©@®O
This is a chapter from the book
System Design, Modeling, and Simulation using Ptolemy II

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported
License. To view a copy of this license, visit:

http://creativecommons.org/licenses/by-sa/3.0/,

or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View,
California, 94041, USA. Permissions beyond the scope of this license may be available
at:

http://ptolemy.org/books/Systems.

First Edition, Version 1.0

Please cite this book as:

Claudius Ptolemaeus, Editor,
System Design, Modeling, and Simulation using Ptolemy II, Ptolemy.org, 2014.
http://ptolemy.org/books/Systems.

http://creativecommons.org/licenses/by-sa/3.0/
http://ptolemy.org/books/Systems
http://ptolemy.org/books/Systems

12

Software Architecture

Christopher Brooks, Joseph Buck, Elaine Cheong, John S. Davis 11, Patricia
Derler, Thomas Huining Feng, Geroncio Galicia, Mudit Goel, Soonhoi Ha,
Edward A. Lee, Jie Liu, Xiaojun Liu, David Messerschmitt, Lukito Muliadi,
Stephen Neuendorffer, John Reekie, Bert Rodiers, Neil Smyth, Yuhong Xiong,

Haiyang Zheng
Contents
12.1 Package Structure v v v v v v v v v vt e et v ot oo 421
12.2 The Structureof Models 423
12.3 Actor SemanticsandtheMoC 427
12.3.1 Execution Control 430
12.3.2 Communication 432
Sidebar: Why prefire, fire, and postfire? 433
1233 Time e e 435
12.4 Designing ActorsinJava 437
12.4.1 Ports e e 441
12.4.2 Parameters i e 444
12.4.3 Coupled Port and Parameter 446
12,5 SUMMALY .« & v v v v v vt e et e o o oot oo s oot e oo 446

420

12. SOFTWARE ARCHITECTURE

This chapter provides an overview of the software architecture of Ptolemy II to enable
the reader to create custom software extensions, such as new directors or custom actors.
Additional detail can be found in Brooks et al. (2004) and in the Ptolemy source code,
which is well documented and designed for easy readability. This chapter assumes some
familiarity with Java, the language in which most of Ptolemy II is written, and with UML
class diagrams, which are used to depict key properties of the architecture.

12.1 Package Structure

Ptolemy II is a collection of Java classes organized into multiple packages. The package
structure, shown in Figure 12.1, is carefully designed to ensure separability of the pieces.

kernel data actor
Entity Token Actor ml
Port kernel.util BooleanToken data.type AtomicActor
Relation NamedObj DoubleToken Type TypedAtomicActor Firing
CompositeEntity - RecordToken) CompositeActor Schedule
Attribute X Typelattice X
Settable UnionToken BaseType T){pedComposneActor
Workspace RecordType Director -
Executable actor.util
I0Port Time
W‘ TypefilOPort Dependency
Receiver
math Variable QueueReceiver
Complex Parameter actorgui
FixPoint PtParser -
Fraction Constants actorlib Configuration
DoubleArrayMath Const Effigy
SignalProcessing Ramp Tableau
i""1 Placeable
graph
Graph . i ~
Nods graph.analysis ; :
Edge Analysis gui
DirectedGraph | CycleExistenceAnalysis Query
CPO TransitiveClosureAnalysis Top
- moml
vergil
. . MoMLParser
VergilAPPCation |........voeeooeeeeoeeeeeeeeenc EntityLibrary
MoMLChangeRequest

MoMLSimpleApplication

Figure 12.1: Key packages and their classes in Ptolemy II.

Ptolemaeus, System Design 421

http://Ptolemy.org

12.1. PACKAGE STRUCTURE

The kernel package. The kernel package and its subpackages are the heart of Ptolemy
II. They contain the class definitions that serve as base classes for every part of a Ptolemy
model. The kernel package itself is relatively small, and its design is described in Section
12.2. This package defines the structure of models; in particular, it specifies the hierarchy
relationships between, for example, components and domains, and how the components
of a model are interconnected.

The data package. The data package defines the classes that carry data from one compo-
nent in a model to another. The Token class is of particular importance, because it is the
base class for all units of data exchanged between components. The data.expr package
defines the expression language, described in detail in Chapter 13. The expression lan-
guage is used to assign values to parameters in a model and to establish interdependencies
among parameters. The data.type package defines the type system (described in Chapter
14).

The math package. The math package contains mathematical functions and methods
for operating on matrices and vectors. It also includes a complex number class, a class
supporting fractions, and a set of classes supporting fixed-point numbers.

The graph package. The graph package and its subpackage, graph.analysis, provide
algorithms for manipulating and analyzing mathematical graphs. This package supplies
some of the core algorithms that are used in scheduling, in the type system, and in other
model analysis tools.

The actor package. The actor package, described in more detail in Section 12.3, contains
base classes for actors and I/O ports, where actors are defined as executable entities that
receive and send data through I/O ports. The package also includes the base class Di-
rector that is customized for each domain to control model execution. The actor package
contains several subpackages, including the following:

e The actor.lib package contains a large library of actors.

e The actor.sched package contains classes for representing and constructing schedules
for executing actors.

o The actor.util package contains the core Time class, which implements model time, as
described in Section 1.7.1. It also contains classes for keeping track of dependencies
between output ports and input ports.

e The actor.gui package contains core classes for managing the user interface, includ-
ing the Configuration class, which supports construction of customized, independently
branded subsets of Ptolemy II. The Effigy and Tableau classes provide support for

422 Ptolemaeus, System Design

http://Ptolemy.org

12. SOFTWARE ARCHITECTURE

opening and viewing models and submodels. The Placeable interface and associated
classes provide support for actors with their own user interfaces.

The gui package. The gui package provides user interface components for interactively
editing parameters of model components and for managing windows.

The moml package. The moml package provides a parser for MoML files (the modeling
markup language, described in Lee and Neuendorffer (2000), which is the XML schema
used to store Ptolemy II models.

The vergil package. The vergil package, which is quite large, provides the implemen-
tation of Vergil, the graphical user interface for Ptolemy II. Vergil is described further in
Chapter 2.

There are many other packages and classes, but those discussed here provide a good
overview of the overall system architecture. In the next section, we will explain how the
kernel package defines the structure of models.

12.2 The Structure of Models

Computer scientists make a distinction between the syntax and the semantics of program-
ming languages. The programming language syntax specifies the rules for constructing
valid programs, and the semantics refers to the program’s meaning. The same distinction
is pertinent to models. The syntax of a model is how it is represented, while the semantics
is what the model means.

Computer scientists further make a distinction between abstract syntax and concrete syn-
tax. The abstract syntax of a model is the structure of its representation. For example, a
model may be given as a graph, which is a collection of nodes and edges where the edges
connect the nodes. Or it may be given as a tree, which is a type of graph that can be used
to define a hierarchy. The abstract syntax of Ptolemy II models is (loosely) a tree (which
represents the hierarchy of models) overlaid with a graph at each level of the hierarchy
(for specifying the connections between components). The structure of a tree ensures that
every node has exactly one container.

A concrete syntax, in contrast, is a specific notation for representing an abstract syntax.
The block diagrams of Vergil are a concrete syntax. The MoML XML schema is a textual
syntax (a syntax built from strings of characters) for the same models. The set of all

Ptolemaeus, System Design 423

http://Ptolemy.org

12.2. THE STRUCTURE OF MODELS

structures that a concrete syntax can represent is its abstract syntax. Whereas an abstract
syntax constrains the structure of a model, a concrete syntax provides a description of the
model in text or pictures.

Both abstract and concrete syntaxes can be formally defined. A textual concrete syntax,
for example, might be given in Backus-Naur form (BNF), familiar to computer scien-
tists. In fact, BNF is a concrete syntax for describing concrete syntaxes. Compiler toolk-
its, such as the classic Yacc parser generator, take BNF as an input to automatically create
a parser, which converts a textual concrete syntax into data structures in the memory of
a computer that represent the abstract syntax.

Abstract syntax is more fundamental than concrete syntax. Given two concrete syntaxes
for the same abstract syntax, translation from one concrete syntax to the other is always
possible. Hence, for example, every Vergil block diagram can be represented in MoML
and vice versa.

In general, a meta model is a model of a modeling language or notation. In the world
of modeling, engineers use meta models to precisely define abstract syntaxes. A meta
model can for example be given as a UML class diagrams, a notation for object-oriented
designs (UML stands for the unified modeling language). A meta model in UML for the
Ptolemy II abstract syntax is shown in Figure 12.2. The figure shows the relationships
between object-oriented classes that are instantiated by the MoML parser to create a data
structure representing a Ptolemy model. Instances of these classes comprise a Ptolemy 11
model.

Every component in a Ptolemy II model is an instance of the NamedObj class, which has
a name and a container (the container encloses part of the hierarchical model; it is null for
the top-level object). There are four subclasses of NamedObj. These are called Attribute,
Entity, Port, and Relation. Instances of these subclasses are shown in a Ptolemy model in
Figure 12.3.

A model consists of a top-level entity that contains other entities. The entities have ports
through which they interact. Their interactions are mediated by relations, which represent
communication paths. All of these objects (entities, ports, and relations) can be assigned
attributes, which define their parameters or annotations. Ports have links to relations,
represented in the meta model as an association between the Relation class and the Port
class.

A NamedObj contains a (possibly empty) list of instances of Attribute. An Entity also
contains a (possibly empty) collection of instances of Port. Ports are associated with

424 Ptolemaeus, System Design

http://Ptolemy.org

12. SOFTWARE ARCHITECTURE

instances of Relation, which define the connections between ports. A CompositeEntity
is an Entity that contains instances of Entity and Relation. The resulting hierarchy of a
model is illustrated in Figure 12.4. As described earlier, an actor is an executable entity, as
indicated in Figure 12.2 by the fact that AtomicActor and CompositeActor implement the
Executable interface. A director is an executable instance of the Director class, a subclass

Attribute NamedObj <<interface>>
_attributes : List - Nameable
0.* 0.1 |-container: NamedObj getContainer() : NamedObj
i i Y getName() : String
attributes attributeList() : List oo
AN i getAttribute(name : void) : Attribute setName(name : void) : void
container
/\
- Relation
<<interface>>
Executable Entity _linkedPortList : List
fire() : void _portList : List linkedPortList() : List
initialize() : void getPort(name : String) : Port 0-*Tlink
post'flre() : boolean isAtomic() : boolean 'an
prefire() : boolean isOpaque() : boolean 0.1+ 0.*
preinitialize() : void portList() : List ® oo Port
wrapup() : void container
yAN ~ 0% _relationsList : List
! ' ! link(r : Relation) : void
I 1 I linkedRelationList() : List
! X ! 0.1
! ' ! container
I 1 N N
Director | |AtomicActor Compositentity
: _entityList : List 1OPort
: getEntity(name : String) : void
' entityList() : List -
N 0..* get(int) : Token
1 : container hasRoom(int) : boolean
~--__ 0.1 : hasToken(int) : boolean
) CompositeActor isInput() : boolean
0% isOutput() : boolean
- send(int,Token)
container

Figure 12.2: A meta model for Ptolemy Il. This is a UML class diagram. The
boxes represent classes with the class name, key members, and key methods
shown. The lines with triangular arrowheads represent inheritance. The lines
with diamond ends represent containment.

Ptolemaeus, System Design 425

http://Ptolemy.org

12.2. THE STRUCTURE OF MODELS

Attribute .
Entity
Entity Entity
Port Port
Relation

Figure 12.3: A Ptolemy Il model showing the base meta-model class names for
the objects in the model.

TopLevel: CompositeActor

Director .
B: AtomicActor
A: CompositeActor C: CompositeActor
) |
“_ Relation
Director @ Attribute: value
E: AtomicActor
q: Port
D: AtomicActor
p: Port]
Relation
Relation
Opaque CompositeActor Transparent CompositeActor

Figure 12.4: A hierarchical model showing meta-model class names for the ob-
jects in the model.

426 Ptolemaeus, System Design

http://Ptolemy.org

12. SOFTWARE ARCHITECTURE

of Attribute. Each level of a hierarchical model has either one director or none; the top
level always has one director.

Example 12.1: An example of a hierarchical Ptolemy II model is shown in Figure
12.4 using the concrete visual syntax of the Vergil visual editor.

The figure shows three distinct submodels and their hierarchical relationships. The
top level of the hierarchy is labeled “TopLevel: CompositeActor,” which means
that its name is TopLevel and that it is an instance of CompositeActor. TopLevel
contains an instance of Director, three actors, and one relation. Actors A and C are
composite, whereas actor B is atomic. The ports of the three actors are linked to
the relation. The ports of the composite actors appear twice in the diagram, once
on the outside of the composite and once on the inside.

The block diagram in Figure 12.4 uses one of many possible concrete syntaxes for the
same model. The model can also be defined in Java syntax, as shown in Figure 12.5,
or in an XML schema known as MoML, as shown in Figure 12.6. All three syntaxes
describe the model structure (which conforms to the abstract syntax). We will next give
the structure some meaning (a semantics).

12.3 Actor Semantics and the MoC

Many Ptolemy II models are actor-oriented models; that is, they are based on connected
groups of actors. In an actor-oriented model, actors execute concurrently and transfer
data to each other via ports. What it means to “execute concurrently” and the manner
in which data are passed between actors depend on the model of computation (MoC) in
which the actor is running. In Ptolemy II, the model of computation is, in turn, defined by
the director that is placed in that portion of the model.

An actor can itself be a Ptolemy II model, referred to as a composite actor. A composite
actor that contains a director is said to be opaque; otherwise, it is transparent. An
opaque composite actor behaves like a non-composite (i.e., atomic) actor, and its internal
structure 1s not visible to the model in which it is used; it is a black box. In contrast, a
transparent composite actor is fully visible from the outside, and is not executable on its

Ptolemaeus, System Design 427

http://Ptolemy.org

=T L Y o S

12.3. ACTOR SEMANTICS AND THE MOC

import ptolemy.actor.AtomicActor;
import ptolemy.actor.CompositeActor;
import ptolemy.actor.Director;
import ptolemy.actor.IOPort;

import ptolemy.actor.IORelation;
import ptolemy.kernel.Relation;

import ptolemy.kernel.util.IllegalActionException;

import ptolemy.kernel.util.NameDuplicationException;

public class Toplevel extends CompositeActor {

public TopLevel ()
throws IllegalActionException,
NameDuplicationException {
super () ;
// Construct top level.
new Director (this, "Director");

CompositeActor A = new CompositeActor (this, "A");

IOPort p = new IOPort (A, "p");

AtomicActor B = new AtomicActor (this,

IOPort r = new IOPort (B, "r");

"B"),’

CompositeActor C = new CompositeActor (this, "C");

IOPort g = new IOPort (C, "g");
Relation relation = connect (p, q);
r.link (relation);

// Populate composite actor A.
new Director (A, "Director");
AtomicActor D = new AtomicActor (A,
IOPort D_p = new IOPort (D, "p");
Relation D_r = new IORelation (A,
D_p.link(D_r);

p.link(D_rx);

// Populate composite actor C.
AtomicActor E = new AtomicActor (C,
IOPort E_p = new IOPort (E, "p");

Relation E_r = new IORelation(C, "r");

E_p.link(E_r);
g.link (E_r);

Figure 12.5: The model of Figure 12.4 given in the concrete syntax of Java.

428

Ptolemaeus, System Design

http://Ptolemy.org

34

12. SOFTWARE ARCHITECTURE

<?xml version="1.0" standalone="no"?>
<!DOCTYPE entity PUBLIC "-//UC Berkeley//DTD MoML 1//EN"
"http://ptolemy.eecs.berkeley.edu/xml/dtd/MoML_1.dtd">
<entity name="TopLevel" class="ptolemy.actor.CompositeActor">
<property name="Director" class="ptolemy.actor.Director"/>
<entity name="A" class="ptolemy.actor.CompositeActor">
<property name="Director" class="ptolemy.actor.Director"/>
<port name="p" class="ptolemy.actor.IOPort"/>
<entity name="D" class="ptolemy.actor.AtomicActor">
<port name="p" class="ptolemy.actor.IOPort"/>
</entity>
<relation name="r" class="ptolemy.actor.IORelation"/>
<link port="p" relation="r"/>
<link port="D.p" relation="r"/>
</entity>
<entity name="B" class="ptolemy.actor.AtomicActor">
<port name="r" class="ptolemy.actor.IOPort"/>
</entity>
<entity name="C" class="ptolemy.actor.CompositeActor">
<property name="Attribute"
class="ptolemy.kernel.util.Attribute"/>
<port name="qg" class="ptolemy.actor.IOPort"/>
<entity name="E" class="ptolemy.actor.AtomicActor">
<port name="p" class="ptolemy.actor.IOPort"/>
</entity>
<relation name="r" class="ptolemy.actor.IORelation"/>
<link port="g" relation="r"/>
<link port="E.p" relation="r"/>
</entity>
<relation name="r" class="ptolemy.actor.IORelation"/>
<link port="A.p" relation="r"/>
<link port="B.r" relation="r"/>
<link port="C.g" relation="r"/>
</entity>

Figure 12.6: The model of Figure 12.4 given in the concrete syntax of MoML.

Ptolemaeus, System Design 429

http://Ptolemy.org

12.3. ACTOR SEMANTICS AND THE MOC

own. Opaque composite actors — black boxes — are key to hierarchical heterogeneity,
because they allow different models of computation to be nested within a single model.

Just as we make a distinction between abstract syntax and concrete syntax, we also make
a distinction between abstract semantics and concrete semantics. Consider, for exam-
ple, the communication between actors. The abstract semantics captures the fact that a
communication occurs (that is, one actor sends a token to another), whereas a concrete
semantics captures how the communication occurs (e.g., whether it is rendezvous commu-
nication, asynchronous message passing, a fixed point, etc.). A director realizes a concrete
semantics; the interaction between directors across levels of the hierarchy is governed by
the abstract semantics.

Ptolemy II provides a particular abstract semantics, called the actor abstract semantics,
that is central to the interoperability of directors and the ability to build heterogeneous
models. The actor abstract semantics defines three distinct aspects of the actor’s behavior:
execution control, communication, and a model of time, each of which is discussed in
detail below.*

12.3.1 Execution Control

The overall execution of a model is controlled by an instance of the Manager class. An
example execution sequence for a hierarchical model with an opaque composite actor is
shown in Figure 12.7. Each opaque composite actor has a director. As shown in the meta
model of Figure 12.2, a Director is an Attribute that implements the Executable interface.
It is rendered in Vergil as a green rectangle, as shown in Figure 12.4. Inserting a Director
into a composite actor makes the composite actor executable, since it implements the
Executable interface. Atomic actors also implement this interface.

The Executable interface defines the actions of the actor abstract semantics that perform
computation. These actions are divided into three phases: setup, iterate, and wrapup.
Each of these phases is further divided into subphases (or actions), as described below.

The setup phase is divided into preinitialize and initialize actions, implemented by meth-
ods of the Executable interface. In the preinitialize action, an actor performs any opera-
tions that may influence static analysis (including scheduling, type inference and check-
ing, code generation, etc.). A composite actor may alter its own internal structure — by

*In this book we describe the actor abstract semantics informally. A formal framework can be found in
Tripakis et al. (2013) and Lee and Sangiovanni-Vincentelli (1998).

430 Ptolemaeus, System Design

http://Ptolemy.org

12. SOFTWARE ARCHITECTURE

()uns-iaBeueyy :9ouanbag uonnoaaxy

T T
]]
“]
]
]] o
siope 1 Joj0e .| aope Jojoe syndul siojpoe =
aapsod - : [} @
dndeim] W aupsod auy auyaud Jajsueny auyaud 1| ezienu m.
]] =
A + A A A y
] L]
]]
T T
]]
Y “ A v “ v o
] syndjno sndut] S 9
Joj0a1) 33
oo | | e s [+l 0 | f v | | || oo || 223
! i 1senbai 4 1senbal Y ! Heniul a5
L ! | | &
]]
]]
]]
0 ; = 0
“ 10}0B 810U O! 7 “
| |
o
sioje ! syndino Jojpe Jojoe Joj0e 1oy 1| siope =
aupsod « 3
dndeim “ W Jajsuel) aupsod auly 7 auyeud ~ ue }09|as auyeud “ azieniul m
] _ H]
A —
“ h\ﬁmmg E:.J%...%. “ a
] .]
“]
]

i i 17 Ss
Joj0a11p [} J1o)0811p J10j0a11p Joj0a1p 1| Jopalp Wm °
dndeim “ alysod aly auyaud “ azieniul M 2 e

=2
A ! y] A @
]]
]]
(] (]
]]
]]
Y] A Iy
]] =
|ons| doy] lons| doy Jons| doy |ona| doy sadA) suonenw 1| 1ons| doy)
————sof < A < I
dndeim “ se aupsod aly s auyeud 3o8yo [sseooid 1| azienu m
]]
]] -
% I ou- %]
] ou]
J J
dndeim uoinosxe uopezijeniul

Figure 12.7: Execution of a hierarchical model with an opaque composite actor.

431

Ptolemaeus, System Design

http://Ptolemy.org

12.3. ACTOR SEMANTICS AND THE MOC

creating internal actors, for example — in this action. The initialize action of the setup
phase initializes parameters, resets local state, and sends out any initial messages. Preini-
tialization of an actor is performed once, but initialization may be performed more than
once during execution of a model. For example, initialization may be performed again
if the semantics requires an actor to be re-initialized (as in the hybrid system formalism
(Lee and Zheng, 2005)).

The iterate phase is the primary execution phase of a model. In this phase, each actor
executes a sequence of iterations, which are (typically finite) computations that lead the
actor to a quiescent state. In a composite actor, the model of computation determines
how the iteration of one actor relates to the iterations of other actors (whether they are
concurrent or interleaved, how they are scheduled, etc.).

In order to coordinate the iterations among actors, an iteration is further broken into pre-
fire, fire, and postfire actions. Prefire (optionally) tests the preconditions required for the
actor to fire, such as the presence of sufficient inputs. The main computation of the actor
is typically performed during the fire action, when it reads input data, performs compu-
tation, and produces output data. An actor may have persistent state that evolves during
execution; the postfire action updates that state in response to any inputs. The fact that
the state of an actor is updated only in postfire is an important part of the actor abstract
semantics, as explained in the sidebar on page 433.

The wrapup phase is the final phase of execution. It is guaranteed to occur even if exe-
cution fails with an exception in a prior phase.

12.3.2 Communication

Like its execution control, an actor’s communication capabilities are part of its abstract
semantics. As described earlier, actors communicate via ports, which may be single ports
or multiports. Each actor contains ports that are instances of IOPort, a subclass of Port,
as shown in Figure 12.2. This subclass specifies whether a port is to be used for inputs or
outputs. Two key methods that the IOPort subclass provides are get and send. As part of
its fire action, an actor may use get to retrieve inputs, perform its computations, and use
send to send the results to its output ports. For multiports, the integer arguments to get
and send specify a channel. But what does it mean to get and send? Are communications

432 Ptolemaeus, System Design

http://Ptolemy.org

12. SOFTWARE ARCHITECTURE

Sidebar: Why prefire, fire, and postfire?

Although it may not be immediately obvious, the division of each iteration of an actor’s
execution into prefire, fire, and postfire phases is essential for several Ptolemy II models
of computation. As defined by the actor abstract semantics, the fire action reads inputs
and produces outputs but does not change the state of the actor; state changes are only
committed in the postfire phase. This approach is necessary for MoCs with a fixed-point
semantics, which includes the synchronous-reactive (SR) and Continuous domains. Di-
rectors for such domains compute actor outputs by repeatedly firing the actors until a
fixed point is reached. To ensure determinacy, it is essential that the state of each actor
remain constant during these firings; the state of an actor can only be updated after the
fixed point has been reached, at which point all the inputs to each actor are known. This
does not occur until the postfire phase.

However, Ptolemy II does not strictly require every actor to follow this protocol.
Goderis et al. (2009) classify actor-oriented MoCs into three categories of abstract se-
mantics: strict, loose, and loosest. In the strict actor semantics, prefire, fire, and postfire
are all finite computations, and only postfire changes the state. In the loose actor se-
mantics, changes to the state may be made in the fire subphase. In the loosest actor
semantics, the fire subphase may not even be finite; it may be a non-terminating compu-
tation.

An actor that conforms with the strict actor semantics is the most flexible type of
actor in the sense that it may be used in any domain, including SR and Continuous.
Such an actor is said to be domain polymorphic. Most actors in the library are domain
polymorphic. An actor that conforms only with the loose actor semantics can be used
with fewer directors (dataflow, for example). Those actors will be listed in domain-
specific libraries. An actor that conforms only with the loosest actor semantics can be
used with still fewer directors (process networks, for example). It is possible to define
actors that will only work with a single type of director.

A director implements the same phases of execution as an actor. Thus, placing a di-
rector into a composite actor endows that composite actor with an executable semantics.
If the director conforms to the strict actor semantics, then that composite actor is do-
main polymorphic. Such directors support the most flexible form of hierarchical hetero-
geneity in Ptolemy II because multiple directors with different MoCs may be combined
hierarchically within a single model.

Ptolemaeus, System Design 433

http://Ptolemy.org

12.3. ACTOR SEMANTICS AND THE MOC

to be interpreted as a FIFO queue, a rendezvous communication, or other communication
type? This meaning is specified by the director, not the actor.

A director determines how actors communicate by creating a receiver and placing it in an
input port, with one receiver for each communication channel. A receiver is an object that
implements the Receiver interface, as shown in Figure 12.8. That interface includes put
and get methods. As illustrated in Figure 12.9, when one actor calls the send method of
its output port, the output port delegates the call to the put method of the receiver in the
designation input port(s). Similarly, when an actor calls the get method of an input port,
the input port delegates the call to the get method of the receiver in the port. Thus, since
the director provides the receiver, the director controls what it means to send and receive
data.

Receivers can implement FIFO queues, mailboxes, proxies for a global queue, rendezvous,
etc., all of which conform to the meta model shown in Figure 12.8. Directors provide re-
ceivers that implement a communication mechanism that is appropriate to the model of
computation. Several receiver classes are shown in Figure 12.8.

Example 12.2: The PNReceiver, which is a subclass of QueueReceiver, is used by
the process networks (PN) director. The put method of PNReceiver appends a data
token ¢ to a FIFO queue and then returns. When it returns, there is no assurance that
the message has been received. The PN domain implements nonblocking writes; it
delivers a token without waiting for the recipient to be ready to receive it, and thus
will not block the model’s continued execution.

In PN, every actor runs in its own Java thread. The actor receiving a message will
therefore be running asynchronously in a different thread than the actor sending the
token. The receiving actor will call the get method of its input port, which will
delegate to the get method of the PNReceiver. The latter will block the calling
thread until the FIFO queue has at least one token. It then returns the first token
in the queue. Thus, the PNReceiver implements the blocking reads required by the
PN domain. These blocking reads help ensure that a PN model is determinate.

434 Ptolemaeus, System Design

http://Ptolemy.org

12. SOFTWARE ARCHITECTURE

I0Port
0..1 0..n
NoR: E i «Interface»
oRoomException Recei
eoelver NoTokenException
throws
throws
+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)
«Inter“face»
Mailbox ProcessReceiver QueueReceiver DEReceiver SDFReceiver
T T 1.1 1.1
- - 1.1
1.1 FIFOQueue ArrayFIFOQueue
CTReceiver CSPReceiver PNReceiver

Figure 12.8: Meta model for communication in Ptolemy II.

12.3.3 Time

The final piece of the abstract actor semantics is the notion of time; that is, the way in
which an actor views the passage of time when it is used in timed domains.

When an actor fires, it can ask its director for the current time. It does so with the follow-
ing code:

Time currentTime = getDirector () .getModelTime () ;

Ptolemaeus, System Design 435

http://Ptolemy.org

12.3. ACTOR SEMANTICS AND THE MOC

execution control data transport

receiver.put(t)

I0OPort
|ORelation\| Receiver
(inside port)

Figure 12.9: Communication mechanism in Ptolemy II.

The time returned by the director is called the current model time. If the actor requests
the current model time only in its postfire subphase, then it is assured that the time value
returned will be nondecreasing. If it requests the time in the fire subphase, however, then
there is no such assurance, because some directors (such as the Continuous director, see
Chapter 9) speculatively advance time while converging to a fixed point. In this case, the
current model time may actually be less than its value in a prior invocation of fire.

An actor can request that it be fired at some future time by invoking the £ireAt method of
its director. The director is responsible for ensuring that the actor is fired at the requested
future time. If it cannot honor the request, the director returns an alternative time at which
it can fire the actor. Note, however, that the actor cannot assume that its next firing will
be at that future time; there may be an arbitrary number of intervening firings. Moreover,
if the execution of the model ends before time advances to the requested future time, then
the actor will not be fired at the requested time.

The model hierarchy is central to the management of time. Typically, only the top-level
director advances time. Other directors in a model obtain the current model time from
their enclosing director. If the top-level director does not implement a timed model of
computation, then time does not advance.

Perhaps counterintuitively, even untimed domains provide access to time. In a hierarchical
model, unless the untimed domain is at the top level, it will delegate operations relating
to time up the hierarchy to its container.

Timed and untimed models of computation may be interleaved in the hierarchy (see Sec-
tion 1.7.1). There are certain combinations that do not make sense, however. For example,
if the top-level director never advances time, and an actor requests a firing at a future time,

436 Ptolemaeus, System Design

http://Ptolemy.org

12. SOFTWARE ARCHITECTURE

then the request cannot be honored. The director’s £fireAt method will return the time at
which it can fire the actor, which will be time zero, since it never advances time. It is up
to the actor to either accept this or to throw an exception to indicate that it is incompatible
with an enclosing director.

Time can also advance non-uniformly in a model, as explained in Section 1.7.1. In par-
ticular, in modal models (Chapter 8), the advancement of time can be temporarily sus-
pended (Lee and Tripakis, 2010). Within the submodel, there is a monotonically non-
decreasing gap between the local time and the time in the enclosing environment. This
mechanism is used to model temporary suspension of a submodel, as explained in Section
8.5.

12.4 Designing Actors in Java'

The functionality of actors in Ptolemy II can be defined in a number of ways. The most
basic mechanism is the use of hierarchy, in which an actor is defined as the composite of
other actors. For actors that implement complex mathematical functionality, however, it
is often more convenient to use the Expression actor, whose functionality is defined using
the expression language described in Chapter 13. Actors can also be created using the
MatlabExpression actor, by defining the behavior as a MATLAB script. An actor can be
defined in the Python language using the PythonActor or PythonScript actor, or can be
defined using the Cal actor definition language (Eker and Janneck, 2003). But the most
flexible method is to define the actor in Java, which is the focus of our discussion.

As described earlier, some actors are designed to be domain polymorphic, meaning that
they can operate in multiple domains. Here, we focus on designing actors that are domain
polymorphic. We will also focus on designing polymorphic actors that operate on a wide
variety of token data types. Domain and data polymorphism help maximize the reusability
of actors and minimize duplicated code when building an actor library.

Code duplication can also be avoided by using object-oriented inheritance. Inheritance
can also help to enforce consistency across a set of actors. Most actors in the default
library extend a common set of base classes that enforce uniform naming of commonly
used ports and parameters. Using common base classes avoids unnecessary heterogeneity
such as input ports named “in” vs. “inputSignal” vs. “input.” This makes actors easier to
use, and their code easier to maintain. To this end, we recommend using a reasonably deep

This section assumes some familiarity with Java and object-oriented design.

Ptolemaeus, System Design 437

http://Ptolemy.org

12.4. DESIGNING ACTORS IN JAVA

class hierarchy to promote consistency. It is better to subclass and override an existing
actor than to copy it and modify the copy.

Note that the Java source code for existing Ptolemy II actors, which can be viewed using
the Open Actor context menu item, can provide a useful reference for defining new
actors?.

Each actor consists of a source code file written in Java. An example of the source code
for a simple actor is shown in Figure 12.10. This text can be placed in a Java file, com-
piled, instantiated in Vergil, and used as an actor. To create a new actor and use it in
Vergil, choose a Java development environment (such as Eclipse), create a Java file, save
the Java file in your classpath,’ and instantiate the actor in Vergil. The latter can be
accomplished by specifying the fully qualified class name in the dialog opened by the
[6Graph—Instantiate Entity] menu item. For example, you could copy the text in
Figure 12.10 into a file named Count.java, save the file in the home directory of your
Ptolemy installation, and then create an instance of this actor in Vergil using [Graph—
Instantiate Entity].

In the source code shown in Figure 12.10, Lines 1 through 8 specify the Ptolemy classes
on which this actor depends. The source code for those classes can also be viewed; Java
development environments like Eclipse make it easy to view these files.

Line 10 defines a class named Count that subclasses TypedAtomicActor (the base class
for most Ptolemy II actors whose ports and parameters have types). This particular ac-
tor could instead subclass Source or LimitedFiringSource, both of which would provide
the needed ports. But here, for illustrative purposes, we include the port definitions. A
particularly useful base class for actors is Transformer, shown in Figure 12.11. It is a
reasonable choice for actors with one input and one output port.

Lines 12-20 give the constructor. The constructor is the Java procedure that creates in-
stances of the class. The constructor takes arguments that define where the actor will be
placed and the actor name. In the body of the constructor, line 15 creates an input port
named trigger. The third and fourth arguments to the constructor for TypedIOPort desig-
nate that this port is an input and not an output. By convention, in Ptolemy II, every port

HIf you plan to contribute custom actors to the open source collection of actors in Ptolemy II, please be
sure to follow the coding style given by Brooks and Lee (2003).

$The classpath is defined by an environment variable called CLASSPATH that Java uses to search for
class definitions. By default, when you run Vergil, if you have a directory called “.ptolemylIl” in your home
directory, then that directory will be in your classpath. You can put Java class files there and Vergil will find
them.

438 Ptolemaeus, System Design

http://Ptolemy.org

© ® N R W N

12. SOFTWARE ARCHITECTURE

import
import
import
import
import
import
import
import

public

ptolemy.actor.TypedAtomicActor;
ptolemy.actor.TypedIOPort;
ptolemy.data.IntToken;
ptolemy.data.expr.Parameter;
ptolemy.data.type.BaseType;
ptolemy.kernel.CompositeEntity;
ptolemy.kernel.util.IllegalActionException;
ptolemy.kernel.util.NameDuplicationException;

class Count extends TypedAtomicActor {

/*+ Constructor */
public Count (CompositeEntity container, String name)

}

throws NameDuplicationException,
IllegalActionException {
super (container, name);
trigger = new TypedIOPort (this, "trigger", true, false);
initial = new Parameter (this, "initial", new IntToken(0));
initial.setTypeEquals (BaseType.INT);
output = new TypedIOPort (this, "output", false, true);
output.setTypeEquals (BaseType.INT);

/#*+ Ports and parameters. x/
public TypedIOPort trigger, output;
public Parameter initial;

/*% Action methods. =/
public void initialize() throws IllegalActionException ({

}

super.initialize();
_count = ((IntToken)initial.getToken()) .intValue();

public void fire() throws IllegalActionException {

}

super.fire();

if (trigger.getWidth() > 0 && trigger.hasToken(0)) {
trigger.get (0);

}

output.send (0, new IntToken (_count + 1));

public boolean postfire() throws IllegalActionException {

}

_count += 1;
return super.postfire();

private int _count = 0; /#x Local variable. */

Figure 12.10: A simple Count actor.

Ptolemaeus, System Design

439

http://Ptolemy.org

12.4. DESIGNING ACTORS IN JAVA

public class Transformer extends TypedAtomicActor {

1
2

3 /*% Construct an actor with the given container and name.
4 * (@param container The container.

5 * (@param name The name of this actor.

6 * (@exception IllegalActionException If the actor

7 * cannot be contained by the proposed container.

8 * (@exception NameDuplicationException If the container
9 * alreadyhas an actor with this name.

10 */

11 public Transformer (CompositeEntity container, String name)
12 throws NameDuplicationException,

13 IllegalActionException {

14 super (container, name);

15 input = new TypedIOPort (this, "input", true, false);
16 output = new TypedIOPort (this, "output", false, true);
17 }

18

19 LSS S S S S S S S SSSSSSSSSSSS

20 /S ports and parameters ////

21

22 /*+ The input port. This base class imposes no type

23 * constraints except that the type of the input

24 * cannot be greater than the type of the output.

25 */

26 public TypedIOPort input;

27

28 /*+ The output port. By default, the type of this output
29 * 1s constrained to be at least that of the input.

30 */

31 public TypedIOPort output;

Figure 12.11: Transformer is a useful base class for actors with one input and one
output.

440 Ptolemaeus, System Design

http://Ptolemy.org

12. SOFTWARE ARCHITECTURE

is visible as a public field (defined in this case on line 22), and the name of the public field
matches the name given as a constructor argument on line 15. Matching these names is
important for actor-oriented classes, explained in Section 2.6, to work correctly.

Line 16 defines a parameter named initial. Again, by convention, parameters are public
fields with matching names, as shown on line 23. Line 17 specifies the data type of the
parameter, constraining its possible values.

Lines 18 and 19 create the output port and set its data type. Nothing in this actor constrains
the type of the trigger input, so any data type is acceptable.

The initialize method, given on lines 26 to 29, initializes the private local variable
_count to the value of the initial parameter. By convention in Ptolemy II, the names of
private and protected variables begin with an underscore. The cast to IntToken is safe here
because the parameter type is constrained to be an integer.

The fire method on lines 30-36 reads the input port if it is connected (that is, if it has a
width greater than zero) and has a token. In some domains, such as DE, it is important to
read input tokens even if they are not going to be used. In particular, the DE director will
repeatedly fire an actor that has unconsumed tokens on its inputs; failure to read an input
will result an infinite sequence of firings. Line 35 sends an output token.

The postfire method on lines 37-40 updates the state of the actor by incrementing
the private variable _count. As explained above, updating the state in post fire rather
than fire enables the use of this actor with directors such as SR and Continuous that
repeatedly fire an actor until reaching a fixed point.

12.4.1 Ports

By convention, ports are public members of actors. They represent a set of input and
output channels through which tokens may pass to other ports. Figure 12.10 shows how
to define ports as public fields and instantiate them in the constructor. Here, we describe
a few options that may be useful when creating ports.

Multiports and Single Ports

A port can be a single port or a multiport. By default, a port is a single port. It can be
declared to be a multiport as follows:

Ptolemaeus, System Design 441

http://Ptolemy.org

12.4. DESIGNING ACTORS IN JAVA

portName.setMultiport (true);

Each port has a width, which corresponds to its number of channels. If a port is not
connected, the width is zero. If a port is a single port, the width can be zero or one. If a
port is a multiport, the width can be larger than one.

Reading and Writing

Data (encapsulated in a token) can be sent to a particular channel of an output port using
the following syntax:

portName.send (channelNumber, token);
where channelNumber begins with O for the first channel. The width of the port (which
is the number of channels) can be obtained by

int width = portName.getWidth () ;

If the port is unconnected, then the token is not sent anywhere. The send method will
simply return. Note that in general, if the channel number refers to a channel that does
not exist, the send method simply returns without issuing an exception. In contrast,
attempting to read from a nonexistent input channel will usually result in an exception.

A token can be sent to all output channels of a port by

portName.broadcast (token);

You can generate a token from a value and then send this token by

portName. send (channelNumber, new IntToken (integerValue));

A token can be read from a channel by

Token token = portName.get (channelNumber) ;

You can read from channel O of a port and extract the data value (assuming the type is
known) by

double variableName = ((DoubleToken)
portName.get (0)) .doubleValue () ;

You can query an input port to determine whether a get will succeed (whether a token is
available) by

442 Ptolemaeus, System Design

http://Ptolemy.org

12. SOFTWARE ARCHITECTURE

boolean tokenAvailable = portName.hasToken (channelNumber) ;

You can also query an output port to see whether a send will succeed using

boolean spaceAvailable = portName.hasRoom (channelNumber) ;

although with many domains (like SDF and PN), the answer is always true.

Dependencies Between Ports

Many Ptolemy II domains perform analysis of the topology of a model as part of the pro-
cess of scheduling the model’s execution. SDF, for example, constructs a static schedule
that sequences the invocations of actors. DE, SR, and Continuous all examine data de-
pendencies between actors to prioritize reactions to simultaneous events. In all of these
cases, the director requires additional information about the behavior of actors in order to
perform the analysis. In this section, we explain how to provide that additional informa-
tion.

Suppose you are designing an actor that does not require a token at its input port in order to
produce a token on its output port when it fires. It is useful for the director to have access
to this information, which can be conveyed within the actor’s Java code. For example,
the MicrostepDelay actor declares that its output port is independent of its input port by
defining this method:

public void declareDelayDependency ()
throws IllegalActionException {
_declareDelayDependency (input, output, 0.0);

By default, each output port is assumed to have a dependency on all input ports. By
defining the above method, the MicrostepDelay actor alerts the director that this default
is not applicable. There is a delay between the ports input and output. The delay here is
declared to be 0.0, which is interpreted as a microstep delay. The scheduler can use this
information to sequence the execution of the actors and to resolve causality loops. For
domains that do not use dependency information (such as SDF), it is harmless to include
the above method. Thus, these declarations help maximize the ability to reuse actors in a
variety of domains.

Ptolemaeus, System Design 443

http://Ptolemy.org

12.4. DESIGNING ACTORS IN JAVA

Port Production and Consumption Rates

Some domains (notably SDF) make use of information about production and consumption
rates at the ports of actors. If the author of an actor makes no specific assertion, the SDF
director will assume that upon firing, the actor requires and consumes exactly one token
on each input port, and produces exactly one token on each output port. To override
this assumption, the author needs to include a parameter in the port that is named either
tokenConsumptionRate (for input ports) or tokenProductionRate (for output ports). The
value of these parameters is an integer that specifies the number of tokens consumed
or produced in a firing. As always, the value of these parameters can be given by an
expression that depends on other parameters of the actor. As in the previous example,
these parameters have no effect in domains that do not use this information, but they
enable actors to be used within domains that do (such as SDF).

Feedback loops in SDF require at least one actor in the loop to produce tokens in its
initialize method. To alert the SDF scheduler that an actor includes this capability,
the relevant output port must include an integer-valued parameter (named fokenlnitPro-
duction) that specifies the number of tokens initially produced. The SDF scheduler will
use this information to determine that a model with cycles does not deadlock.

12.4.2 Parameters

Like ports, parameters are public members of actors by convention, and the name of the
public member is required to match the name passed to the constructor of the parameter.
Type constraints on parameters are specified in the same way as for ports.

An actor is notified when a parameter value has changed by having its method att ributeChanc
called. If the actor needs to check parameter values for validity, it can do so by overriding

this method. Consider the example shown in Figure 12.12, taken from the PoissonClock

actor. This actor generates timed events according to a Poisson process. One of its param-

eters is meanTime, which specifies the mean time between events. This must be a double,

as asserted in the constructor, but equally importantly, it is required to be positive. The

actor can enforce this requirement as shown in lines 21-25, which will throw an exception

if a non-positive value is given.

The attributeChanged method may also be used to cache the current value of a pa-
rameter, as shown on lines 26-28.

444 Ptolemaeus, System Design

http://Ptolemy.org

1
2
3
4
5
6
7
8
9

12. SOFTWARE ARCHITECTURE

public class PoissonClock extends TimedSource {
public PoissonClock (CompositeEntity container, String name)

throws NameDuplicationException,
IllegalActionException {

super (container, name);

meanTime = new Parameter (this, "meanTime");

meanTime.setExpression("1.0");

meanTime.setTypeEquals (BaseType.DOUBLE) ;

}
public Parameter meanTime;
public Parameter values;

/++ If the argument is the meanTime parameter,
* check that it is positive.
*/
public void attributeChanged (Attribute attribute)
throws IllegalActionException {
if (attribute == meanTime) {
double mean = ((DoubleToken)meanTime.getToken())
.doubleValue () ;
if (mean <= 0.0) {
throw new IllegalActionException (this,
"meanTime is required to be positive."

" Value given: " + mean);
}
} else if (attribute == values) {
ArrayToken val = (ArrayToken)

(values.getToken());
_length = val.length();
} else {
super.attributeChanged (attribute);

Figure 12.12: lllustration of the use of attributeChanged to validate parameter
values.

Ptolemaeus, System Design 445

http://Ptolemy.org

12.5. SUMMARY

12.4.3 Coupled Port and Parameter

Often, in the design of an actor, it is hard to decide whether a quantity should be specified
by a port or by a parameter. Fortunately, you can easily design an actor to offer both
options. An example of such an actor is the Ramp actor, which uses the code shown in
Figure 12.13. This actor starts with an initial value given by the init parameter, which
is then incremented by the value of step. The value of step can be specified by either a
parameter named sfep or by a port named step. If the port is left unconnected, then the
value will always be set by the parameter. If the port is connected, then the parameter
provides the initial default value, and this value is subsequently replaced by any value
that arrives on the port.

The parameter value is stored with the model containing the Ramp actor when it is saved
to a MoML file. In contrast, any data that arrives on the port during execution of the
model is not stored. Thus, the default value given by the parameter is persistent, while the
values that arrive on the port are transient.

To support the use of both a parameter and a port, the Ramp actor creates an instance of the
class PortParameter in its constructor, as shown in Figure 12.13. This is a parameter that
creates an associated port with the same name. The post fire method first calls update
on step, and then adds its value to the state. Calling update has the side effect of reading
from the associated input port, and if a token is present there, updating the value of the
parameter. It is essential to call update before reading the value of a PortParameter in
order to ensure that any input token that might be available on the associated input port is
consumed.

12.5 Summary

This chapter has provided a brief introduction to the software architecture of Ptolemy II.
It explains the overall layout of the classes that comprise Ptolemy II and how key classes
in the kernel package define the structure of a model. It also explains how key classes in
the actor package define the execution of a model. And finally, it gives a brief introduction
to writing custom actors in Java.

446 Ptolemaeus, System Design

http://Ptolemy.org

1
2
3
4
5
6
7
8
9

12. SOFTWARE ARCHITECTURE

public class Ramp extends SequenceSource {
public Ramp (CompositeEntity container, String name)

throws NameDuplicationException,
IllegalActionException {

super (container, name);

init = new Parameter (this, "init");

init.setExpression("0");

step = new PortParameter (this, "step");

step.setExpression("1");

}

public Parameter init;

public PortParameter step;

public void attributeChanged (Attribute attribute)
throws IllegalActionException {

if (attribute == init) {
_stateToken = init.getToken();
} else {

super.attributeChanged (attribute);

}

public void initialize () throws IllegalActionException ({
super.initialize();
_stateToken = init.getToken();

}

public void fire() throws IllegalActionException {
super.fire();
output.send (0, _stateToken);

}

public boolean postfire() throws IllegalActionException ({
step.update () ;
_stateToken = _stateToken.add(step.getToken());
return super.postfire();

}

private Token _stateToken = null;

Figure 12.13: Code segments from the Ramp actor.

Ptolemaeus, System Design

447

http://Ptolemy.org

