
cba

This is a chapter from the book

System Design, Modeling, and Simulation using Ptolemy II

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported
License. To view a copy of this license, visit:

http://creativecommons.org/licenses/by-sa/3.0/,

or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View,
California, 94041, USA. Permissions beyond the scope of this license may be available
at:

http://ptolemy.org/books/Systems.

First Edition, Version 1.0

Please cite this book as:

Claudius Ptolemaeus, Editor,
System Design, Modeling, and Simulation using Ptolemy II, Ptolemy.org, 2014.

http://ptolemy.org/books/Systems.

http://creativecommons.org/licenses/by-sa/3.0/
http://ptolemy.org/books/Systems
http://ptolemy.org/books/Systems

14
The Type System

Edward A. Lee, Marten Lohstroh, and Yuhong Xiong

Contents
14.1 Type Inference, Conversion, and Conflict 508

14.1.1 Automatic Type Conversion 511
Sidebar: What is a Lattice? . 513
14.1.2 Type Constraints . 514
14.1.3 Type Declarations . 515
14.1.4 Backward Type Inference 517

14.2 Structured Types . 520
14.2.1 Arrays . 520
14.2.2 Records . 522
14.2.3 Unions . 523
14.2.4 Functions . 523

14.3 Type Constraints in Actor Definitions 524
Sidebar: Object Types . 525
Sidebar: Invoking Methods on Object Tokens 526
Sidebar: Petite and Unsigned Byte Data Types 526

14.4 Summary . 531
Sidebar: Monotonic Functions in Type Constraints 532

506

14. THE TYPE SYSTEM

In a programming language, a type system associates a type with each variable. A type
is logically a family of values that the variable can take on. For example, the type double
is the set of all double-precision floating point numbers represented by 64 bits according
to the IEEE 754 standard for floating-point arithmetic. A strong type system will prevent
a program from using the 64-bit value of a double variable as, for example, a pointer into
memory or a long integer (Liskov and Zilles, 1974). Java has a strong type system; C
does not. A good introduction to type systems is given by Cardelli and Wegner (1985).

The Ptolemy II type system associates a type with each port and parameter in a model.
Ptolemy II uses type inference, where the types of parameters and ports are inferred
based on their usage. Types need not be declared by the model builder, usually.

A programming language where types are checked at compile time is said to be statically
typed. In Ptolemy II, types are checked just prior to execution of a model, between the
preinitialize and initialize phases of execution. Since this happens once, before execution
of the model, we consider Ptolemy II to be statically typed.

Although the type system is a strong one (a port will not receive a token that is incom-
patible with its declared type, for example), there are loopholes. In particular, users can
define their own actors in Java, and these actors may not behave well. For example, an
actor may declare an output port to be of type int and then attempt to send a string through
that port. To catch such errors, Ptolemy II also performs run-time type checks. Although
it is rare (unless you write your own actors), it is possible to build models that will exhibit
type errors only during execution. These errors will not be detected by the static type
checker.

Fortunately, with the help of static type checking, run-time type checks can be performed
automatically when a token is sent out from a port. The run-time type checker simply
compares the type of a produced token against the (static) type of the output port. This
way, a type error is detected at the earliest possible time (when the token is produced,
rather than when it is used). However, this does not guarantee that a type of token that
an actor accepts is indeed compatible with the operation it implements. A run-time type
error may therefore also be thrown by the actor itself, particularly if the actor is written
incorrectly.

The Ptolemy II type system supports polymorphism, where actors can operate on a va-
riety of data types. To facilitate the construction of polymorphic actors, the type system
offers a mechanism called automatic type conversion, which allows a component to re-
ceive multiple data types by automatically converting them to a single data type, assuming

Ptolemaeus, System Design 507

http://Ptolemy.org

14.1. TYPE INFERENCE, CONVERSION, AND CONFLICT

that the conversion can be done without loss of information. Polymorphism greatly in-
creases the reusability of actors in the presence of static typing, especially in combination
with type inference. In this chapter we describe how these mechanisms are integrated
into the Ptolemy II static type checking framework, with emphasis on how they help build
correct models.

14.1 Type Inference, Conversion, and Conflict

In Ptolemy II models, types of ports are inferred from the model, subject to constraints im-
posed by the actors and the infrastructure. We will explain exactly how these constraints
come about and how the inference is performed, but first we can develop an intuitive
understanding of what happens.

Example 14.1: Consider the example shown in Figure 14.1. This model cal-
culates and displays 1 − π. (This is a silly model, since the entire model could
be replaced by the expression 1 - PI, but it serves to illustrate the type sys-
tem.) The model includes an attribute called ShowTypes, which can be found in
the Utilities→Analysis library. This attribute causes Vergil to display the
type of each port next to the port (in addition to the name of the port, if the name
would otherwise be displayed). As you can see in the figure, initially the type of
each port is unknown.

Figure 14.1: A simple example for illustrating type inference and conversion. [on-
line]

508 Ptolemaeus, System Design

http://ptolemy.org/systems/models/types/TypeConversion/index.html
http://ptolemy.org/systems/models/types/TypeConversion/index.html
http://Ptolemy.org

14. THE TYPE SYSTEM

During the first stage of execution, preinitialize, the types of the ports are inferred,
after which the display is eventually updated as shown in Figure 14.2. The types
of the output ports of the Const actors are determined by their value parameters,
which are 1 and PI, respectively. If you change a value parameter to, for example,
1+i, then the output type will become complex. If you change it to {1, 2}, then
the output type will become arrayType(int, 2), an array with int elements and length
2.

Notice in Figure 14.2 that the input ports of the AddSubtract actor have both re-
solved to double. The AddSubtract actor imposes a constraint that its two input
ports must have the same type. When the AddSubtract actor receives an int token
from the Const actor, the input port will automatically convert the token to type
double. We will explain in detail what conversions are allowed, but intuitively, a
conversion is allowed if no information is lost.

Notice in Figure 14.2 that the output port of the AddSubtract actor and the input
port of MonitorValue have also resolved to double. The MonitorValue actor can
accept any input type, since it simply displays a string representation of the token,
and every token has a string representation.

The previous example illustrates that the type of a parameter in one part of a model can
have far-reaching consequences in other parts of the model. The type system ensures
consistency. It is common when building models to raise type errors, as illustrated by the
following example.

Figure 14.2: After execution.

Ptolemaeus, System Design 509

http://Ptolemy.org

14.1. TYPE INFERENCE, CONVERSION, AND CONFLICT

Example 14.2: Consider the example shown in Figure 14.3. In that example, we
have replaced MonitorValue with SequencePlotter, and we have changed the Const
actor to produce a complex value. Type inference determines that the output of
AddSubtract is complex. But SequencePlotter requires an input of type double. A
complex token cannot be losslessly converted to a double token, so upon executing
the model you will get the following exception:

ptolemy.actor.TypeConflictException: Type conflicts occurred on
the following inequalities:

(port .TypeConflict.AddSubtract.output: complex) <=
(port .TypeConflict.SequencePlotter.input: double)

in .TypeConflict

This error message reports that a type constraint in the model cannot be satisfied.
That type constraint is that the type of the output port of AddSubtract must be
less than or equal to (≤) the type of the input port of SequencePlotter. Further, it
reports that the output port has type complex, while the input port has type double.
The offending ports and their containers are then highlighted in the model as shown
in the figure.

In the above example, a type constraint is given as an inequality, an assertion that the type
of one port must be “less than or equal to” the type of another. What does this mean?

Figure 14.3: Type conflict.

510 Ptolemaeus, System Design

http://Ptolemy.org

14. THE TYPE SYSTEM

Intuitively, one type is less than another if it can be lossless converted to that other type.
We examine this inequality relation next.

14.1.1 Automatic Type Conversion

The allowed automatic type conversions are represented in Figure 14.4, which depicts the
type lattice of Ptolemy II. In this diagram, a conversion from a first type to a second type
is allowed if there is an upward path from the first type to the second type in the diagram.
This relationship implies a partial order on types (see sidebar on page 513), so we might
say that a conversion is allowed if the first type is less than or equal to the second type.
This partial order has an elegant mathematical structure called a lattice (see sidebar on
page 513) that enables efficient type inference and type checking.

Automatic conversions occur when an actor retrieves data from its input port.∗ The types
of ports are determined prior to execution, and run-time type checking guarantees that
tokens sent through an output port are compatible with the types of downstream input
ports (i.e., a conversion to such type is allowed by the type lattice). This is due to the
type constraints that are imposed by connections between ports. These type constraints
are explained in Section 14.1.2. If a token is not compatible, the run-time type checker
will throw an exception before the token is sent. Hence, run-time type errors are detected
as early as possible.

A type conversion can also be forced in the expression language using the cast function,
one of many built-in functions available in the expression language. An expression of the
form cast(newType, value) will convert the specified value into the specified type.
See Section 13.4.3 and Table 13.15 for information about the cast function.

The type lattice is constructed based on a principle of lossless conversion. A conversion
is allowed automatically as long as important information about value of data tokens is
not lost. Such conversions are referred to as widening conversions in Java. For instance,
converting a 32-bit signed integer to a 64-bit IEEE double precision floating point number
is allowed, since every integer can be represented exactly as a floating point number. On
the other hand, data type conversions that lose information are not automatic.

∗ Some actors disable automatic type conversion on their input ports because they do not need the conver-
sion. For example, AddSubtract and Display accept any token type, because they make use of methods that
are inherited by all token types. These actors disable automatic conversion by invoking:
portName.setAutomaticTypeConversion(false).

Ptolemaeus, System Design 511

http://Ptolemy.org

14.1. TYPE INFERENCE, CONVERSION, AND CONFLICT

Figure 14.4: The Type Lattice. Types that cannot be instantiated are shown with
bold outlines (and pink fill). Scalar types are lightly filled (in yellow), matrix types
are slightly more darkly filled (in cyan), and composite types still more darkly
filled (in green). The composite types and the fix types are infinite sublattices, as
suggested by their double icons.

512 Ptolemaeus, System Design

http://Ptolemy.org

14. THE TYPE SYSTEM

Sidebar: What is a Lattice?

A lattice is a mathematical structure that has properties that enable efficiently solving
type constraints. A lattice is a set with particular kind of order relation related to CPOs
(see sidebar on page 182). See Davey and Priestly (2002) for more details.

First, a total order is an ordering over a set S, denoted ≤, where any two elements of
the set are ordered. Specifically, for any x, y ∈ S, either x ≤ y or y ≤ x (or both, in
which case x = y). For example, if the set S is the set of integers, and ≤ denotes the
ordinary arithmetic ordering, then (S,≤) is a total order.

A partial order relaxes the constraint that any two elements be ordered. An example
of a partial order is (S,≤), where S is a set of sets and ≤ is the subset relation, usually
denoted ⊆. Specifically, if A,B are both sets in S, then it may be that neither A ⊆ B
nor B ⊆ A. E.g., let A = {1, 2} and B = {2, 3}; then neither is a subset of the other.

Another partial order is the prefix order on strings. Let S be the set of sequences of
alphabetic characters, for example. Then for two strings x, y ∈ S, we write x ≤ y is x
is a prefix of y. E.g., if x =abc and y =abcd, then x ≤ y. If z =bc, then neither x ≤ z
nor z ≤ x holds. Formally, a partial order is a set S and a relation ≤, such that for all
x, y, z ∈ S,
• x ≤ x (the order is reflexive),
• if x ≤ y and y ≤ z, then x ≤ z (the order is transitive), and
• if x ≤ y and y ≤ x, then x = y (the order is antisymmetric).

The least upper bound (LUB), if it exists, of a subset U ⊆ S of a partial order (S,≤)
is the least element x ∈ S such that for every u ∈ U , u ≤ x. The greatest lower bound
(GLB) of U , if it exists, is the greatest element x ∈ S such that for every u ∈ U , x ≤ u.
E.g., in the prefix order, if x =abc, y =abcd, and z =bc, then the LUB of {x, y} is y.
The LUB of {x, z} does not exist. The GLB of {x, y} is x. The GLB of {x, z} is the
empty string, which is a prefix of all strings.

A lattice is a partial order (S,≤) for which every subset of S has a GLB and a LUB.
The subset order is a lattice, because the LUB can be found with set union, and the GLB
can be found with set intersection. The prefix order on strings, however, is not a lattice,
because two strings may not have a LUB. The prefix order is a lower semi-lattice,
however, because the GLB of a set of strings always exists.

Ptolemaeus, System Design 513

http://Ptolemy.org

14.1. TYPE INFERENCE, CONVERSION, AND CONFLICT

14.1.2 Type Constraints

A model imposes a number of constraints that drive type inference. A constraint is ex-
pressed as an inequality between the types of two ports. It requires one port to have a type
that is less than or equal to (losslessly convertible to) the type of the other port.

In a Ptolemy II topology, the type compatibility rule requires an output port to have a
type that is less than or equal to all inputs to which it is connected, as follows:

outType ≤ inType (14.1)

This constraint guarantees that there is an allowed automatic conversion that can be per-
formed during data transfer. Every connection between an output port and an input port
establishes a type constraint that enforces this rule.

Example 14.3: In Figure 14.2, the Const actor produces type int, while the
AddSubtract actor receives type double. In Figure 14.4, we see that int is less
than double, so the type compatibility rule is satisfied.

In addition to the constraints imposed by the connections between actors, most actors
also impose constraints. For example, the AddSubtract actor declares that its output type
is greater than or equal to its input types, and that the types of its two input ports are equal.
An equality constraint is equivalent to two inequality constraints, as in:

plus ≤ minus

minus ≤ plus,

where plus and minus are the input ports of the AddSubtract actor.

Many actors impose a default type constraint that requires an unconstrained input to be
less than or equal every unconstrained output. By default, actors implicitly include this
type constraint for every set of input and output ports that have no explicit type constraint.

Example 14.4: Some actors operate on tokens without regard for the actual types
of the tokens. For example, the DownSample does not care about the type of token

514 Ptolemaeus, System Design

http://Ptolemy.org

14. THE TYPE SYSTEM

Figure 14.5: Type conflict of Figure 14.3 resolved by using an actor that can
accept any input type, MonitorValue. [online]

going through it, so it does not explicitly declare any type constraints. The default
type constraint enables type information to propagate through this actor from its
input to its output.

By default, actors that leave their input ports undeclared will have the type of the input
port determined by the upstream model (unless the model has enabled backward type
inference, as explained below in Section 14.1.4).

Example 14.5: The MonitorValue actor, which displays the value of tokens it re-
ceives, can accept any type of input. By default, it leaves its input undeclared, which
results in the type resolving to whatever is provided upstream. For example, Figure
14.5 resolves the type conflict of Figure 14.3 by replacing the SequencePlotter with
a MonitorValue actor. The resolved type of the input, complex, is determined by
the upstream actors.

14.1.3 Type Declarations

Sometimes, there is not enough information in a model to infer types from the sources of
data.

Ptolemaeus, System Design 515

http://ptolemy.org/systems/models/types/TypeDisplay/index.html
http://Ptolemy.org

14.1. TYPE INFERENCE, CONVERSION, AND CONFLICT

Example 14.6: Consider for example the model in Figure 14.6. This model is in-
tended to evaluate expressions entered by a user in a shell, but type resolution fails,
as shown. The ExpressionToToken actor takes an input string, which is expected to
be an expression in the Ptolemy expression language (see Chapter 13), and evalu-
ates the expression. The result of evaluation is produced on the output. There is no
way to anticipate what the user might type in the shell, so there is not enough in-
formation to infer types. The type of the output of the ExpressionToToken remains
unkonwn.

Such difficulties can be fixed by enabling backward type inference (discussed below), or
by explicitly declaring the type of a port, as illustrated in the next example.

Example 14.7: We can force the type of output of the ExpressionToToken actor to
be of type general, as shown in Figure 14.7. Downstream types resolve to general
as well.

Figure 14.6: A model intended to evaluate expressions entered by a user, but for
which there is not enough information for types to be inferred from the sources of
data.

516 Ptolemaeus, System Design

http://Ptolemy.org

14. THE TYPE SYSTEM

In the type column of the port dialog, you can enter any expression in the expression
language. Whatever type that expression resolves to will be the declared type of the
corresponding port. For clarity, Ptolemy II provides some built in variables that designate
a type. The variable named general, for instance, evaluates to a token of type general.
Similarly, the variable named double evaluates to a token of type double (which happens
to have value 0.0, but the value immaterial). Table 14.8 lists the predefined variable names
and their corresponding types.

14.1.4 Backward Type Inference

In all the examples discussed so far, type inference propagates forward in models, with
each constant or fixed output type causing downstream types to resolve. That is, type
information travels in the same direction that the tokens are sent during execution. The
type compatibility rule given by (14.1) imposes no useful constraints on output ports,
because it is always satisfied if outType has type unknown, the bottom element of the type
lattice. Nevertheless, forward type inference is usually sufficient because sources of data
in most models provide specific type information about those data.

Figure 14.7: Types of ports declared by entering a type into the type column of
the port configuration dialog. [online]

Ptolemaeus, System Design 517

http://ptolemy.org/systems/models/types/ExpressionEvaluatorCoerced/index.html
http://Ptolemy.org

14.1. TYPE INFERENCE, CONVERSION, AND CONFLICT

BaseType field Expression Description
UNKNOWN unknown bottom element of the data type lattice
ARRAY BOTTOM array of unknown type
BOOLEAN boolean boolean (true or false)
BOOLEAN MATRIX [boolean] matrix of booleans
UNSIGNED BYTE unsignedByte unsigned byte
COMPLEX complex complex number
COMPLEX MATRIX [complex] complex matrix
FLOAT float 32-bit IEEE floating-point number
DOUBLE double 64-bit IEEE floating-point number
DOUBLE MATRIX [double] matrix of doubles
FIX fixedpoint fixed-point data type
FIX MATRIX [fixedpoint] matrix of fixed-point numbers
SHORT short 16-bit integer
INT int 32-bit integer
INT MATRIX [int] matrix of 32-bit integers
LONG long 64-bit integer
LONG MATRIX [long] matrix of 64-bit integers
OBJECT object object type
ACTOR actor type
XMLTOKEN XML type
SCALAR scalar scalar number
MATRIX matrix of unknown type
STRING string string
GENERAL general any type
EVENT event (empty token)
PETITE a double constrained to be between -1 and 1
NIL nil nil type
RECORD record type

Figure 14.8: Type constants defined in the BaseType class with their correspond-
ing name in the expression language, if there is one.

518 Ptolemaeus, System Design

http://Ptolemy.org

14. THE TYPE SYSTEM

The models in Figures 14.6 and 14.7, however, do not have this property. First, since the
model forms a loop, there is no clear “source” of data. Every actor is both upstream and
downstream of every other actor. Moreover, the ExpressionToToken actor, by nature of
what it does, cannot provide any specific information about the type of its output.

The Ptolemy II type system optionally provides backward type inference to solve this
problem. To enable backward type inference, set the enableBackwardTypeInference pa-
rameter to true at the top level of the model, as shown in Figure 14.9. This has three ef-
fects. First, it causes certain actors that do not impose restrictions on the data received at
input ports to declare those ports to have type general. This includes InteractiveShell and
Display, for example. Second, it allows type constraints to propagate upstream. Specif-
ically, it adds an additional constraint to the type compatibility rule of (14.1). The addi-
tional constraint is that the type of each output port is required to be greater than or equal
to the greatest lower bound (GLB) of the types of all input ports to which it is connected.
Third, for each actor that does not explicitly constrain the type relationships of its port, it
imposes a default type constraint that the types of its input ports are greater than or equal
to the GLB of the types of its output ports. These additional constraints are sufficient for
the types to resolve to the same solution that we achieved with type coercion in Figure
14.7.

Figure 14.9: Enabling backward type inference allows type constraints to propa-
gate upstream. [online]

Ptolemaeus, System Design 519

http://ptolemy.org/systems/models/types/ExpressionEvaluatorBackward/index.html
http://Ptolemy.org

14.2. STRUCTURED TYPES

The root of the problem is the ExpressionToToken actor, which cannot itself be specific
about its output type. Any constraints on its output type would have to result from how
its output tokens are used, rather than from the actor itself. In Figure 14.9, the Interac-
tiveShell input accepts type general, which therefore propagates upstream to the output
of the ExpressionToToken actor. When there are undeclared output port types, such as
on the ExpressionToToken actor, backward type inference finds the the most general type
that is compatible with downstream type constraints.

14.2 Structured Types

14.2.1 Arrays

Structured types include those tokens which aggregate other tokens of arbitrary type, such
as array and record types. As described in Section 13.3, an array is an ordered list of
tokens, all of which have the same type. Records contain a set of labeled tokens, like a
struct in the C language. It is useful for grouping multiple pieces of related information
together. In the type lattice in Figure 14.4, record types are incomparable with all the base
types except unknown, string, and general. Array types are a bit more complex because
any type is less than an array of that type in the type lattice. This is hinted at in the
figure with the disconnected lines at the bottom of the array type. Note that the lattice
nodes array and record actually represent an infinite number of types, so the type lattice
is infinite.

For any type a, the following type relation holds,

a < {a}.

A value can be losslessly converted to an array of values. Moreover,

a < b ⇒ {a} < {b}.

Combining these, we see that the definition is recursive, so

a < {a} < {{a}} < {{{a}}} · · ·

520 Ptolemaeus, System Design

http://Ptolemy.org

14. THE TYPE SYSTEM

Example 14.8: int ≤ double, so the following all hold:

int < {int}
{int} < {double}

int < {double}
int < {{double}}
· · ·

A consequence of these type relations is that there is an infinite path from any particular
array type to the top of the type lattice. This can result in situations where type inference
does not converge.

Example 14.9: In the model in Figure 14.10, the Expression actor constructs an
array consisting of one element, its input token. When you attempt to run this
model, an exception occurs that includes the message

Large type structure detected during type resolution

The reason for this is that there is no (finite) type that satisfies all the constraints.
The SampleDelay actor requires its output to be at least an int, because it produces
an initial int. But it also requires that its output be greater than equal to its input.
The first input it will receive will have type {int}, and the second input will have
type {{int}}, etc. The only possible type is an infinite nesting of arrays.

Figure 14.10: Example where type inference does not converge.

Ptolemaeus, System Design 521

http://Ptolemy.org

14.2. STRUCTURED TYPES

The Ptolemy II type system often (but not always) includes the length of an array in its
type. If you explicitly query the type of a token, you can see this, as in the following
command in the expression evaluator:

>> {1, 2}.getType()
object(arrayType(int,2))

Thus, arrayType(int,2) is the type of an array of length two, whereas arrayType(int)
is the type of an array with indeterminate length. Including the length in the type allows
the type system to detect more errors than otherwise.

Generally speaking, array types with specific length are incomparable with array types
with different lengths, and can be converted to an array type with unknown length (and
compatible element type). Scalars are convertible to array types with length 1.

One subtlety is that when you specify an array type with an expression { int }, you are
actually giving the type arrayType(int, 1), which is more specific than you probably
want. For this reason, unless you specifically want to constrain array types, it is better to
specify an array type with arrayType(int).

14.2.2 Records

The order relation between two record types follows the standard depth subtyping and
width subtyping relations commonly used for such types (Cardelli, 1997). In depth
subtyping, a record type c is a subtype of a record type d (i.e., c ≤ d) if the fields of c are
a subtype of the corresponding fields in d. For example,

{x = string, y = int} <= {x = string, y = double}

In width subtyping, a record with more fields is a subtype of a record with fewer fields.
For example, we have:

{x = string, y = double, z = int} <= {x = string, y = double}

The width subtyping rule is a bit counterintuitive, as it implies a type conversion which
loses information, discarding the extra fields of a record. However, it conforms with the
“is a” interpretation of types, where a ≤ b if a is a b. In this case, the record with more
fields “is an” instance of the record with fewer fields, whereas the reverse is not true.

522 Ptolemaeus, System Design

http://Ptolemy.org

14. THE TYPE SYSTEM

14.2.3 Unions

Another structured type is the union type. It allows the user to create a token that can hold
data of various types, but only one at a time. This is like the union construct in C. The
union type is also called a variant type in the type system literature. The width subtyping
relation for union type is the opposite to that of the record type. That is, a shorter union
is a subtype of a longer one. Again, this corresponds with the “is a” interpretation of type
relations.

A consequence of this width subtyping relation is that there are an infinite number of
types from a particular union type to the top of the type lattice. This again means that
type inference may not converge. The Ptolemy II type system truncates type inference
after a finite number of steps, providing a heuristic that is a likely indicator of a type error.

14.2.4 Functions

One final structured type is the expression language function, described in Section 13.4.4.
Functions can take several arguments and return a single value. The type system supports
function types, where the arguments have declared types, and the return type is known.
Function types are related in a way that is contravariant (oppositely related) between
inputs and outputs. Namely, if function(x:int, y:int) int is a function with two
integer arguments that returns an integer, then

function(x:int, y:int) int <= function(x:int, y:int) double
function(x:int, y:double) int <= function(x:int, y:int) int

The contravariant notion here is easiest to think about in terms of the automatic type
conversion of one function into another. A function that returns int can be converted into
a function that returns double by adding a conversion of the returned value from int to
double. On the other hand, a function that takes an int cannot be converted into a function
that takes a double, since that would mean that the function is suddenly able to accept
double arguments when it could not before, and there is no automatic conversion from
double to int. Functions that are lower in the type lattice assume less about their inputs
and guarantee more about their outputs.

The names of arguments do not affect the relation between two function types, since
argument binding is by the order of arguments only. Additionally, functions with different
numbers of arguments (different arity) are considered incomparable.

Ptolemaeus, System Design 523

http://Ptolemy.org

14.3. TYPE CONSTRAINTS IN ACTOR DEFINITIONS

The presence of function types that can be used as any other token results in what is
commonly termed a higher-order type system. An example of the use of function tokens
is given in Figure 2.44 and discussed in the sidebar on page 89.

14.3 Type Constraints in Actor Definitions

Section 12.4 introduces how to write actors in Java. In this section, we explain how to
constrain types in the Java definition of an actor.

Prior to the execution of a model, during the setup phase, type constraints are gathered
from all entities in the model (e.g., instances of TypedIOPort, TypedAtomicActor, or
Parameter) that impose restrictions on their types. Actors can either set type constraints
by storing them in the object instances of the concerning ports or parameters, or by setting
them up using the customTypeConstraints method of TypedAtomicActor.

A simple type constraint that is common to many actors is to ensure that the type of an
output is greater than or equal to the type of a parameter. You can do so by putting the
following statement in the constructor:

portName.setTypeAtLeast(parameterName);

or equivalently, by defining:

protected Set<Inequality> _customTypeConstraints() {
Set<Inequality> result = new HashSet<Inequality>();
result.add(new Inequality(parameterName.getTypeTerm(),
portName.getTypeTerm()));

return result;
}

This is called a relative type constraint because it constrains the type of one object
relative to the type of another. Another form of relative type constraint forces two objects
to have the same type, but without specifying what that type should be:

portName.setTypeSameAs(parameterName);

These constraints could be specified in reverse order,

parameterName.setTypeSameAs(portName);

which obviously means the same thing.

524 Ptolemaeus, System Design

http://Ptolemy.org

14. THE TYPE SYSTEM

Sidebar: Object Types

The object type at the far left in Figure 14.4 is particularly powerful (and should be
used with caution). A token of type object represents a Java object, such as a Ptolemy
actor. Consider the following model:

The value of the Const actor is set to Const, which evaluates to the Const actor itself.
The Const actor’s name is “Const,” and the expression Const evaluates to the actor
itself. Hence, the inferred type of the output port of Const is object, and its output will
be the actor itself.

The object type is not one type, but an infinite number of types, as suggested by
the double oval in Figure 14.4. There is a particular object type for every distinct Java
class. The type of the output port above is object("ptolemy.actor.lib.Const"),
because the Const actor is an instance of the Java class ptolemy.actor.lib.Const.

A type object("A") is less than object("B") if the Java class A is a subclass of
Java class B. For example, ptolemy.actor.lib.Const implements the Java inter-
face, ptolemy.actor.Actor, so

object("ptolemy.actor.lib.Const") <= object("ptolemy.actor.Actor")

In the following variant of the above model, the input port of the MonitorValue actor is
coerced to object("ptolemy.actor.Actor"):

A similar conversion can be accomplished with the cast function by doing

cast(object("ptolemy.actor.Actor"), Const)

The most general object type is object (without any argument). The pre-defined object
token called null has this type.

Ptolemaeus, System Design 525

http://Ptolemy.org

14.3. TYPE CONSTRAINTS IN ACTOR DEFINITIONS

Sidebar: Invoking Methods on Object Tokens

The expression language permits methods defined in the Java class of an object token
(see sidebar on page 525). For example, in a model that contains an actor named C, the
term C in an expression may refer to that actor.

Java methods may be invoked on the objects encapsulated in object tokens. For ex-
ample, in the following model, the Const actor outputs the number of ports contained by
the Const actor:

Sidebar: Petite and Unsigned Byte Data Types

The petite data type is used to represent real numbers in the range between −1.0 and
1.0 inclusive. It is used to emulate the behavior in certain specialized processors such as
DSP processors (Digital Signal Processing), which sometimes use fixed-point arithmetic
limited to this range of values. The petite type approximates this as a double limited to
the range between −1.0 and 1.0 inclusive. In the expression language, a petite number
is indicated by the suffix “p”, and arithmetic operations saturate at −1.0 and 1 when
results would lie outside this range. For example, using the expression evaluator, we get

>> 0.5p + 1.0p
1.0p

A data type that is sometimes useful for operating on raw data (e.g. packets arriving
from a network) is the unsigned byte, designated as follows:

>> 1ub
1ub
>> -1ub
255ub

526 Ptolemaeus, System Design

http://Ptolemy.org

14. THE TYPE SYSTEM

The same constraints can be expressed like this:

protected Set<Inequality> _customTypeConstraints() {
result.add(new Inequality(parameterName.getTypeTerm(),

portName.getTypeTerm());
result.add(new Inequality(portName.getTypeTerm(),

parameterName.getTypeTerm());
return result;

}

The customTypeConstraints method is particularly useful for actors that establish
type constraints between ports that may be dynamically removed or added. For those
actors, it is not safe to store the type constraints in the respective ports because constraints
associated with no longer existing ports can persist and inadvertently cause type errors.

Another common type constraint is an absolute type constraint, which fixes the type of
the port (i.e. making it monomorphic rather than polymorphic). This can specified as
follows:

portName.setTypeEquals(BaseType.DOUBLE);

The above line declares that the port can only handle doubles. Figure 14.8 lists the type
constants defined in the BaseType class. Another form of absolute type constraint imposes
an upper bound on the type:

portName.setTypeAtMost(BaseType.COMPLEX);

which declares that any type that can be losslessly converted to ComplexToken is accept-
able. By default, for any input port that has no declared type constraints, a default type
constraint is automatically created that declares its type to be less than or equal to that
of any output ports that have no declared type constraints. If there are input ports with
no constraints, but no output ports lacking constraints, then those input ports will remain
unconstrained. Conversely, if there are output ports with no constraints, but no input ports
lacking constraints, then those output ports will remain be unconstrained. The latter is
unacceptable, unless backward type inference is enabled. Default type constraints can
be disabled by overriding the defaultTypeConstraints method and having it return
null.

A port can be declared to accept any token using following type constraint:

portName.setTypeAtMost(BaseType.GENERAL);

Ptolemaeus, System Design 527

http://Ptolemy.org

14.3. TYPE CONSTRAINTS IN ACTOR DEFINITIONS

Example 14.10: An extension of Transformer of Figure 12.11 is shown in Figure
14.11. This SimplerScale is a simplified version of the Scale actor in the standard
Ptolemy II library. This actor produces an output token on each firing with a value
that is equal to a scaled version of the input. The actor is polymorphic in that it can
support any token type that supports multiplication by the factor parameter. In the
constructor, the output type is constrained to be at least as general as both the input
and the factor parameter.

1 public class SimplerScale extends Transformer {
2 public SimplerScale(CompositeEntity container,
3 String name)
4 throws NameDuplicationException,
5 IllegalActionException {
6 super(container, name);
7 factor = new Parameter(this, "factor");
8 factor.setExpression("1");
9 // set the type constraints.

10 output.setTypeAtLeast(input);
11 output.setTypeAtLeast(factor);
12 }
13 public Parameter factor;
14 public Object clone(Workspace workspace)
15 throws CloneNotSupportedException {
16 SimplerScale newObject = (SimplerScale)super.
17 clone(workspace);
18 newObject.output.setTypeAtLeast(newObject.input);
19 newObject.output.setTypeAtLeast(newObject.factor);
20 return newObject;
21 }
22 public void fire() throws IllegalActionException {
23 if (input.hasToken(0)) {
24 Token in = input.get(0);
25 Token factorToken = factor.getToken();
26 Token result = factorToken.multiply(in);
27 output.send(0, result);
28 }
29 }
30 }

Figure 14.11: Actor with non-trivial type constraints.

528 Ptolemaeus, System Design

http://Ptolemy.org

14. THE TYPE SYSTEM

Notice in Figure 14.11 how the fire method uses hasToken to ensure that no
output is produced if there is no input. Furthermore, only one token is consumed
from each input channel, even if there is more than one token available. This is
generally the behavior of domain polymorphic actors. Notice also how it uses the
multiply method of the Token class. This method is polymorphic. Thus, this
scale actor can operate on any token type that supports multiplication, including all
the numeric types and matrices.

An awkward complication when customizing type constraints is illustrated by the
clone method in lines 12-18. In order for the actor to work properly in actor-
oriented classes, relative type constraints that are set up in the constructor have to
be repeated in the clone method.

The setTypeAtLeast, setTypeAtMost, setTypeEquals, and setTypeSameAs

methods are part of the Typeable interface, which is implemented by ports and param-
eters. The setTypeAtMost method is usually invoked on input ports to declare a re-
quirement that input tokens must satisfy, while the setTypeAtLeast method is usually
invoked on output ports to declare a guarantee of the type of the output. The meth-
ods customTypeConstraints and defaultTypeConstraints are part of the base
class TypedAtomicActor, and its subclasses can override those methods to customize the
type constraints they impose.

Example 14.11: The constraint that the type of an input port can be no greater
than double might be declared as:

inputPort.setTypeAtMost(BaseType.DOUBLE);

Note that the argument to setTypeAtMost and setTypeEquals is a type, whereas
the argument to setTypeAtLeast is a Typeable object. This reflects the common us-
age, where setTypeAtLeast is declaring a dependency on externally provided types,
whereas both setTypeAtMost and setTypeEquals declare constraints on externally
defined types. The forms of the type inequalities that are specifiable by these methods
also ensures that type inference is efficient and that the result of type inference is deter-
ministic.

Ptolemaeus, System Design 529

http://Ptolemy.org

14.3. TYPE CONSTRAINTS IN ACTOR DEFINITIONS

More complex type constraints arise from structured types, such as arrays and records. To
declare that a parameter is an array of doubles, use:

parameter.setTypeEquals(new ArrayType(BaseType.DOUBLE));

This declares that a parameter or a port has a particular array type. A more flexible
parameter might be able to contain an array of any type. This is expresses as follows:

parameter.setTypeAtLeast(ArrayType.ARRAY_BOTTOM);

In a more elaborate example, we might constrain the type of an output port to be no less
than the element type of the array contained by a parameter (or an input port):

outputPort.setTypeAtLeast(ArrayType.arrayOf(parameter));

To declare that an output has a type greater than or equal to that of the elements of an
input (or parameter) array, use:

outputPort.setTypeAtLeast(ArrayType.elementType(inputPort));

The above code implicitly constrains the input port to have an array type, but does not
constrain the element types of that array. The above kinds of constraints appear in source
actors such as DiscreteClock and Pulse, ArrayToSequence and SequenceToArray. Exam-
ining the source code for those actors can be instructive.

Another common constraint is that an input port of an actor receives a record with uncon-
strained fields. This constraint can be declared using the following code:

inputPort.setTypeAtMost(RecordType.EMPTY_RECORD);

Suppose you have an output port that may produce records with arbitrary fields. The
above construct will not be sufficient since it does not declare any lower bound on the
type, so at run time, the type will not be resolved to something useful. Instead, do:

outputPort.setTypeEquals(BaseType.RECORD);

This forces the type to resolve to the empty record. Any record with fields is a subtype
of the empty record type, so this effectively declares the output to produce any record.
Alternatively, enabling backward type inference allows the element type of the record to
be inferred from the type constraints imposed by downstream actors.

To declare that a parameter can have a value that is any record, you can do:

param.setTypeAtMost(BaseType.RECORD);

530 Ptolemaeus, System Design

http://Ptolemy.org

14. THE TYPE SYSTEM

but you will also need to specify a value for the parameter so that the type resolves to
something concrete. To give a default value that is an empty record you can do:

param.setToken(RecordToken.EMPTY_RECORD);

Two of the types, matrix and scalar, are union types. This means that an instance of this
type can be any of the types immediately below them in the lattice. An actor may, for
example, declare that an input port must be of type no greater than scalar:

inputPort.setTypeAtMost(BaseType.SCALAR);

In this case, inputs of any type immediately below scalar in the type lattice will not be
converted, except that the type of the input tokens will be reported as scalar. This is useful,
for example, in actors that need to compare tokens, such as the Limiter actor. The fire
method of that actor contains the code

if (input.hasToken(0)) {
ScalarToken in = (ScalarToken) input.get(0);
if ((in.isLessThan((ScalarToken) bottom.getToken()))

.booleanValue()) {
output.send(0, bottom.getToken());

} else if ((in.isGreaterThan((ScalarToken) top.getToken()))
.booleanValue()) {

output.send(0, top.getToken());
} else {

output.send(0, in);
}

}

This code relies on input port in and parameter bottom being declared to be at most scalar
type, and ScalarToken being a base class for every token with type immediately below
scalar. It then uses comparison methods defined in the ScalarToken class.

Type constraints in actors can get much more sophisticated than what we describe here.
As always, the source code (and its extensive documentation) is the ultimate reference.

14.4 Summary

Ptolemy II includes a sophisticated type system that performs inference and checks for
errors. It uses an efficient algorithm given by Rehof and Mogensen (1999), who prove
that their algorithm has complexity that is linear in the number of occurrences of symbols
in the type constraints. As a consequence, the algorithm scales well to large models. Most

Ptolemaeus, System Design 531

http://Ptolemy.org

14.4. SUMMARY

of the time, the type system makes it unnecessary for the builder of models to think about
types. At it makes it easy to define actors that operate on a multiplicity of types, as most
of the actors in the standard library do.

Sidebar: Monotonic Functions in Type Constraints

More sophisticated type constraints can be expressed using a monotonic function on
the left-hand side of an inequality. A monotonic function f preserves the order of its
arguments; that is

x1 ≤ x2 ⇒ f(x1) ≤ f(x2). (14.2)

Using a monotonic function, it is possible to define a type that is dependent on other
types in complicated ways. For example, the actor RecordDisassembler sets up a type
constraint that forces each field of its input record to be of the same type as the output
port with the same name as the field.

A monotonic function is specified by subclassing the abstract class Monoton-
icFunction and implementing the methods getVariables and getValue. The
getVariables method returns the variables that the function takes as arguments. The
getValue method returns the result of applying the function to the current value of the
variables it depends on.

For example, the ConstructAssociativeType class subclasses MonotonicFunction.
The variables returned by getVariables are the variables holding the types of a list of
ports, such as the output ports of a RecordDisassembler actor. The getValue method
returns a record type with fields matching the names of those ports and types matching
the types of those ports.

It should be noted that the base class MonotonicFunction does not guarantee that its
subclasses indeed behave monotonically. If a function that is not actually monotonic is
used in a type constraint, then type resolution is no longer guaranteed to yield a unique
result. The result may depend on the order in which constraints are applied.

532 Ptolemaeus, System Design

http://Ptolemy.org

