
cba

This is a chapter from the book

System Design, Modeling, and Simulation using Ptolemy II

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported
License. To view a copy of this license, visit:

http://creativecommons.org/licenses/by-sa/3.0/,

or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View,
California, 94041, USA. Permissions beyond the scope of this license may be available
at:

http://ptolemy.org/books/Systems.

First Edition, Version 1.0

Please cite this book as:

Claudius Ptolemaeus, Editor,
System Design, Modeling, and Simulation using Ptolemy II, Ptolemy.org, 2014.

http://ptolemy.org/books/Systems.

http://creativecommons.org/licenses/by-sa/3.0/
http://ptolemy.org/books/Systems
http://ptolemy.org/books/Systems

5
Synchronous-Reactive Models

Stephen A. Edwards, Edward A. Lee, Stavros Tripakis, Paul Whitaker
In memory of Paul Caspi

Contents
5.1 Fixed-Point Semantics . 160
5.2 SR Examples . 163

5.2.1 Acyclic Models . 163
5.2.2 Feedback . 164
Sidebar: About Synchrony . 165
Sidebar: Synchronous-Reactive Languages 166
Sidebar: Domain-Specific SR Actors 167
5.2.3 Causality Loops . 174
5.2.4 Multiclock Models . 175

5.3 Finding the Fixed-Point . 176
5.4 The Logic of Fixed Points . 178

Sidebar: Causality in Synchronous Languages 179
Sidebar: CPOs, Continuous Functions and Fixed Points 182

5.5 Summary . 184
Exercises . 185

158

5. SYNCHRONOUS-REACTIVE MODELS

The synchronous-reactive (SR) model of computation is designed for modeling systems
that involve synchrony, a fundamental concept in concurrent systems (see sidebar on page
165). It is an appropriate choice for modeling applications with complicated control logic
where many things are happening at once (concurrently) and yet determinism and precise
control are important. Such applications include embedded control systems, where safety
must be preserved. SR systems are good at orchestrating concurrent actions, managing
shared resources, and detecting and adapting to faults in a system. Whereas dataflow
models are good for managing streams of data, SR systems are good at managing sporadic
data, where events may be present or absent, and where the absence of events has meaning
(more than just transport delay). For example, detecting the absence of an event may be
an essential part of a fault management system. SR is also a good model of computation
for coordinating finite state machines, described in Chapters 6 and 8, which can be used
to express the control logic of the individual actors that are concurrently executed.

The Ptolemy II SR domain has been influenced by the family of so-called synchronous
languages (see sidebar on page 166) and in particular dataflow synchronous languages
such as Lustre (Halbwachs et al., 1991) and Signal (Benveniste and Le Guernic, 1990).
SR primarily realizes the model of synchronous block diagrams as described by Ed-
wards and Lee (2003b). The model of computation is closely related to synchronous
digital circuits. In fact, this chapter will illustrate some of the ideas using circuit analo-
gies, although the SR domain is intended more for modeling embedded software than
circuits.

SR can be viewed as describing logically timed systems. In such systems, time proceeds
as a sequence of discrete steps, called reactions or ticks. Although the steps are ordered,
there is not necessarily a notion of “time delay” between steps like there is in discrete
time systems; and there is no a priori notion of real time. Thus, we refer to time in this
domain as logical time rather than discrete time.

The similarities and differences with dataflow models are:

1. Like homogeneous SDF, an iteration of an SR model consists of one iteration of each
actor in the model. Each iteration of the model corresponds to one tick of the logical
clock. Indeed, most of the SDF models considered in Chapter 2 could just as easily
have been SR models. For example, the behavior of the channel model in Figure 2.29
and all of its variants would behave identically under the SR director.

2. Unlike dataflow and process networks, there is no buffering on the communication be-
tween actors. In SR, and output produced by one actor is observed by the destination

Ptolemaeus, System Design 159

http://Ptolemy.org

5.1. FIXED-POINT SEMANTICS

actors in the same tick. Unlike rendezvous, which also does not have buffered commu-
nication, SR is determinate.

3. Unlike dataflow, an input or output may be absent at a tick. In dataflow, the absence
of an input means simply that the input hasn’t arrived yet. In SR, however, an absent
signal has more meaning. Its absence is not a consequence of accidents of scheduling
or of the time that computation or communication may take. Instead, the absence of
a signal at a tick is defined deterministically by the model. As a consequence, in SR,
actors may react to the absence of a signal. This is quite different from dataflow, where
actors react only the presence of a signal.

4. As we will explain below, in SR, an actor may be fired multiple times between invoca-
tions of postfire. That is, one iteration of an actor may consist of more than invocation
of the fire method. For simple models, particularly those without feedback, you will
never notice this. Sometimes, however, significant subtleties arise. We focus on such
models in this chapter.

5.1 Fixed-Point Semantics

Consider a model with three actors with the structure shown in Figure 5.1(a). Let n denote
the tick number. The first tick of the local clock corresponds to n = 0, the second to
n = 1, etc. At each tick, each actor implements an input-output function (which typically
changes from tick to tick, possibly in ways that depend on previous inputs). For example,
actor 1, in tick 0, implements the function f1(0). That is, given an input value s1(0) on
port p1, it will produce output value s2(0) = (f1(0))(s1(0)) on output port p5.

At any tick, an input may be absent; in this view, “absent” is treated like any other value.
The actor can respond to an absent input, and it may assert an absent output or assign the
output some value compatible with the data type of the output port.

Each actor thus produces a sequence of values (or absent values), one at each tick. Actor
1 produces values s2(0), s2(1), · · · , while actor 2 produces s1(0), s2(1), · · · , and actor 3
produces s3(0), s3(1), · · · , where any of these can be absent. The job of the SR director
is to find these values (and absences). This is what it means to execute the model.

As illustrated in Figures 5.1(b) through (d), any SR model may be rearranged so that it
becomes a single actor with function f(n) at tick n. The domain of this function is a tuple
of values (or absences) s(n) = (s1(n), s2(n), s3(n)). So is the codomain. Therefore, at

160 Ptolemaeus, System Design

http://Ptolemy.org

5. SYNCHRONOUS-REACTIVE MODELS

Figure 5.1: An SR model is reducible to a fixed point problem at each tick of he
logical clock.

tick n, the job of the director is to find the tuple s(n) such that

s(n) = (f(n))(s(n)).

At each tick of the logical clock, the SR director finds a fixed point s(n) of the function
f(n). The subtleties around SR models concern whether such a fixed point exists and
whether it is unique. As we will see, in a well constructed SR model, there will be a
unique fixed point that can be found in a finite number of steps.

Logically, as SR model can be conceptualized as a simultaneous and instantaneous
reaction of all actors at each tick of the clock. The “simultaneous” part of this asserts that
the actors are reacting all the same time. The “instantaneous” part means that the outputs
of each actor are simultaneous with its inputs. The inputs and outputs are all part of the
same fixed point solution. This mental model is called the synchrony hypothesis, where
one thinks of actors as executing in zero time. But it’s a bit more subtle than just that,

Ptolemaeus, System Design 161

http://Ptolemy.org

5.1. FIXED-POINT SEMANTICS

Figure 5.2: Even an SR model without feedback is reducible to a fixed point prob-
lem at each tick of he logical clock.

because when there is feedback, an actor may be reacting to an input that is a function of
its own output. Clearly, one can get trapped in causality problems, where the input is not
known until the output is known, and the output can’t be known until the input is known.
Indeed, such causality problems are the major source of subtlety in SR models.

A simple case of SR is a model without feedback, as shown in Figure 5.2. Even such a
model is reducible to a fixed-point problem, but in this case it becomes a rather simple
problem. The function f1(n) at tick n only needs to be evaluated once at each tick, and it
immediately finds the fixed point. The function f2(n) never needs to be evaluated (from
the perspective of the SR director), but the SR director fires and postfixes actor 2 anyway
because of the side effects it may have (e.g. updating a display). But actor 2 plays no role
in finding the fixed point.

Once the director has found the fixed point, it can then allow each actor to update its
function to f(n + 1) in preparation for the next tick. Indeed, this is what an actor does
in its postfire phase of execution. An iteration of the model, therefore, consists of some
number of firings of the actors, until a fixed point is found, followed by one invocation of
postfire, allowing the actor update its state in reaction to the inputs provided by the fixed
point that was found. The details of how this execution is carried out are described below
in Section 5.3, but first, we consider some examples.

162 Ptolemaeus, System Design

http://Ptolemy.org

5. SYNCHRONOUS-REACTIVE MODELS

5.2 SR Examples

5.2.1 Acyclic Models

SR models without feedback are much like homogeneous SDF models without feedback,
except that signals may be absent. The ability to have absent signals can be convenient
for controlling the execution of actors.

Example 5.1: Recall the if-then-else of Figure 3.10, which uses dynamic dataflow
to conditionally route tokens to the computations to be done. A similar effect can
be achieved in SR using When and Default (see sidebar on page 167), as shown in
Figure 5.3. This model operates on a stream produced by the Ramp actor in one of

-40

-30

-20

-10

0

10

20

30

40

0 5 10 15 20 25 30 35 40

SequencePlotter

Figure 5.3: A model accomplishing conditional execution using SR. [online]

Ptolemaeus, System Design 163

http://ptolemy.org/systems/models/synchronous/IfThenElseSR/index.html
http://Ptolemy.org

5.2. SR EXAMPLES

two (rather trivial) ways. Along the top path, it multiplies the stream by −1. Along
the bottom path, it multiplies by 1. Such a pattern might be used, for example, to
model intermittent failures in a system.

The Bernoulli actor generates a random boolean that is used to control two instances
of When. The top When actor will convey the output from the Ramp to its output
when the boolean is true. The bottom When actor will convey the output from the
Ramp to its output when the boolean is false. When the output of a When actor is
absent, then the downstream Scale actor will also have an absent output. Hence,
the Default actor will have only one present input in each tick, and it will convey
that input to its output. Finally, the SequencePlotter plots the result.

Whereas with dataflow models, it is possible to make wiring errors that will result in un-
bounded buffers, as for example in Figure 3.13, in SR, execution is always bounded. Ev-
ery connection between actors stores at most one token on each tick of the clock. Hence,
there is no mechanism for memory usage to become unbounded (unless, of course, an
actor does so internally).

5.2.2 Feedback

More interesting SR models involve feedback (directed cycles in the graph), as in Figure
5.1. With such feedback systems, causality becomes a concern. Consider in particular
the relationship between actors 1 and 2 in Figure 5.1(a). At a tick n of the logical clock,
it would seem that we need to know s1(n) in order to evaluate function f1(n). But to
know s1(n), it seems we need to evaluate f2(n). But to evaluate f2(n), it seems we need
to know s2(n), which requires evaluating f1(n). We appear to have gotten stuck in a
causality loop.

Causality loops must be broken by non-strict actors. An actor is said to be strict if it
requires knowledge of all its inputs in order to provide outputs. If it can provide outputs
without full knowledge of the inputs, then it is non-strict. The simplest non-strict actor
is the NonStrictDelay (see box on page 167). It can be used to break causality loops, as
illustrated in the following example.

164 Ptolemaeus, System Design

http://Ptolemy.org

5. SYNCHRONOUS-REACTIVE MODELS

Sidebar: About Synchrony

The general definitions of the term synchronous are (1) occurring or existing at the same
time or (2) moving or operating at the same rate. In engineering and computer science,
the term has a number of meanings that are mostly consistent with these definitions, but
oddly inconsistent with one another. In referring to concurrent software using threads or
processes, synchronous communication refers to a rendezvous style of communication,
where the sender of a message must wait for the receiver to be ready to receive, and
the receiver must wait for the sender. Conceptually, the communication occurs at the
same time from the perspective of each of the two threads, consistent with definition
(1). In Java, however, the keyword synchronized defines blocks of code that are not
permitted to execute simultaneously, which is inconsistent with both definitions.

There is yet a third meaning of the word synchronous, which is the definition we use
in this chapter. This third meaning underlies synchronous languages (see box on page
166). Two key ideas govern these languages. First, the outputs of components in a
program are (conceptually) simultaneous with their inputs (this is called the synchrony
hypothesis). Second, components in a program execute (conceptually) simultaneously
and instantaneously. Even though this cannot occur in reality, a correct execution must
behave as though it did. This interpretation is consistent with both definitions (1) and (2)
above, since executions of components occur at the same time and operate at the same
rate.

In circuit design, the word synchronous refers to a style where a clock signal that is
distributed throughout a circuit causes circuit components called “latches” to record their
inputs on the rising or falling edges of the clock. The time between clock edges needs to
be sufficient for circuit gates between latches to settle. Conceptually, this model is very
similar to the model in synchronous languages. Assuming that the gates between latches
have zero delay is equivalent to the synchrony hypothesis, and global clock distribution
gives simultaneous and instantaneous execution of those gates. Hence, the SR domain
is often useful for modeling digital circuits.

In power systems engineering, synchronous means that electrical waveforms have the
same frequency and phase. In signal processing, synchronous means that signals have
the same sample rate, or that their sample rates are fixed multiples of one another. The
term synchronous dataflow, described in Chapter 3.1, is based on this latter meaning of
the word synchronous. This usage is consistent with definition (2).

Ptolemaeus, System Design 165

http://Ptolemy.org

5.2. SR EXAMPLES

Sidebar: Synchronous-Reactive Languages

The synchronous-reactive model of computation dates back to at least the mid-1980s,
when a number of programming languages were developed. The term “reactive” comes
from a distinction in computational systems between transformational systems, which
accept input data, perform a computation, and produce output data, and reactive sys-
tems, which engage in an ongoing dialog with their environment (Harel and Pnueli,
1985). Manna and Pnueli (1992) state

“The role of a reactive program ... is not to produce a final result but to
maintain some ongoing interaction with its environment.”

The distinctions between transformational and reactive systems led to the development
of a number of innovative programming languages. The synchronous languages (Ben-
veniste and Berry, 1991) take a particular approach to the design of reactive systems,
in which pieces of the program react simultaneously and instantaneously at each tick
of a global clock. Primary among these languages are Lustre (Halbwachs et al., 1991),
Esterel (Berry and Gonthier, 1992), and Signal (Le Guernic et al., 1991). Statecharts
(Harel, 1987) and its implementation in Statemate (Harel et al., 1990) also have a
strongly synchronous flavor.

SCADE (Berry, 2003) (Safety Critical Application Development Environment), a
commercial product of Esterel Technologies, builds on Lustre, borrows concepts from
Esterel, and provides a graphical syntax in which state machines similar to those in
Chapter 6 are drawn and actor models are composed synchronously. One of the main
attractions of synchronous languages is their strong formal properties that facilitate for-
mal analysis and verification techniques. For this reason, SCADE models are used in the
design of safety-critical flight control software systems for commercial aircraft made by
Airbus.

In Ptolemy II, SR is a form of coordination language rather than a programming
language, (see also ForSyDe (Sander and Jantsch, 2004), which also uses synchrony
in a coordination language). This allows for “primitives” in a system to be complex
components rather than built-in language primitives. This, in turn, enables heteroge-
neous combinations of MoCs, since the complex components may themselves include
components developed under another model of computation.

166 Ptolemaeus, System Design

http://Ptolemy.org

5. SYNCHRONOUS-REACTIVE MODELS

Sidebar: Domain-Specific SR Actors

The SR actors in DomainSpecific→SynchronousReactive below are inspired by
the corresponding operators of the synchronous languages Lustre and Signal.

• Current outputs the most recently received non-absent input. If no input has been
received, then the output is absent.
• Default merges two signals with a priority. If the preferred input (on the left) is

present, then the output is equal to that input. If the preferred input is absent, then the
output is equal to the alternate input (on the bottom, whether it is absent or not).
• NonStrictDelay provides a one-tick delay. On each firing, it produces on the output

port whatever value it read on the input port in the previous tick. If the input was
absent on the previous tick of the clock, then the output will be absent. On the first
tick, the value may be given by the initialValue parameter. If no value is given, the
first output will be absent.
• Pre outputs the previously received (non-absent) input. When the input is absent,

the output is absent. The first time the input is present, the output is given by the
initialValue parameter of the actor (which by default is absent). It is worth noting
that, contrary to NonStrictDelay, Pre is strict, meaning that the input must be known
before the output can be determined. Thus, it will not break a causality loop. To break
a causality loop, use NonStrictDelay.
• When filters a signal based on another. If the control input (on the bottom) is present

and true, then the data input (on the left) is copied to the output. If control is absent,
false, or true with the data input being absent, then the output is absent.

The Ptolemy II library also offers several actors to manipulate absent values:

• Absent. Output is always absent.
• IsPresent outputs true if its input is present and false otherwise.
• TrueGate outputs true if its input is present and true; otherwise, absent.

Ptolemaeus, System Design 167

http://Ptolemy.org

5.2. SR EXAMPLES

Example 5.2: A simple model of a digital circuit is shown in Figure 5.4.
It is a model of a 2-bit, modulo-4 counter that produces the integer sequence
0, 1, 2, 3, 0, 1, The feedback loops use NonStrictDelay actors, each of which
models a latch (a latch is a circuit element that captures a value and holds it for
some period of time). It also includes two actors that model logic gates, the Logi-
calNot and LogicGate (see box on page 112).

The upper loop, containing the LogicalNot, models the low-order bit (LOB) of the
counter. It starts with value false, the initial output of the NonStrictDelay, and the
alternates between true and false in each subsequent tick.

Figure 5.4: A model of a 2-bit counter in SR. The top-level model includes a
Decoder composite actor that translates the boolean data into integers. [online]

168 Ptolemaeus, System Design

http://ptolemy.org/systems/models/synchronous/Counter/index.html
http://Ptolemy.org

5. SYNCHRONOUS-REACTIVE MODELS

The lower loop, containing the LogicGate, models a carry circuit, implementing the
high-order bit (HOB) of the counter. It also starts with false, and toggles between
true and false in each tick where the the LOB is true.

The Decoder is a composite actor provided just to generate a more readable display.
It converts the two Boolean values into a numerical value from 0 to 3 by assign-
ing values to the LOB It contains two BooleanToAnything actors that convert the
Boolean values to the values of the LOB and HOB, which are then added together.

The NonStrictDelay actors in Figure 5.4 are non-strict. They are able to produce outputs
without knowing the inputs. On the first tick, the values of the outputs are given by the
initialValue parameters of the actors. In subsequent ticks, the values of the outputs are
given by the input from the previous tick, which has been found by identifying the fixed
point. Thus, these actors break the potential causality loops.

Notice that it would not work to use Pre instead of NonStrictDelay (see box on page
5.2.1). The Pre actor is strict, because it has to know whether the input is present or not
in order to determine whether the output is present or not.∗

The model of Figure 5.4 is rather simple and does not illustrate the full power of SR. In
fact, the same model would work with an SDF director, provided that NonStrictDelay
actors are replaced by SampleDelay actors.†

Every directed cycle in SR is required to contain at least one non-strict actor. But Non-
StrictDelay is not the only non-strict actor. Another example of a non-strict actor is the
NonStrictLogicGate actor, which can be parameterized to implement functions such as
non-strict logical AND, also called a parallel AND. The truth table of the non-strict AND
with two inputs is shown below (the actor can in fact accept an arbitrary number of in-

∗The Lustre synchronous language (Halbwachs et al., 1991) is able to make Pre non-strict by using a
clock calculus, which analyzes the model to determine in which ticks the inputs will be present. Thus, in
Lustre, Pre does not execute in ticks where its input is absent. As a consequence, when it does execute, it
knows that the input is present, and even though it does not know the value of the input, it is able to produce
an output. The SR director in Ptolemy II does not implement a clock calculus, adopting instead the simpler
clocking scheme of Esterel (Berry and Gonthier, 1992).
†SampleDelay produces initial outputs during the initialize phase of execution. In dataflow domains,

those initial outputs are buffered and made available during the execution phase. In SR, however, there is no
buffering of data, and any outputs produced during initialize are lost. Hence, SampleDelay is not useful in
SR.

Ptolemaeus, System Design 169

http://Ptolemy.org

5.2. SR EXAMPLES

puts):
inputs ⊥ true false

⊥ ⊥ ⊥ false

true ⊥ true false

false false false false

Here, the symbol ⊥ means unknown. Observe that when one input is known to be false,
the output is false, even if the other input is unknown.

Example 5.3: The model shown in Figure 5.5 results in non-ambiguous semantics
despite its feedback loop. The NonStrictLogicGate implements the AND logic
function, and outputs a Boolean “false” value at every tick because one of the inputs
is always false.

A practical example that also has cycles without NonStrictDelay is next.

Example 5.4: Figure 5.6 shows an SR realization of token-ring media access
control (MAC) protocol given by Edwards and Lee (2003b). The top-level model
has three instances of an Arbiter class connected in a cycle. It also has a Com-
poseDisplay composite actor used to construct a human-readable display of the
results of execution, shown at the bottom.

Figure 5.5: A non-ambiguous model which uses a non-strict logical AND. [online]

170 Ptolemaeus, System Design

http://ptolemy.org/systems/models/synchronous/NonStrictAndInLoop/index.html
http://Ptolemy.org

5. SYNCHRONOUS-REACTIVE MODELS

Figure 5.6: A token-ring media access protocol implemented using SR. From Ed-
wards and Lee (2003b). [online]

Ptolemaeus, System Design 171

http://ptolemy.org/systems/models/synchronous/TokenRing/index.html
http://Ptolemy.org

5.2. SR EXAMPLES

The goal of this system is to arbitrate fairly among requests for exclusive access to
a shared resource by marching a token around a ring. At each tick of the logical
clock, the arbiter grants access to requestor holding the token, if it requests access.
If it does not request access, then the model grants access to the first requestor
downstream of the block with the token that requests access. In the figure, all
three requestors are always requesting access, and in the display at the bottom,
you can see that access is granted fairly in a round-robin fashion. In this model,
InstanceOfArbiter1 starts with the token (see the parameter of the instance).

The three arbiters are instances of the actor-oriented class shown at the top of the
figure. This class has three inputs and three outputs. It has an instance of NonStrict-
Delay that outputs true for the arbiter that currently holds the token. Exactly one of
the three is initialized with value true. At each tick of the clock, the arbiter passes
the token down to the next arbiter. This forms a cycle that include three instances
of NonStrictDelay.

However, there are another cycles that have no instances of NonStrictDelay, for
example the cycle passing through each request input and grant output. This cycle
has three instances of NonStrictLogicGate, configured to implement the parallel
AND. This logic gate will grant access to the requestor if it has a request and it
either holds the token or its passIn input is true (meaning that the upstream arbiter
has the token but does not have a request). Although it is far from trivial to see at
glance, every cycle of logical gates can be resolved without full knowledge of the
inputs, so the model does not suffer from a causality loop.

Another example of a non-strict actor is the Multiplexor or BooleanMultiplexor (see box
on page 119). These require their control input (at the bottom of the icon) to be known;
the value of this input then determines which of the data inputs are to be forwarded to the
output. Only that one data input needs to be known for the actor to able to produce an
output.

Example 5.5: An interesting example, shown in Figure 5.7, calculates either
sin(exp(x)) or exp(sin(x)), depending on a coin toss from the Bernoulli actor.
Malik (1994) called examples like this cyclic combinational circuits, because, al-
though there is feedback, there is actually no state stored in the system. The output
(each value plotted) depends only on the current inputs (the data from the Ramp

172 Ptolemaeus, System Design

http://Ptolemy.org

5. SYNCHRONOUS-REACTIVE MODELS

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

0 5 10 15 20 25 30 35 40 45 50

SequencePlotter

Figure 5.7: A model of a cyclic combinational circuit in SR. From Malik (1994).
[online]

and Bernoulli actors). A circuit whose output depends only on the current inputs
and not on the past history of inputs is called a combinational circuit. Most circuits
with feedback are not combinational. The output depends not only on the current
inputs, but also on the current state, and the current state changes over time.

In this case, feedback is being used to avoid having to have two copies of the actors
that do the actual computation, the TrigFunction and UnaryMathFunction (see box
on page 58). An equivalent model that uses two copies of these actors is shown in
Figure 5.8. If these models are literally implemented in circuits, with a separate cir-

Ptolemaeus, System Design 173

http://ptolemy.org/systems/models/synchronous/MalikCyclic/index.html
http://Ptolemy.org

5.2. SR EXAMPLES

Figure 5.8: Acyclic version of the model of Figure 5.7 that uses two copies of
each of the math actors. [online]

cuit for each actor, then the model in Figure 5.7 may be considerably less expensive
than the one in Figure 5.8.

The model has three BooleanMultiplexor actors. These actors send either their “T”
or “F” input value to the output port depending depending on whether the control
input (at the bottom of the actor) is set to true or false. At each tick, one of the two
BooleanMultiplexor actors on the left will be able to provide an output (once it is
provided with an input from the Ramp). That one BooleanMultiplexor, therefore,
breaks the causality loop and enables finding a fixed point.

5.2.3 Causality Loops

Not all SR models are executable. In particular, it is possible to construct feedback models
that exhibit a causality loop, as illustrated by the following examples.

Example 5.6: Two examples of loops with unresolvable cyclic dependencies are
shown in Figure 5.9. Both the Scale and the LogicalNot actors are strict, and hence
their inputs must be know for the outputs to be determined. But the outputs are
equal to the inputs in these models, so the inputs cannot be known. The SR director
will reject these models, reporting an exception

174 Ptolemaeus, System Design

http://ptolemy.org/systems/models/synchronous/MalikAcyclic/index.html
http://Ptolemy.org

5. SYNCHRONOUS-REACTIVE MODELS

IllegalActionException: Unknown inputs remain. Possible
causality loop:

in Display.input

5.2.4 Multiclock Models

The logical clock in the SR domain is a single, global clock. Every actor under the control
of an SR director will be fired on every tick of this clock. But what we want some actors
to be fired more or less frequently? Fortunately, the hierarchy mechanism in Ptolemy II
makes it relatively easy to construct models with multiple clocks proceeding at different
rates. The EnabledComposite actor is particularly useful for building such multiclock
models.

Example 5.7: Consider the guarded count model of Figure 5.10, which counts
down to zero from some initial value and then restarts the count from some new
value. At the top level, the model has two composite actors and two Display actors.
The CountDown composite actor uses SR primitive actors to implement the follow-
ing count-down behavior: whenever it receives a non-absent value n (an integer) at
its start input port, it (re)starts a count-down from n; that is, it outputs the sequence
of values n, n−1, ..., 0 at its count output port. When the count reaches 0, the ready
port outputs a value true, signaling that the actor is ready for a new count down.

Figure 5.9: Two SR models with invalid loops.

Ptolemaeus, System Design 175

http://Ptolemy.org

5.3. FINDING THE FIXED-POINT

The ready signal controls the firing of the EnabledComposite actor. Within this
composite, a reaction only occurs when a true value is provided on the enable input
port (the port at the bottom of the actor). Note that the ready signal is initially true,
due to the NonStrictDelay actor used inside CountDown.

The clock of the SR director inside EnabledComposite progresses at a slower rate
than the clock of the top-level SR director. In fact, the relationship between these
rates is determined dynamically by the data provided by the Sequence actor.

5.3 Finding the Fixed-Point

For acyclic models (such as the one shown Figure 5.8) or cyclic models where every cycle
is “broken” by a NonStrictDelay actor (such as the model shown in Figure 5.4), executing
the model efficiently is easy. The actors of the model can be ordered according to their
dependencies (e.g., using a topological sorting algorithm) and then fired according to that
order. In this case, each actor only needs to be fired once at each tick of the logical clock.

However, this strategy will not work with models like those in Figures 5.6 or 5.7, because
the order in which the actors have to be fired depends on data computed by some of the
actors. Fortunately, there is a simple execution strategy that works. The key is to start
each tick of the logical clock by assigning a special value called unknown, denoted ⊥, to
all signals. The director can then simply evaluate actors in arbitrary order until no more
progress is made. For strict actors, if there are any unknown inputs, then the outputs
will remain unknown. For non-strict actors, even when some inputs are unknown, some
outputs may become known. This procedure is said to have converged when no firing of
any actor changes the state of any signal. If the actors all follow the strict actor semantics
(see box on page 433), then it can be proven that this procedure converges in a finite
number of steps (see, for example, Edwards and Lee (2003b)).

Upon convergence, either all signals will be known, or some signals will remain unknown.
If every iteration results in all signals being known for all possible inputs, then the model
is said to be constructive (that is, a solution can be “constructed” in a finite number of
steps). Otherwise, the model is declared to be non-constructive, and it is rejected.

Note that in the Ptolemy II SR domain, the causality analysis is performed dynamically,
at run-time. This is in contrast to languages such as Esterel, where the compiler attempts

176 Ptolemaeus, System Design

http://Ptolemy.org

5. SYNCHRONOUS-REACTIVE MODELS

Figure 5.10: Multiclock model in SR. [online]

Ptolemaeus, System Design 177

http://ptolemy.org/systems/models/synchronous/GuardedCount/index.html
http://Ptolemy.org

5.4. THE LOGIC OF FIXED POINTS

to prove statically (i.e., at compile-time) that the program is constructive (see the sidebar
on page 179).

SR can only work correctly with actors that follow the strict actor semantics. To under-
stand this, we can model an actor as a state machine. Let ~x, ~y and ~s denote the vectors
of inputs, outputs, and states, respectively. Then the behavior of the state machine can be
described as

~y(n) = f(~x(n), ~s(n)) (5.1)

~s(n+ 1) = g(~x(n), ~s(n)), (5.2)

where n indexes the ticks of the logical clock, f models the fire method that computes
outputs from current inputs and current state, and g models the postfire method that com-
putes the next state from current inputs and current state. The key here is that the fire
method does not change the state of the actor. Hence, the fire method can be invoked
repeatedly, and each time, given the same inputs, it will produce the same outputs.

An additional condition on actors is that they be monotonic (see box on page 182).
Although the mathematical underpinnings of this constraint are quite sophisticated, the
practical manifestation of the constraint is simple. An actor is monotonic if it does not
change its mind about outputs given more information about inputs. Specifically, if the
fire method is invoked with some inputs unknown, then if the actor is non-strict, it may be
able to produce outputs. Suppose that it does. Then the actor is monotonic if given more
information about the inputs (fewer inputs are unknown) does not cause it to produce a
different output than the one it produced with less information.

Most Ptolemy II actors conform to the strict actor semantics and are monotonic and there-
fore can be used in SR.

5.4 The Logic of Fixed Points

Recall the two models of Figure 5.9, both of which exhibit causality loops. These models,
however, are different from one another in an interesting way. They exhibit the difference
between a deterministic and a constructive semantics of synchronous models. The con-
structive semantics is based on ideas from intuitionistic logic, and although it is also
deterministic, it rejects some models that would be accepted by a broader deterministic
semantics based on classic logic.

178 Ptolemaeus, System Design

http://Ptolemy.org

5. SYNCHRONOUS-REACTIVE MODELS

Sidebar: Causality in Synchronous Languages

The problem of how to resolve cyclic dependencies, the causality problem, is one of
the major challenges in synchronous languages. We briefly summarize several solutions
here, and refer the reader to research literature and survey articles such as Caspi et al.
(2007) for more details.

The most straightforward solution to the causality problem is to forbid cyclic depen-
dencies altogether. This is the solution adopted by the Lustre language, which requires
that every dataflow loop must contain at least one pre operator. The same effect could
be achieved by the Ptolemy II SR director by requiring that every loop contain at least
one NonStrictDelay actor. This actor breaks the instantaneous cyclic dependency. The
Lustre compiler statically checks this condition and rejects those programs that violate
it. The same policy is followed in SCADE.

Another approach is to accept a broader set of constructive programs, as is the case
with the Ptolemy II SR domain. This approach was pioneered by Berry (1999) for Es-
terel. A key difference between Esterel and SR is that in SR a fixed-point is computed
at run-time (at each tick of the logical clock), while the Esterel compiler attempts to
prove that a program is constructive at compile-time. The latter is generally more dif-
ficult since the inputs to the program are generally unknown at compile-time. On the
other hand, statically proving that a program is constructive has two key benefits. First,
it is essential for safety-critical systems, where run-time exceptions are to be avoided.
Second, it allows generation of implementations that minimize the run-time overhead of
fixed-point iteration.

Yet another approach is to accept only deterministic programs, or conversely, re-
ject programs that, when interpreted as a set of constraints, do not yield unique so-
lutions. This approach is followed in Signal (Benveniste and Le Guernic, 1990) and
Argos (Maraninchi and Rémond, 2001). One drawback with this approach is that it
sometimes accepts dubious programs. For instance, consider a program representing
the system of equations

Y = X ∧ ¬Y .
Although this system admits a unique solution in classic two-valued logic, namely,
X = Y = false, it is unclear whether the corresponding implementation is meaningful.
In fact, a straightforward combinational circuit implementation is unstable; it oscillates.

Ptolemaeus, System Design 179

http://Ptolemy.org

5.4. THE LOGIC OF FIXED POINTS

Figure 5.11: Non-constructive example with a unique fixed point. [online]

In particular, we could have interpreted the left model of Figure 5.9 as defining an equation
between the input and output of the Scale actor, say x, as follows:

x = 1 · x

In the classic logic interpretation, the above equation has multiple solutions, e.g., x = 0,
x = 1, and so on. A non-deterministic semantics based on classic logic would accept
any of these solutions as a valid behavior of the system. A deterministic semantics would
declare the model ambiguous, and thus invalid. In the SR semantics, the above equation
has a unique least fixed-point solution, namely, x = ⊥, unknown. Hence, SR also rejects
this model.

The right model of Figure 5.9 can be seen as defining the equation

x = ¬x

where ¬ denotes logical negation. In this case, in the classic logical interpretation, there
is no solution at all, quite a different situation. A deterministic semantics may again reject
this model. In the case of SR, the solution is again x = ⊥, unknown, resulting in rejection
of the model.

A third situation, due to Malik (1994) and shown in Figure 5.11, however, could be ac-
cepted by a deterministic semantics, but is rejected by a constructive semantics. Logically,
the output of the AND gate should always be false, and hence the output sent to the Dis-
play actor should be equal to the negation of the input value produced by the Bernoulli

180 Ptolemaeus, System Design

http://ptolemy.org/systems/models/synchronous/NonConstructive/index.html
http://Ptolemy.org

5. SYNCHRONOUS-REACTIVE MODELS

actor. Hence, there is a single unique behavior for all possible inputs. The model, how-
ever, is rejected by the Ptolemy II SR director as non-constructive whenever the Bernoulli
actor produces a false. In that case, all signals in the loop remain unknown. In the con-
structive SR semantics, this solution with unknowns is the least fixed point, and hence is
the behavior selected, even though there is a unique fixed point with no unknowns.

Even though the circuit in Figure 5.11 seems to have a logically consistent behavior for
every input, there are good reasons for rejecting it. If this were actually implemented
as a circuit, then time delays in the logic gates would cause the circuit to oscillate. It
would not, in fact, realize the logic specified by the model. To realize such circuits in
software, the only known technique for finding the unique fixed point and verifying that
it is unique, in general, is to exhaustively search over all possible signal assignments. In
a small model like this, such an exhaustive search is possible, but it becomes intractable
for larger models, and it becomes impossible if the data types have an infinite number
of possible values. Thus, the fact that the model is non-constructive reveals very real
practical problems with the model.

We now give a brief introduction to the theoretical foundation of the SR semantics. This
is a rather deep topic, and our coverage here is meant only to whet the appetite of the
reader to learn more. The SR semantics is based on the theory of continuous functions
over complete partially ordered sets (CPOs) (see box on page 182). In the case of SR, the
key CPO is a so-called flat CPO shown in Figure 5.12. This CPO consists of the minimal
element ⊥ and all “legal” values of Ptolemy models, such as booleans, integer and real
numbers, but also tuples, records, lists, and so on (see Chapter 14). Any legal value is
considered to be greater than ⊥ in the CPO order, but the legal values are incomparable
among themselves, leading to the term “flat”.

Now, consider an SR model. The output of every actor in the model can be seen as
a variable taking values in the above flat CPO. The vector of all output variables can
be seen as taking values in the product CPO obtained by forming the cartesian product
of all individual CPOs, with element-wise ordering. For simplicity, let us suppose that

absent 0 1 2 ...

Figure 5.12: The flat CPO ensuring existence of a unique least fixed-point in SR.

Ptolemaeus, System Design 181

http://Ptolemy.org

5.4. THE LOGIC OF FIXED POINTS

Sidebar: CPOs, Continuous Functions and Fixed Points

The SR semantics is based on order theory, which we summarize here; see Davey and
Priestly (2002) for a more thorough explanation

Consider a set S. A binary relation on S is a subset ∼ ⊆ S × S. We often write
x ∼ y instead of (x, y) ∈ ∼. A partial order on S is a binary relation v which is
reflexive (i.e., ∀x ∈ S : x v x), antisymmetric (i.e., ∀x, y ∈ S : x v y and y v
x implies x = y), and transitive (i.e., ∀x, y, z ∈ S : x v y and y v z implies x v z).
A partially ordered set or poset is a set equipped with a partial order.

Let X ⊆ S. An upper bound of X is an element u ∈ S such that ∀x ∈ X : x v u.
A least upper bound of X , denoted tX , is an element ` ∈ S such that ` v u for
all upper bounds u of X . A chain of S is a subset C ⊆ S which is totally ordered:
∀x, y ∈ C : x v y or y v x. A complete partial order or CPO is a poset S such that
every chain of S has a least upper bound in S. This condition also guarantees that every
CPO S has a bottom element ⊥, such that ∀x ∈ S : ⊥ v x. (Indeed, the empty chain
must have a least upper bound in S, and the set of upper bounds of the empty subset of
S is the entire S.)

To illustrate the above concepts, consider the set of natural numbers N = {0, 1, 2, ...}.
N is a poset with the usual (total, and therefore also partial) order ≤. Because ≤ is a
total order, N is a chain. The least upper bound of N can be defined to be a new number
ω such that n < ω for all n ∈ N. ω is not a natural number, therefore, N is not a CPO.
On the other hand, the set Nω = N ∪ {ω} is a CPO. The bottom element of Nω is 0.

Every poset whose chains are all finite is a CPO. This is because the greatest element
in a chain is also the least upper bound of the chain. This is why the “flat” poset of
Figure 5.12 is a CPO.

Consider two CPOs X and Y . A function f : X → Y is Scott-continuous or simply
continuous if for all chains C ⊆ X , f(tC) = t{f(c) | c ∈ C}. It can be shown
that every continuous function is also monotonic, i.e. it satisfies: ∀x, y ∈ X : x v
y implies f(x) v f(y). However, not all monotonic functions are continuous. For
example, consider the function f : Nω → Nω such that f(n) = 0 for all n ∈ N and
f(ω) = ω. Then f(tN) = f(ω) = ω, whereas t{f(n) | n ∈ N} = t{0} = 0.
The following fixed-point theorems are well-known results of order theory: (A) Every
monotonic function f : X → X on a CPO X has a least fixed-point x∗. (B) If f is also
continuous then x∗ =

⊔
i≥0 f

i(⊥), where f0(⊥) = ⊥ and f i+1(⊥) = f(f i(⊥)). (B) is
used to obtain an effective procedure for computing the semantics of an SR model.

182 Ptolemaeus, System Design

http://Ptolemy.org

5. SYNCHRONOUS-REACTIVE MODELS

the model is closed, in the sense that every input port of every actor in the model is
connected to some output port (the theory also works for open models, but is slightly
more complicated; we refer the reader to Edwards and Lee (2003b) for a more detailed
explanation). The SR model then defines a function F which has both as domain and
co-domain this product CPO: this is because the model is closed, so every input is also
an output. Thus, F takes as input a vector ~x and returns as output another vector ~y. The
latter is obtained by firing all actors in the model once. Given this interpretation, a closed
SR model defines the equation

~x = F (~x)

This equation has a unique least solution ~x∗, provided that F is monotonic; that is, pro-
vided that ~x ≤ ~y implies F (~x) ≤ F (~y). (The precise condition is for the function to be
continuous, but in the case of flat CPOs, monotonicity is equivalent to continuity.) The
solution ~x∗ is called a fixed-point because it satisfies ~x∗ = F (~x∗). It is ‘least’ in the sense
that it is smaller in the CPO ordering than every other solution of the above equation. That
is, for any ~y such that ~y = F (~y), it must be ~x∗ ≤ ~y.

Moreover, the least fixed-point can be computed effectively in a finite number of itera-
tions, in fact, at most N iterations, where N is the total number of outputs in the model.
Indeed, starting with all outputs set to⊥, every iteration that fires all actors without reach-
ing the fixed-point is guaranteed to update at least one output. The first time an output
is updated, it changes from ⊥ to some legal value v. Because F is monotonic, the same
output can no longer change from v to ⊥ or any other v′, since v > ⊥ and v is incompa-
rable with any v′ 6= v. Therefore, each output can be updated at most once. As a result,
the fixed-point must be reached after at most n iterations.

The monotonicity of F is ensured by ensuring that every individual actor is monotonic;
that is, that its fire method is monotonic. Monotonicity of F then follows from the fact
that composition of monotonic functions results in a monotonic function. Monotonicity of
atomic actors is ensured in Ptolemy by construction. The key is to ensure that if an actor
outputs a known value, say v, in the presence of unknown inputs, then if those inputs
become known, the actor will not “change its mind” and output a different value v′. A
straightforward way to ensure this property is by making an actor strict, in the sense that
it requires all inputs to be known, otherwise, it produces unknown outputs. Most actors in

Ptolemaeus, System Design 183

http://Ptolemy.org

5.5. SUMMARY

Ptolemy are strict, but a few key ones that we have discussed are non-strict. Every cycle
in an SR model requires some non-strict actors.

5.5 Summary

This chapter has introduced the SR domain in Ptolemy II. In SR, execution is governed by
a logical clock, and at each tick of the clock, actors execute, conceptually, simultaneously
and instantaneously. We have explained how this results in a fixed-point semantics, and
have given examples of both cyclic and acyclic models. We have shown that SR admits
multiple clock domains, where clocks progress at different rates. Finally, we have given a
brief introduction to the (rather deep) mathematical foundations behind the semantics of
SR models.

184 Ptolemaeus, System Design

http://Ptolemy.org

5. SYNCHRONOUS-REACTIVE MODELS

Exercises

1. This exercise studies the use of absent events in SR.

(a) As a warmup, use Sequence and When to construct an SR model that gener-
ates a sequence of values true interspersed with absent. For example, produce
the sequence

(true, absent, absent, true, absent, true, true, true, absent) .

Make sure your model adequately displays the output. In particular, absent
should be visible in the display.‡

(b) Use Default and When to create a composite actor IsAbsent that given any
input sequence, produces an output true at every tick when the input is absent,
and otherwise produces the output absent.§

(c) Create a composite actor that can recognize the difference between single
and double mouse clicks. Your actor should have an input port named click,
and two output ports, singleClick and doubleClick. When a true input at
click is followed by N absents, your actor should produce output true on
singleClick, where N is a parameter of your actor. If instead a second true

input occurs within N ticks of the first, then your actor should output a true
on doubleClick.
How does your model behave if given three values true within N ticks on
input port click?

(d) Extra credit: Redo (a)-(c) by writing a custom a Java actor for each of the
three functions above. How does this design compare with the design imple-
mented using primitive SR actors? Is it more or less understandable? Com-
plex?

2. The token-ring model of Figure 5.6 is constructive under the assumption that ex-
actly one of the instances of the Arbiter initially owns the token (it has its initially-
OwnsToken parameter set to true). If no instance of Arbiter initially owns the token,
then is the model still constructive? If so, explain why. If not, given a set of values
of the Request actors that exhibits a causality loop.

‡Note that you could use TrueGate to implement this more simply, but part of the goal of this exercise is
to fully understand When.
§Again, a simpler implementation is available using IsPresent, but the goal of this exercise is to fully

under Default.

Ptolemaeus, System Design 185

http://Ptolemy.org

