11.3: Figure 11.2 shows a slightly more complex Ptera model that re-
quires an event queue of size greater than 1. In this model, the Init event schedules
IncreaseA to occur after a 1.0-unit time delay, and IncreaseB to occur after a 2.0-
unit delay. The guards of the two scheduling relations from Init have the default
value “true,” and are thus not shown in the visual representation. When IncreaseA is
processed, it increases variable A by 1 and reschedules itself, creating another event
instance on the event queue, looping until A’s value reaches 10. (The model-time
delay δ on the scheduling relation from A to itself is also hidden, because it takes
the default value “0.0,” which means the event is scheduled at the current model
time, but the next microstep.) Similarly, IncreaseB repeatedly increases variable B
at the current model time until B’s value reaches 10.

11.1.2 Event Arguments

Like a C function, an event may include a list of formal arguments, where each argument
is assigned a name and type.
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11.1. SYNTAX AND SEMANTICS OF FLAT MODELS

Figure 11.3: A model with arguments for the events and a canceling relation.
[online]

Example 11.4: Figure 11.3 modifies Figure 11.2 by adding arguments k of type
int to events IncreaseA and IncreaseB. These arguments are assigned values by the
incoming relations and specify the increments to variables A and B. (The dashed
edge in the figure is a canceling relation, which will be discussed in the next sub-
section.)

Each scheduling relation pointing to an event with arguments must specify a list of expres-
sions in its arguments attribute. Those expressions are used to specify the actual values
of the arguments when the event instance is processed. In this example, all scheduling
relations pointing to IncreaseA and IncreaseB specify “{1}” in their argument attributes,
meaning that k should take value 1 when those events are processed. Argument values
can be used by event actions, guards, and delays.
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11. PTERA: AN EVENT-ORIENTED MODEL OF COMPUTATION

11.1.3 Canceling Relations

A canceling relation is represented as a dashed line (edge) between events, and can be
guarded by a Boolean expression. It cannot have any delays or arguments. When an
event with an outgoing canceling relation is processed, if the guard is true and the target
event has been scheduled in the event queue, the target event instance is removed from
the event queue without being processed. In other words, a canceling relation cancels a
previously scheduled event. If the target event is scheduled multiple times, i.e. multiple
event instances are in the event queue, then the canceling relation causes only the first
instance to be removed. If the target event is not scheduled, the canceling relation has no
effect.

Example 11.5: Figure 11.3 provides an example of a canceling relation. Process-
ing the last IncreaseA event (at time 1.0) causes IncreaseB (scheduled to occur at
time 2.0 by the Init event) to be cancelled. As a result, variable B is never increased.

It should be noted that canceling relations do not increase expressiveness. In fact, a model
with canceling relations can always be converted into a model without canceling relations,
as is shown by Ingalls et al. (1996). Nonetheless, they can yield more compact and un-
derstandable models.

11.1.4 Simultaneous Events

Simultaneous events are defined as multiple event instances in an event queue that are
scheduled to occur at the same model time.

Example 11.6: For example, in Figure 11.3, if both δs are set to 1.0, the model is
as shown in Figure 11.4. Instances of IncreaseA and IncreaseB scheduled by Init
become simultaneous events. Moreover, although multiple instances of IncreaseA
occur at the same model time, they occur at different microsteps in superdense
time, and they do not coexist in the event queue, so instances of IncreaseA are not
simultaneous.
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11.1. SYNTAX AND SEMANTICS OF FLAT MODELS

Figure 11.4: A model with simultaneous events. [online]

In general, it is a model checking (Clarke et al., 2000) problem to detect simultaneous
events.

11.1.5 Potential Nondeterminism

When there are simultaneous events, there is potential nondeterminism introduced by the
ambiguous order of event processing.

Example 11.7: For example, in Figure 11.3, what is the final value of the variables
A and B? Suppose that all instances of IncreaseA are processed before any instance
of IncreaseB. In that case, the final value of B will be 0. If instead, all instances of
IncreaseB are processed before any instance of IncreaseA, then the final value of B
will be 10.

Table 11.1 shows four possible execution traces that seem consistent with the model
definition. The columns are arranged from left to right in the order of event pro-
cessing. These traces include the case where IncreaseA always occurs before In-
creaseB, where IncreaseB always occurs before IncreaseA, and where IncreaseA
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11. PTERA: AN EVENT-ORIENTED MODEL OF COMPUTATION

1) IncreaseA is always scheduled before IncreaseB:
Time 0.0 1.0 1.0 . . . 1.0
Event Init IncreaseA IncreaseA . . . IncreaseA
A 0 1 2 . . . 10
B 0 0 0 . . . 0

2) IncreaseB is always scheduled before IncreaseA:
Time 0.0 1.0 1.0 . . . 1.0 1.0
Event Init IncreaseB IncreaseB . . . IncreaseB IncreaseA
A 0 0 0 . . . 0 1
B 0 1 2 . . . 10 10
Time 1.0 . . . 1.0
Event IncreaseA . . . IncreaseA
A 2 . . . 10
B 10 . . . 10

3) IncreaseA and IncreaseB are alternating, starting with IncreaseA:
Time 0.0 1.0 1.0 1.0 1.0 . . .
Event Init IncreaseA IncreaseB IncreaseA IncreaseB . . .
A 0 1 1 2 2 . . .
B 0 0 1 1 2 . . .
Time 1.0 1.0 1.0
Event IncreaseA IncreaseB IncreaseA
A 9 9 10
B 8 9 9

4) IncreaseA and IncreaseB are alternating, starting with IncreaseB:
Time 0.0 1.0 1.0 1.0 1.0 . . .
Event Init IncreaseB IncreaseA IncreaseB IncreaseA . . .
A 0 0 1 1 2 . . .
B 0 1 1 2 2 . . .
Time 1.0 1.0 1.0 1.0
Event IncreaseB IncreaseA IncreaseB IncreaseA
A 8 9 9 10
B 9 9 10 10

Table 11.1: Four possible execution traces for the model in Figure 11.4.
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and IncreaseB are alternating in two different ways. There are many other possible
execution traces.

The traces end with different final values of A and B. The last instance of IncreaseA,
which increases A to 10, always cancels the next IncreaseB in the event queue, if
any. There are 10 instances of IncreaseB in total, and without a well-defined order,
the one that is cancelled can be any one of them.

To avoid these nondeterministic execution results, we use the strategies discussed in the
next sections.

11.1.6 LIFO and FIFO Policies

Ptera models can specify a LIFO (last in, first out) or FIFO (first in, first out) policy to
control how event instances are accessed in the event queue and to help ensure determin-
istic outcomes. With LIFO (the default), the event scheduled later is processed sooner.
The opposite occurs with FIFO. The choice between LIFO and FIFO is specified by a
parameter LIFO in the Ptera model that defaults to value true.

If we use a LIFO policy to execute the model in Figure 11.4, then execution traces 3 and
4 in Table 11.1 are eliminated as possible outcomes. This leaves two possible execution
traces, depending on whether IncreaseA or IncreaseB is processed first (that choice will
depend on scheduling rules discussed later).

Example 11.8: Suppose IncreaseA is processed first. According to the LIFO pol-
icy, the second instance of IncreaseA scheduled by the first one should be processed
before IncreaseB, which is scheduled by Init. The second instance again schedules
the next one. In this way, processing of instances of IncreaseA continues until A’s
value reaches 10, when IncreaseB is cancelled. That leads to execution trace 1.

If instead IncreaseB is processed first, all 10 instances of IncreaseB are processed
before IncreaseA. That yields execution trace 2.

With a FIFO policy, however, instances of IncreaseA and IncreaseB are interleaved, re-
sulting in execution traces 3 and 4 in the table.
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11. PTERA: AN EVENT-ORIENTED MODEL OF COMPUTATION

Figure 11.5: A scenario where event E0 schedules E1 and E2 after the same
delay.

In practice, LIFO is more commonly used because it executes a chain of events; one
event schedules the next without delay. This approach is atomic in the sense that no
event that is in the chain interferes with the processing of events in the chain. This is
convenient for specifying workflows where some tasks need to be finished sequentially
without intervention.

11.1.7 Priorities

For events that are scheduled by the same event with the same delay δ, priority numbers
can be assigned to the scheduling relations to force an ordering of event instances. A
priority is an integer (which can be negative) that defaults to 0.

Example 11.9: Simultaneous instances of E1 and E2 in Figure 11.5 are scheduled
by the scheduling relations r1 and r2 (with delay 0.0, since δ is not shown). If r1
has a higher priority (i.e., a smaller priority number) than r2, then E1 is processed
before E2, and vice versa.

Example 11.10: In Figure 11.4, if the priority of the scheduling relation from
Init to IncreaseA is -1, and the priority of that from Init to IncreaseB is 0, then the
first instance of IncreaseA is processed before IncreaseB. Execution traces 2 and
4 in Table 11.1 would not be possible. On the other hand, if the priority of the
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scheduling relation from Init to IncreaseA is 1, then the first instance of IncreaseB
is processed earlier, making execution traces 1 and 3 impossible.

11.1.8 Names of Events and Scheduling Relations

Every event and every scheduling relation in a Ptolemy II Ptera model has a name. In
Figure 11.4, for example, Init, IncreaseA, and IncreaseB are the names of the events.
These names may be assigned by the builder of the model (see Figure 2.15). Vergil will
assign a default name, and at each level of a hierarchical model, the names are unique.
Ptera uses these names to assign an execution order for simultaneous events when the
priorities of their scheduling relations are the same.

In Figure 11.5, if r1 and r2 have the same delay δ and the same priority, then we use
names to determine the order of event processing.∗ The order of E1 and E2 is determined
by first comparing the names of the events. In a flat model, these names are guaranteed to
be different, so they have a well-defined alphabetical order. The earlier one in this order
will be scheduled first.

In a hierarchical model (discussed below), it is possible for simultaneous events to have
the same name. In that case, the names of the scheduling relations are used instead. These
are not usually shown in the visual representation, but can be determined by hovering over
a scheduling relation with the cursor.

11.1.9 Designs with Atomicity

In some applications, designers need to ensure atomic execution of a sequence of events
in the presence of other simultaneous events. That is, the entire sequence should be pro-
cessed before any other simultaneous event is processed. There are two design patterns
shown in Figure 11.6 that can be used to ensure atomicity without requiring designers
to explicitly control critical sections (as would be the case for imperative programming
languages).

∗It would be valid in a variant of Ptera to either choose nondeterministically or process the two events
concurrently, but this could lead to nondeterminism, so in our current implementation, we have chosen to
define the order.
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The design pattern in Figure 11.6(a) is used to sequentially and atomically perform a
number of tasks, assuming the LIFO policy is chosen. Even if other events exist in the

a) Sequentially perform all tasks

b) Sequentially perform tasks until G is satisfied

Figure 11.6: Two design patterns for controlling tasks.
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model (which are not shown in the figure), those events cannot interleave with the tasks.
As a result, intermediate state between tasks is not affected by other events.

The final event, End, is a special class of event that removes all events in the queue. Final
events are used to force termination even when there are events remaining in the event
queue. They are shown as filled vertices with double-line borders.

The design pattern in Figure 11.6(b) is used to perform tasks until the guard G is satisfied.
This pattern again assumes a LIFO policy. After the Start event is processed, all tasks are
scheduled. In this case, the first one to be processed is Task1, because of the alphabetical
ordering. After Task1, if G is true, End is processed next, which terminates the execution.
If G is not true, then Task2 is processed. The processing of tasks continues until either G
becomes true at some point, or all tasks are processed but G remains false.

11.1.10 Application-Oriented Examples

In this section, we describe two simple Ptera models that have properties that are similar
to many systems of interest. We begin with a simple multiple-server, single-queue system:
a car wash.

Example 11.11: In this example, multiple car wash machines share a single queue.
When a car arrives, it is placed at the end of the queue to wait for service. The
machines serve cars in the queue one at a time in a first-come-first-served manner.
The car arrival intervals and service times are generated by stochastic processes
assigned to the edges.

The model shown in Figure 11.7 is designed to analyze the number of available
servers and the number of cars waiting over an elapsed period of time. The Servers
variable is initialized to 3, which is the total number of servers. The Queue variable
starts with 0 to indicate that there are no cars waiting in the queue at the beginning.
Run is an initial event. It schedules the Terminate final event to occur after the
amount of time defined by a third variable, SimulationTime.

The Run event also schedules the first instance of the Enter event, causing the first
car arrival to occur after delay “3.0 + 5.0 * random(),” where random() is a function
that returns a random number in [0, 1) with a uniform distribution. When Enter
occurs, its action increases the queue size in the Queue variable by 1. The Enter
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Sidebar: Model Execution Algorithm

We operationally define the semantics of a flat model with an execution algorithm. In
the algorithm, symbol Q refers to the event queue. The algorithm terminates when Q
becomes empty.

1. Initialize Q to be empty

2. For each initial event e in the ≤e order

1. Create an instance ie
2. Set the time stamp of ie to be 0
3. Append ie to Q

3. While Q is not empty

(a) Remove the first ie from Q, which is an instance of some event e

(b) Execute the actions of e

(c) Terminate if e is a final event

(d) For each canceling relation c from e

From Q, remove the first instance of the event that c points to, if any

(e) Let R be the list of scheduling relations from e

(f) Sort R by delays, priorities, target event IDs, and IDs of the scheduling relations in
the order of significance

(g) Create an empty queue Q′

(h) For each scheduling relation r in R whose guard is true
1. Evaluate parameters for the event e′ that r points to
2. Create an instance ie′ of e′ and associate it with the parameters
3. Set the time stamp of ie′ to be greater than the current model time by r’s delay
4. Append ie′ to Q′

(i) Create Q′′ by merging Q′ with Q and preserving the order of events originally in
Q′ and Q. For any i′ ∈ Q′ and i ∈ Q, i′ appears before i in Q′′ if and only if the
LIFO policy is used and the time stamp of i′ is less than or equal to that of i, or the
FIFO policy is used and the time stamp of i′ is strictly less than that of i.

(j) Let Q be Q′′
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event schedules itself to occur again. It also schedules the Start event if there are
any available servers. The LIFO policy guarantees that both Enter and Start will
be processed atomically, so it is not possible for the number of servers available to
be changed by any other event in the queue after that value is tested by the guard of
the scheduling relation from Enter to Start. In other words, once a car has entered
the queue and has started being washed, its washing machine cannot be taken by
another car.

The Start event simulates car washing by decreasing the number of available servers
and the number of cars in the queue. The service time is “5.0 + 20.0 * random().”
After that amount of time, the Leave event occurs, which represents the end of
service for that car. Whenever a car leaves, the number of available servers must
be greater than 0 (since at least one machine will become available at that point),
so the Leave event immediately schedules Start if there is at least one car in the
queue. Due to atomicity provided by the LIFO policy, the model will test the queue

Figure 11.7: A model that simulates a car wash system. [online]
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11. PTERA: AN EVENT-ORIENTED MODEL OF COMPUTATION

size and decrement its value during the subsequent Start event without allowing
interruption by any other event in the queue.

The Terminate event, which halts execution, is prescheduled at the beginning of
execution. Without this event, the model’s execution would not terminate because
the event queue would never be empty.

11.2 Hierarchical Models

Hierarchy can mitigate model complexity and improve reusability. Hierarchical multi-
modeling enables combining multiple models of computation, each at its own level of
the hierarchy. Here, we show how to construct hierarchical Ptera models. In the next
section, we will show how to hierarchically combine Ptera models with other models of
computation, such as those described in preceding chapters.

Example 11.12: Consider a car wash with two stations, one of which has one
server, and one of which has three serves, where each station has its own queue.
Figure 11.8 shows a hierarchical modification of Figure 11.7 with two such stations.
Its top level simulates an execution environment, which has a Run event as the only
initial event, a Terminate event as a final event, and a Simulate event associated with
a submodel. The submodel simulates the car wash system with the given number
of servers.

The two scheduling relations pointing to the Simulate event cause the submodel to
trigger two instances of the Init event in the submodel’s local event queue. These
represent the start of two concurrent simulations, one with three servers (as indi-
cated by the second argument on the left scheduling relation) and the other with one
server. The priorities of the initializing scheduling relations are not explicitly spec-
ified. Because the two simulations are independent, the order in which they start
has no observable effect. In fact, the two simulations may even occur concurrently.

Parameter i (the first argument on the two scheduling relations into Init) distin-
guishes the two simulations. Compared to the model in Figure 11.7, the Servers
variable in the submodel has been extended into an array with two elements.
Servers(0) refers to the number of servers in simulation i = 0, while Servers(1)
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is used in simulation i = 1. The Queue variable is extended in the same way. Each
event in the submodel also takes a parameter i (which specifies the simulation num-
ber) and sends it to the next events that it schedules. This ensures that the events
and variables in one simulation are not affected by those in the other simulation,
even though they share the same model structure.

It is conceptually possible to execute multiple instances of a submodel by initializing it
multiple times. However, the event queue and variables would not be copied. Therefore,

Figure 11.8: A hierarchical model that simulates a car wash system with two
settings. [online]
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the variables must be defined as arrays and an extra index parameter (i in this case) must
be provided to every event.

Actor-oriented classes (see Section 2.6) provide an alternative approach to creating mul-
tiple executable instances of a submodel. The submodel can be defined as a class, with
multiple instances executing in parallel.

11.3 Heterogeneous Composition

Ptera models can be composed with models built using other models of computation.
Examples of such compositions are described in this section.

11.3.1 Composition with DE

Like Ptera models, discrete event (DE) models (discussed in Chapter 7) are based on
events. But the notation is DE models is quite different. In DE, the components in the
model, actors, consume input events and produce output events. In Ptera, an entire Ptera
model may react to input events by producing output events, so Ptera submodels make
natural actors in DE models. In fact, combinations of DE and Ptera can give nicely archi-
tected models with good separation of concerns.

Example 11.13: In Figure 11.8, the modeling of arrivals of cars is intertwined
with the model of the servicing of cars. It is not easy, looking at the model, to sep-
arate these two. What if we wanted to, say, change the model so that cars arriving
according to a Poisson process? Figure 11.9 shows a model that uses a DE director
at its top level and separates the model of car arrivals from the servicing of the cars.
This model has identical behavior to that in Figure 11.8, but it would be easy to
replace the CarGenerator with a PoissonClock actor.

In Figure 11.9, in the CarGenerator, the Init event schedules the first Arrive event
after a random delay. Each Arrive event schedules the next one. Whenever it is
processed, the Arrive event generates a car arrival signal and sends it via the output
port using the assignment “output = 1,” where “output” is the port name. In this
case, the value 1 assigned to the output is unimportant, since only the timing of the
output event is of interest.
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Figure 11.9: A car wash model using DE and Ptera in a hierarchical composition.
[online]

Figure 11.9 also shows the internal design of Servers. It is similar to the previous
car wash models, except that there is an extra carInput port to receive DE events

414 Ptolemaeus, System Design

http://ptolemy.org/systems/models/ptera/CarWashDE_Ptera/index.html
http://Ptolemy.org


11. PTERA: AN EVENT-ORIENTED MODEL OF COMPUTATION

representing car arrival signals from the outside and the Enter event is scheduled
to handle inputs via that port. No assumption is made in the Servers component
about the source of the car arrivals. At the top level, the connection from CarGen-
erator’s output port to Servers’ input port makes explicit the producer-consumer
relationship, and leads to a more modular and reusable design.

The TimedPlotter shows the number of servers available and the number of waiting
cars waiting in the queue over time. In the particular trace shown in the figure, the
queue builds up to five cars over time.

A Ptera model within a DE model will execute either when an input event arrives from
the DE model or when a timeout δ expires on a scheduling relation.

Example 11.14: In the Servers model in Figure 11.9, the relation from Init to Enter
is labeled with δ: Infinity, which means the timeout will never expire. It is
also labeled with triggers: carInput, which means that the Enter event will
be scheduled to occur when an event arrives from the DE model on the carInput
port.

A scheduling relation may be tagged with a triggers attribute that specifies port names
separated by commas. This can be used to schedule an event in a Ptera submodel to
react to external inputs. The attribute is used in conjunction with the delay δ to deter-
mine when the event is processed. Suppose that in a model the triggers parameter is
“p1, p2, · · · , pn.” The event is processed when the model time is δ-greater than the time
at which the scheduling relation is evaluated or one or more DE events are received at any
of p1, p2, · · · , pn. To schedule an event that indefinitely waits for input, Infinity may
be used as the value of δ.

To test whether a port actually has an input, a special Boolean variable whose name is
the port name followed by string “ isPresent’’ can be accessed, similarly to FSMs. To
refer to the input value available at a port, the port name may be used in an expression.
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Example 11.15: The Enter event in Figure 11.9 is scheduled to indefinitely wait
for DE events at the carInput port. When an event is received, the Enter event is
processed ahead of its scheduled time and its action increases the queue size by 1.
In that particular case, the value of the input is ignored.

To send DE events via output ports, assignments can be written in the action of an event
with port names on the left hand side and expressions that specify the values on the right
hand side. The time stamps of the outputs are always equal to the model time at which
the event is processed.

11.3.2 Composition with FSMs

Ptera models can also be composed with untimed models such as FSMs. When a Ptera
model contains an FSM submodel associated with an event, it can fire the FSM when that
event is processed and when inputs are received at its input ports. FMSs are described in
Chapter 6.

Example 11.16: To demonstrate composition of Ptera and FSM, consider the case
where drivers may avoid entering a queue if there are too many waiting cars. This
can lead to a lower arrival rate (or equivalently, longer average interarrival times).
Conversely, if there are relatively few cars in the queue, the driver would always
enter the queue, resulting in a higher arrival rate.

The model is modified for this scenario and shown in Figure 11.10. At the top
level, the queueOutput port of Servers (whose internal design is the same as Fig-
ure 11.9) is fed back to the queueInput port of CarGenerator. The FSM submodel
in Figure 11.10 refines the Update event in CarGenerator. It inherits the ports from
its container, allowing the guards of its transitions to test the inputs received at the
queueInput port. In general, actions in an FSM submodel can also produce data via
the output ports.

At the time when the Update event of CarGenerator is processed, the FSM sub-
model is set to its initial state. When fired the first time, the FSM moves into the
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Fast state and sets the minimum interarrival time to be 1.0. Subsequently, the in-
terarrival time is generated using the expression “1.0 + 5.0 * random().” Notice
that the min variable is defined in CarGenerator, and the scoping rules enable the
contained FSM to read from and write to that variable.

When a Ptera model receives input at a port, all the initialized submodels are fired, re-
gardless of the models of computation those submodels use.

The converse composition, in which Ptera submodels are refinements of states in an FSM,
is also interesting. By changing states, the submodels may be disabled and enabled, and
execution can switch between modes. That style of composition is provided by modal
models, described in Chapter 8.

11.4 Summary

Ptera provides an alternative to FSMs and DE models, offering a complementary ap-
proach to modeling event-based systems. Ptera models are stylistically different from
either. Components in the model are events, vs. states in FSMs and actors in DE models.
The scheduling relations that connect events represent causality, where one event causes
another under specified conditions (guard expressions, timeouts, and input events).
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Figure 11.10: A car wash model using DE, Ptera and FSM in a hierarchical com-
position. [online]
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