
cba

This is a chapter from the book

System Design, Modeling, and Simulation using Ptolemy II

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported
License. To view a copy of this license, visit:

http://creativecommons.org/licenses/by-sa/3.0/,

or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View,
California, 94041, USA. Permissions beyond the scope of this license may be available
at:

http://ptolemy.org/books/Systems.

First Edition, Version 1.0

Please cite this book as:

Claudius Ptolemaeus, Editor,
System Design, Modeling, and Simulation using Ptolemy II, Ptolemy.org, 2014.

http://ptolemy.org/books/Systems.

http://creativecommons.org/licenses/by-sa/3.0/
http://ptolemy.org/books/Systems
http://ptolemy.org/books/Systems

16
Web Interfaces

Christopher Brooks, Edward A. Lee, Elizabeth A. Latronico, Baobing Wang, and
Roxana Gheorghui

Contents
16.1 Export to Web . 564

16.1.1 Customizing the Export . 566
16.2 Web Services . 580

16.2.1 Architecture of a Web Server 581
Sidebar: Command-Line Export . 581
16.2.2 Constructing Web Services 583
Sidebar: Components for Web Services and Web Pages 584
16.2.3 Storing Data on the Client using Cookies 589

16.3 Summary . 597
Exercises . 598

Ptolemy II includes a flexible mechanism for creating web pages from models and for
building web services. The more basic mechanism is the export to web, which simply
makes a model available as a web page for browsing using a web browser. Such a web
page provides easy access and documentation for models that archives both the structure
of the models and the results of executing the models. It can be used to share information
about models or their execution without requiring installation of any software, since an
ordinary web browser is sufficient. More interestingly, the mechanism is extensible and
customizable, allowing for creation of fairly sophisticated web pages. You can associate

563

16.1. EXPORT TO WEB

hyperlinks or actions defined in JavaScript∗ with icons in a model. The customization can
be done for individual icons in a model or for sets of icons in a model.

The more advanced mechanism described in this chapter turns a model into a web service.
The machine on which the model executes becomes a web server, and the model defines
how the server reacts to HTTP requests that come in over the Internet. A web service
can be created that does anything that can be done in a Ptolemy II model. Some care
is required, of course, to ensure that such a web service does not create unacceptable
security vulnerabilities for the web server machine.

16.1 Export to Web

To export a model to the web, select [File→Export→Export to Web], as shown in
Figure 16.1. This will open a dialog that enables you to select a directory (or create new
directory). That directory will be populated with a file called index.html, some image
files, and some subdirectories. One image file shows whatever portion of the model is
visible when you perform the export. In addition, there will be an image file for each
open plot window. Moreover, there will be one subdirectory for each composite actor that
is open at the time of export.

The export dialog offers a number of options, as follows.

• directoryToExportTo: The directory into which to put the web files. If no directory
is given, then a new directory is created in the same directory that stores the MoML
file for the model. The new directory will have the same name as the model, with any
special characters replaced so that the name is a legal file name.
• backgroundColor: The background color to use for the image model. By default, this

is blank, which means that the image will use whatever background color the model
has (typically gray). But white is a good option for web pages, as shown in Figure 16.1.
• openCompositesBeforeExport: If this is true, then composite actors in the model are

opened before exporting. Each composite actor will also be exported into its own web
page, and hyperlinks will be created in the top-level image to allow navigation to those
web pages in the browser. If you want only some of the composite actors to be included
in the export, then you can manually open the ones you want. Only open windows will
be included in the export.
∗By default, the export to web facility uses JavaScript to display the parameters of actors. JavaScript may

be disabled in your web browser. To enable JavaScript. See http://support.microsoft.com/gp/howtoscript.

564 Ptolemaeus, System Design

http://support.microsoft.com/gp/howtoscript
http://Ptolemy.org

16. WEB INTERFACES

• runBeforeExport: If this is true, then the model is run before exporting. This has the
side effect of opening plot windows, which will therefore be included in the export. If
you want only some of the plot windows to be included in the export, then you can run
the model and close the ones you don’t want. Only open plot windows will be included
in the export.
• showInBrowser: If this is true, then once the export is complete, the resulting web page

will be displayed in your default browser.
• copyJavaScriptFiles: If this is true, then additional files will be included in the exported

page so that the page does not depend on any files from the internet. The files include

Figure 16.1: Menu command to export a model to the web.

Ptolemaeus, System Design 565

http://Ptolemy.org

16.1. EXPORT TO WEB

JavaScript code and image files that affect the interactivity and look-and-feel of the
web page. By default, these files are not included and are instead retrieved by the web
page from http://ptolemy.org.

For the example shown in Figure 16.1, the resulting web page is displayed by the Safari
web browser as shown in Figure 16.2. This page exhibits some of the default behavior
of export to web. A title for the page is shown at the top; this is, by default, the name
of the model. Moreover, in the image shown in Figure 16.2, the mouse is hovering over
the Signal Source actor, which is outlined; when the mouse hovers over an actor, then by
default, a table with the parameter values of the actor is displayed at the bottom of the
page, as shown in Figure 16.2.

The generated web page shows the portion of the model visible in the viewing pane.
Therefore, parts of the model can be hidden by resizing the viewing pane. For example,
one might wish to hide a long list of parameters or attributes. Simply resize the pane, then
perform the export.

In Figure 16.1, openCompositesBeforeExport and runBeforeExport are both set to true
(the default is false). Hence, the model is executed before the export, opening plot win-
dows. Hyperlinks to the plot windows are created, and clicking on a plot actor on the
web page image will display the plot, as shown in Figure 16.3. In addition, the composite
actors in the model, Signal Source, Carrier Source, and Spectrum, all have hyperlinks to
a page showing the inner structure of the composite.

All these functions can be customized, as we will explain next.

16.1.1 Customizing the Export

As shown in Figure 16.4, the Utilities→WebExport library provides attributes that,
when dragged into a model, customize the exported web page. This section explains
each of the items in this library, shown on the left in the figure. In each case, you can right
click (or control click on a Mac) and select Get Documentation to view documentation
about the attribute. The attributes are related to one another as shown in the UML class
diagram in Figure 16.5.

566 Ptolemaeus, System Design

http://ptolemy.org
http://Ptolemy.org

16. WEB INTERFACES

Figure 16.2: Web page exported from the model shown in Figure 16.1.

Ptolemaeus, System Design 567

http://Ptolemy.org

16.1. EXPORT TO WEB

Figure 16.3: Clicking on the Frequency Domain Display actor in Figure 16.2 dis-
plays the plot generated by running the model.

568 Ptolemaeus, System Design

http://Ptolemy.org

16. WEB INTERFACES

HTMLText: Adding Text to Web Pages

The HTMLText attribute inserts HTML text into the page exported by Export to Web.
Drag the attribute onto the background of a model, as shown in Figure 16.4, and double
click on its icon to specify the HTML text to export. To specify the text to include in
the HTML page, double click on the icon for the HTMLText attribute (which by default
is a textual icon reading “Content for Export to Web”), as shown in Figure 16.6. You can
type in the text to export, including any HTML content you like such as hyperlinks and

Figure 16.4: The Utilities→Web Export library provides attributes that, when
dragged into a model, customize the exported web page. [online]

Ptolemaeus, System Design 569

http://ptolemy.org/systems/models/export/Spectrum2/index.html
http://Ptolemy.org

16.1. EXPORT TO WEB

StringParameter

_expression : String

stringValue() : String

HTMLText

textPosition : HTMLTextPosition

Script

eventType : AreaEventType
script : StringParameter

IconLink

linkTarget : LinkTarget

DefaultTitle

showTitleInHTML : Parameter
include : StringParameter
instancesOf : StringParameter

LinkTarget
DefaultIconLink

include : String
instancesOf : String

one of:
 _lightbox
 _blank
 _self
 _top

LinkToOpenTableaux

to include in the
configuration to
provide default links
to composites and
plot windows

Title

textSize : Parameter
textColor : ColorAttribute
fontFamily : StringParameter
bold : Parameter
italic : Parameter
center : Parameter

Nameable
<<interface>>

getContainer() : NamedObj

WebExportable
<<interface>>

getMimeType() : String
isOverwriteable() : boolean
provideContent(exporter : WebExporter)

one of:
 end
 head
 start
 filename

AreaEventType

ParameterDisplayIconScript

getParameterTable(NamedObj) : String

DefaultIconScript

include : String
instancesOf : String

Include is one of:
 Entities
 Attributes
 All

one of:
 onblur
 onclick
 onblclick
 onfocus
 onmousedown
 onmouseout
 onmouseover
 onmouseup
 onkeydown
 onkeypress
 onkeyup
 none

Include this in the
configuration to
specify a default
script that displays
a parameter table.

IconScript

endText : HTMLText
jQueryLibraries : StringParameter
startText : HTMLText

WebContent

displayText : StringParameter
height : Parameter
width : Parameter

WebAttribute

value : String
webName : String

getWebName() : String
setWebName(webName)

WebElement

parent : String
webName : String

getParent() : String
getWebName() : String
setParent(parent)
setWebName(webName)
newOperation()

Attribute

_container : NamedObj

newOperation()

NamedObj

_elementName : String
_isPersistent : boolean

StringAttribute

_value : String
_visibility : Settable.Visibility

1n

1

n

Configuration

contains

Include this in the configuration to provide
default titles for components (e.g., their
names).

Figure 16.5: UML class diagram for the attributes for customization of exported
web pages. The shaded attributes are the most commonly used in models.

570 Ptolemaeus, System Design

http://Ptolemy.org

16. WEB INTERFACES

Figure 16.6: Dialog for customizing HTML text to include in an exported web
page.

formatting directives. The web page including the text specified in Figure 16.6 is shown
in Figure 16.7.

By default, this text will be placed before the image for the model, but you can change the
position by setting the textPosition parameter, as shown in Figure 16.6. In that figure, you
can see that the HTMLText attribute is configured to put the text at the end of the HTML
file, which explains why that text appears at the bottom of the page in Figure 16.7.

The HTMLText attribute has several options for customizing it:

• displayText: This parameter determines what shows up in the model itself. By default,
this is the text “Content for Export to Web.” Notice that this text also appears in the
exported web page in Figure 16.7, which is a bit odd. This text is not an interesting part

Ptolemaeus, System Design 571

http://Ptolemy.org

16.1. EXPORT TO WEB

of the model; it is simply a placeholder for an attribute that customizes the exported
web page. If you do not want this attribute to show up in an exported web page, you can
simply move the attribute out of the field of view before doing the export. Alternatively,
you can set displayText to an empty string, but this technique has the disadvantage of
making it slightly more difficult to find the attribute to edit or customize the exported
text. In Figure 16.8, the displayText has been set to the empty string. The HTMLText
parameter is still present and can be selected (the small yellow box that is barely visible
at the lower left in the figure is the HTMLText parameter), but since there is no visible
icon, it is hard to find. An easier way to edit the HTMLText parameter is to right click
on the background of the model, as shown in Figure 16.8. The HTMLText parameter
appears as a parameter of the model, along with whatever other parameters have been
defined in the model.
• height: The height of the editing box for specifying the text to export. If you change

this value, close and re-open the dialog for the change to take effect.
• width: The width of the editing box for specifying the text to export. If you change this

value, close and re-open the dialog to see the change.
• textPosition: As mentioned above, this parameter determines the position of the ex-

ported text. The built-in options are end, start, and head. Choosing “end” puts the
text after the exported model image. Choosing “start” puts the text before the exported
model image. Choosing “head” puts the text in the header section of the HTML page.
If you specify any other value for textPosition, then that value is assumed to be the
name of a file, and a file with that name is created in the same directory as the export.
The specified text is then exported to that file.

IconLink: Specifying Hyperlinks for Icons

The IconLink parameter shown in the Utilities→WebExport library can be used to
specify a hyperlink for an icon in the model. To use it, drag it from the library onto
the icon that you would like to have the link. In the example of Figure 16.9, we have
done such a drag onto the text annotation shown at the lower right that reads “See also
MaximumEntropySpectrum.” Double clicking on the text annotation reveals an IconLink
parameter that can be set to a URL. The exported web page will include a hyperlink from
the text annotation to that specified page.

The IconLink parameter can be customized (click on the Configure button at the lower
right of the dialog in Figure 16.9). The parameters displayText, width, and height are the

572 Ptolemaeus, System Design

http://Ptolemy.org

16. WEB INTERFACES

Figure 16.7: Page resulting from inserting an HTMLText attribute into the example
of Figure 16.4 and configuring it as shown in Figure 16.6.

Ptolemaeus, System Design 573

http://Ptolemy.org

16.1. EXPORT TO WEB

same as those for HTMLText, described above. A new parameter is linkTarget. This has
four allowed values:

• lightbox: Display the link in a pop-up lightbox.
• blank (the default): Display the link in new blank window of the browser.
• self: Display the link in the same window, replacing the current page or frame.
• top: Display the link in the same window, replacing the current page.

An example of the lightbox display is the plot shown in Figure 16.3.

In addition, if the linkTarget parameter is given any other value, then that value is assumed
to be the name of a frame in the web page, and that frame becomes the target.

Figure 16.8: The HTMLText attribute can be hidden by setting its displayText
parameter to the empty string. It can still be edited by right clicking on the back-
ground of the model. Notice that HTMLText appears in the list of model parame-
ters.

574 Ptolemaeus, System Design

http://Ptolemy.org

16. WEB INTERFACES

DefaultIconLink: Default Hyperlinks for Icons

The DefaultIconLink parameter shown in the Utilities→WebExport library on the
left in Figure 16.4 can be used to specify a default hyperlink for any icon in a model that
does not contain an IconLink. In addition to the parameters of IconLink, DefaultIconLink
has two additional parameters:

Figure 16.9: The IconLink attribute can be dragged onto an icon. The
object onto which it is dragged acquires a parameter that can be used to
specify a web page to link to from that icon when the model is exported
to the web. Here, the exported web page will have a link on this icon to
“../../MaximumEntropySpectrum/index.html”.

Ptolemaeus, System Design 575

http://Ptolemy.org

16.1. EXPORT TO WEB

• include: This parameter can be used to restrict icons to which the default applies.
Specifically, the defaults may be specified for icons for attributes, entities, or both.
• instancesOf : If non-empty, this attribute specifies a class name. Only entities or at-

tributes (depending on the include parameter) implementing the specified class will be
assigned the default link.

LiveLink: Hyperlinks in Vergil

Although not directly related to web page exporting, the LiveLink parameter is included in
the library because it works particularly well with IconLink. In particular, if you drop an
instance of LiveLink onto an icon, then you can specify a file or URL to be opened when a
user double clicks on the icon in Vergil (vs. clicking on an icon in a browser showing the
exported web page). This does not automatically result in a hyperlink in an exported web
page because typically a model will want to specify a different file or URL to be opened
by Vergil than what would be opened by a browser. Vergil can open and display MoML
files, for example, whereas a browser will simply display the XML content.

Example 16.1: Notice that in Figure 16.9, the annotation that reads “See also Max-
imumEntropySpectrum” contains both an instance of IconLink and an instance of
LiveLink. The LiveLink references a MoML file, MaximumEntropySpectrum.xml,
assumed to be stored in the same directory as the Spectrum model. The IconLink
parameter, however, references an HTML file. That reference assumes that both
Spectrum and MaximumEntropySpectrum will have exported web pages, and that
the relative locations of these pages on a server are such that the specified path will
provide a link to the HTML file for the MaximumEntropySpectrum.

Assuming all files are arranged appropriately in the file system, the Vergil hyperlink
and the web page hyperlink will do essentially the same thing. They will each open
the referenced model, MaximumEntropySpectrum. But Vergil will open it in Vergil,
whereas a browser will open its exported web page in the browser.

576 Ptolemaeus, System Design

http://Ptolemy.org

16. WEB INTERFACES

Figure 16.10: Here, two instances of the IconScript parameter have been
dragged onto the icon for a Ramp actor. These parameters have been customized
to display “I am a Ramp actor!” when the mouse enters the icon on the exported
web page, and to clear the display when the mouse leaves the icon, as shown in
Figure 16.11.

Ptolemaeus, System Design 577

http://Ptolemy.org

16.1. EXPORT TO WEB

IconScript: Scripted Actions for Icons

The IconScript parameter is used to provide a scripted action associated with an icon in
a model. Specifically, an action can be associated with mouse movement over the icon,
mouse clicks, or keyboard actions. The action is specified as a JavaScript script.

Example 16.2: An example using IconScript is shown in Figures 16.10 and 16.11.
In this example, two instances of the IconScript parameter have been dragged onto
the icon for a Ramp actor. These parameters have been customized to display “I
am a Ramp actor!” when the mouse enters the icon on the exported web page, and
to clear the display when the mouse leaves the icon, as shown in Figure 16.11.

The way that this works is that the value of the first IconScript parameter is the
JavaScript code:

writeMyText(’I am a Ramp actor!’)

This invokes a JavaScript procedure writeMyText, which is defined in the script
parameter of the IconScript parameter to be:

Figure 16.11: Web page exported by the model in Figure 16.11, shown with the
mouse lingering over the Ramp icon.

578 Ptolemaeus, System Design

http://Ptolemy.org

16. WEB INTERFACES

function writeMyText(text) {
document.getElementById("below").innerHTML = text;

};

This procedure takes one argument, text, and writes the value of this argument
into the innerHTML field of the element with ID below. That element is defined
in the endText parameter of the IconScript parameter as follows:

<p id="below"></p>

This is an HTML paragraph with ID below. This paragraph will be inserted into
the exported web page below the model image. Finally, the eventType parameter of
the IconScript is set to onmouseover, which results in the script being invoked
when the mouse enters the area of the web page displaying the Ramp icon, as shown
in Figure 16.11.

The second instance of IconScript, named IconScript2, specifies the following
script:

writeMyText(’’)

This uses the same JavaScript procedure to clear the display when mouse ex-
its the Ramp icon. The eventType parameter of this second IconScript is set to
onmouseout.

If multiple instances of IconScript have exactly the same script parameter, then the value
of that parameter will be included only once in the head section of the exported HTML
page. Hence, the value of the script parameter is required JavaScript definitions. The web
page exporter is smart enough to include those definitions only once if they are required
at least once in the model.

DefaultIconScript: Default Scripted Actions for Icons

DefaultIconScript is similar to IconScript, except that it gets dragged onto the background
of a model rather than onto an icon, and it specifies actions for many icons instead of just
one. It has the same parameters as IconScript, but like DefaultIconLink described above,

Ptolemaeus, System Design 579

http://Ptolemy.org

16.2. WEB SERVICES

it also has include and instancesOf parameters, which have the same meaning described
above in Section 16.1.1.

DefaultIconScript can be used, for example, to override the default behavior that causes
parameters to be displayed on mouse over, as shown in Figure 16.2.

Title: Title for Icons

The Title parameter is used to customize the title displayed in a web page. This parameter
also appears as a title in the Vergil window. The title in Figure 16.7 is actually given
by an instance of Title inserted into the model, with the default title changed to read
“Illustration of Signal Processing Using SDF.” This replaces the default title provided by
the web export, which is the name of the model. This title also becomes the title defined
in the header of the exported HTML file.

The default value of the Title parameter is the expression

$(this.getName())

which is an expression in the Ptolemy II expression language for string parameters (see
Chapter 13). This expression invokes the getName method on the container object, so the
default title that is displayed is the name of the model.

DefaultTitle: DefaultTitle for Icons

The DefaultTitle parameter is used to customize the title associated with each icon in
a model. This title is what shows up on the exported web page as a tooltip when the
mouse lingers over an icon. Like DefaultIconLink described above, it also has include
and instancesOf parameters, which have the same meaning described above in Section
16.1.1. These can be used to specify default titles for subsets of icons.

16.2 Web Services

Ptolemy allows models to be run as web services. A web service runs on a server and is
accessible on the Internet via a uniform resource locator (URL). Typically, a web service
responds to requests by providing either a web page (typically formatted in HTML, the

580 Ptolemaeus, System Design

http://Ptolemy.org

16. WEB INTERFACES

hypertext markup language) or by providing data in some other standard Internet format
such as XML (the extensible markup language) or JSON (the JavaScript object nota-
tion). The standard Ptolemy II library includes an attribute that turns a model into a web
server, an actor to respond to HTTP requests, actors that facilitate constructing an HTML
response, and actors for a model to access and use a web service.

16.2.1 Architecture of a Web Server

Figure 16.12 illustrates the operation of a web server. The URL for accessing the web
server consists of the protocol, host name and port number (if other than the default, 80).
For example, the URL http://localhost:8078/ sends an HTTP request to the
web server running on the local machine at port 8078.

A web server hosts one or more web applications (or web services). In our case, each
application will be realized by one Ptolemy II model containing an instance of the Web-
Server attribute (see box on page 584). Each application registers an application path
with the server. The application will handle an HTTP request for URLs that include
the application path immediately after the hostname and port. For example, if appli-
cation 2 registers the application path /app2, then the URL http://localhost:
8078/app2 will be handled by application 2. The application path can be the empty
string, in which case all HTTP requests to this host on this port will be delegated to the

Sidebar: Command-Line Export

Given a MoML file for a model, you can generate a web page using a command-line
program called ptweb. The command should have the following form:

ptweb [options] model [targetDirectory]

The “model” argument should be a MoML file. If no target directory is specified,
then the name of the model becomes the name of the target directory (after any special
characters have been replaced by characters that are allowed in file names). The options
include:
• -help: Print a help message.
• -run: Run the model before the web page is exported, so that plot windows are

included the export.

Ptolemaeus, System Design 581

http://localhost:8078/
http://localhost:8078/app2
http://localhost:8078/app2
http://Ptolemy.org

16.2. WEB SERVICES

Figure 16.12: A web server hosts one or more web applications. Each application
contains one or more request handlers. The web server receives HttpRequests
and, according to the URL of the request, delegates the request to the appropriate
request handler. The handler returns an HttpResponse.

582 Ptolemaeus, System Design

http://Ptolemy.org

16. WEB INTERFACES

application. When multiple applications are running on the same server, each application
should have a unique application path prefix, so that the server can determine where to
delegate requests.

Each application contains one or more request handlers. In our case, these handlers
can be instances of the HttpActor actor (see box on page 584). Each handler regis-
ters a path prefix with the web application (this path prefix can again be the empty
string). For HttpActor, the path prefix is given by the path parameter. When mul-
tiple handlers are running in the same application, each should have a unique path
prefix, so that the application can determine where to delegate the request. For ex-
ample, in Figure 16.12, the URL http://localhost:8078/app1/servlet2
will be handled by application 1, which will delegate it to a Ptolemy II actor that
has registered the prefix servlet2. If more that one prefix matches, then the server
will delegate to handler with the most specific prefix. For example, if one handler
has a blank prefix and the other has the prefix /foo, then all requests of the form
http://hostname:port/applicationPath/foo/... will be delegated to the sec-
ond handler, and all other requests to the first.

A second type of handler called a resource handler is also provided by the WebServer
to handle requests for static resources such as files (Jetty class ResourceHandler).
Again, this has a prefix which must appear in the URL. For example, in Figure 16.12, the
URL http://localhost:8078/app1/files/foo.png references a file named
foo.png that is stored on the server in a directory identified by a resource location at-
tribute of the WebServer.

The response produced by a handler contains a status code, header, and the response
body. The response body is the content for the user, for example, a web page, a file, or
data formatted in JSON. The status code indicates whether the operation was successful,
and if not, why not. There is a standard set of response codes for HTTP requests† The
header contains information such as the content format (the MIME type‡, the content
length, and other useful information.

16.2.2 Constructing Web Services

The use of the WebServer and HttpActor are illustrated by the following example.

†See http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.
‡See http://www.iana.org/assignments/media-types/index.html.

Ptolemaeus, System Design 583

http://localhost:8078/app1/servlet2
http://localhost:8078/app1/files/foo.png
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.iana.org/assignments/media-types/index.html
http://Ptolemy.org

16.2. WEB SERVICES

Sidebar: Components for Web Services and Web Pages

Some components that are particularly useful for constructing web services, accessing
web pages, and building web pages are shown below:

• WebServer. An attribute that starts a Jetty web server (see http://www.
eclipse.org/jetty/) when the model containing it is executed. This at-
tribute routes incoming HTTP requests to objects in the model that implement
an HttpService interface, such as HttpActor. This attribute has parameters for
specifying the port on which to receive HTTP requests, an application path to be
included in the URL accessing this server, directories in which to find resources
that are requested, and a directory in which to store temporary files.

• HttpActor. An actor that handles HTTP GET and HTTP POST requests that
match its path. This actor is designed to work with the DE director. The outputs
contain the details of the request time stamped by the elapsed time (in seconds)
since the server model started executing. This actor expects that for each output it
produces, the model in which it resides will provide an input that is the response
to the HTTP request.

• HttpGet. An actor that issues an HTTP GET request to a specified URL. This
actor is similar to FileReader, but it only handles URLs, and not files.

• HttpPost. An actor that issues an HTTP POST request to a specified URL. The
contents of the post are specified by an input record.

• HTMLPageAssembler. An actor that assembles an HTML page by inserting
input text at appropriate places in a template file.

• HTMLModelExporter. An extension of the VisualModelReference actor that
not only displays and executes a referenced model, but also exports that model to
a web page using the techniques discussed in Section 16.1.

584 Ptolemaeus, System Design

http://www.eclipse.org/jetty/
http://www.eclipse.org/jetty/
http://Ptolemy.org

16. WEB INTERFACES

Example 16.3: The model in Figure 16.13 is a web service that asks the user to
type in some text, then returns the “Ptolemnized” text, where all leading ‘p’s (but
not including instances of ‘th’) are replaced with ‘pt’. For example, ‘text’ becomes
‘ptext’, as shown in Figure 16.14. The text manipulation is accomplished by the
PythonScript actor, which executes the Python code shown in Figure 16.15.

First, notice that the stopWhenQueueIsEmpty parameter of the DE director is set
to false. Were this not the case, the model would halt immediately when run be-
cause there would be no pending events to process. Second, notice that the enable-

Figure 16.13: A simple web service implemented in Ptolemy II. [online]

Ptolemaeus, System Design 585

http://ptolemy.org/systems/models/export/WebServerDE/index.html
http://Ptolemy.org

16.2. WEB SERVICES

Figure 16.14: The web page returned by model in Figure 16.13 in response to
an HTTP GET, and the page returned in response to a POST (triggered by the
button).

586 Ptolemaeus, System Design

http://Ptolemy.org

16. WEB INTERFACES

1 from ptolemy.data import StringToken
2 class Main :
3 "ptolemizer"
4 def fire(self) :
5 # read input, compute, send output
6 t = self.in.get(0)
7 s = t.stringValue()
8 s = self.ptolemize(s)
9 t = StringToken(s)

10 self.out.broadcast(t)
11 return
12

13 def ptolemize(self, s) :
14 l = list(s)
15 length = len(l)
16 if length == 0 :
17 return ’’
18 if length == 1 :
19 if l[0] == ’t’ :
20 return ’pt’
21 else :
22 return l[0]
23 if l[0] == ’t’ and l[1] != ’h’ :
24 l[0] = ’pt’
25 i = 1
26 while i < length - 1 :
27 if l[i-1] == ’ ’ and l[i] == ’t’ and l[i+1] != ’h’ :
28 l[i] = ’pt’
29 i = i + 1
30 if l[-2] == ’ ’ and l[-1] == ’t’ :
31 l[-1] = ’pt’
32 return reduce(lambda x,y: x+y, l, ’’)

Figure 16.15: The Python code for the PythonScript actor in Figure 16.13.

Ptolemaeus, System Design 587

http://Ptolemy.org

16.2. WEB SERVICES

BackwardTypeInference parameter of the model is set to true. This enables back-
ward type inference, which in this case, results in the postParameters output of the
HttpActor to have a record type with a single field called “test” of type string. The
PythonScript actor specifies the type string on its input port, because the Python
code expects a string.

When this model is executed, the WebServer launches a web service with an appli-
cation path of /ptolemnizer on port 8078 of the local machine. The service is
therefore available at http://localhost:8078/ptolemnizer. Accessing
that URL in a web browser results in the top web page of Figure 16.14. How does
this work?

When the web server receives an HTTP GET request with a matching application
path, it delegates the request to the HttpActor. The actor requests of the director
to be fired, and when the director fires it, it produces information about the GET
request on its top three output ports. This model uses the URL of the GET request
to trigger the FileReader actor, which simply reads a file on the local file system,
the contents of which are shown in Figure 16.16. The contents of that file are sent
back to the response input of the HttpActor, which then fires again. On that second
firing, it collaborates with the WebServer to serve the response shown at the top of
Figure 16.14. Note that MicrostepDelay actor is required in the feedback loop, as
usual for DE models (see Section 7.3.2).

As you can see in Figure 16.14 and Figure 16.16, the web page that is served has
a form, and pushing the “Ptolemnize” button results in an HTTP POST with the
contents of the form. When this POST occurs, the WebServer again delegates to
the HttpActor, which outputs the details of the POST on its lower three output
ports. The postParameters port will produce a record token with a single field called
“text.” The RecordDisassembler extracts the value of this field, which is the text
entered by the user into the form. The StringConst, PythonScript, and AddSubtract
actor then construct an HTML response, which is sent back to the HttpActor. That
response results in the page at the bottom of Figure 16.14.

The response to the POST includes an “img” element (see the StringConst actor
in Figure 16.13). When the browser parses this response, this img element will
trigger another HTTP GET. The WebServer has its resourcePath parameter set to
/files, so the img src URL /files/img/Icon.gif will be handled by the
resource handler rather than being delegated to an HttpActor (see Figure 16.12).
That resource handler will search for a file named img/Icon.gif in the directory

588 Ptolemaeus, System Design

http://localhost:8078/ptolemnizer
http://Ptolemy.org

16. WEB INTERFACES

given by the resourceLocation parameter. The small Ptolemy icon on the bottom
page of Figure 16.14 is the result.

This example constructs a web service by composing a number of capabilities. It uses
HTML to construct an interactive web page, and Python to process data submitted by a
user. In effect, the Ptolemy model is serving as an orchestrator for a number of distinct
software components.

16.2.3 Storing Data on the Client using Cookies

A cookie is small piece of data — specifically a (name, value) pair plus expiration and
visibility information — that is stored by a web browser on the client side and returned
to the web server along with subsequent HTTP requests. A web service can store state
on the client using a cookie; for example, a web service can use a cookie to remember
that the user has logged in. A persistent cookie is stored for a specified period of time
(including indefinitely), whereas a session cookie is only stored until the browser window
is closed.

HttpActor has basic support for getting and setting session cookies from a client browser.
Specifically, HttpActor has a requestedCookies parameter whose value is an array of
strings. This specifies the names of cookies that the web service sets or gets. It also
has an input port setCookies, which accepts a record that assigns values to each of the
named cookies. Finally, it has output ports getCookies and postCookies that provide a
record with cookie values along with each HTTP GET or POST request.

Example 16.4: The model shown in Figure 16.17 uses cookies. The web service
that this model implements uses cookies to remember the identity of a client over
a sequence of HTTP accesses. The pages shown in Figure 16.18 illustrate how the
service responds to an initial HTTP GET, an HTTP POST that stores the identity of
a client “Claudius Ptolemaeus” as a cookie, a subsequent HTTP GET, and finally,
an HTTP POST that deletes the cookie.

The model has two instances of HttpActor. The first one, labeled HttpActor1, has
the default path parameter, which matches all requests. The second one, labeled

Ptolemaeus, System Design 589

http://Ptolemy.org

16.2. WEB SERVICES

1 <!DOCTYPE html>
2 <head>
3 <meta charset="utf-8">
4 <title> Website Ptolemnizer </title>
5 </head>
6 <body>
7

8 <div data-role="page" data-theme="c">
9 <div data-role="header">

10 <h1> Text Ptolemnizer </h1>
11 </div>
12 <div data-role="content">
13 Please enter text to Ptolemnize:
14 <form action="ptolemnizer" method="post" >
15

16 <div data-role="fieldcontain" class="ui-hide-label">
17 <label for="text">text:</label>
18 <input type="text" name="text" id="text" value=""
19 width="80" placeholder="text to tolemnize"/>
20 </br>
21 </div>
22

23 <div>
24 Click the button and Ptolemy will
25 Ptolemnize the text for you!
26

27 <button type="submit" id="ptolemnize">
28 Ptolemynize
29 </button>
30 </div>
31 </form>
32 </div>
33 </div>
34 </body>
35 </html>

Figure 16.16: The HTML code read by the FileReader actor in Figure 16.13.

590 Ptolemaeus, System Design

http://Ptolemy.org

16. WEB INTERFACES

Figure 16.17: A model that gets, sets, and deletes a cookie on the client. [online]

Ptolemaeus, System Design 591

http://ptolemy.org/systems/models/export/Cookies/index.html
http://Ptolemy.org

16.2. WEB SERVICES

(a)

(b)

(c)

(d)

Figure 16.18: A sequence of web pages created by the model in Figure 16.17.

592 Ptolemaeus, System Design

http://Ptolemy.org

16. WEB INTERFACES

HttpActor2, has path set to /delete, so it will handle requests with URLs of the
form http://localhost:8078/cookies/delete.

Both instances of HttpActor have parameter requestedCookies set to {"name"},
and array with one string. This instructs the HttpActor to check the incoming HTTP
request for a cookie with the label name. The HttpActor produces a record on its
getCookies or postCookies output port with the label name and the value provided
by the cookie. If no cookie is found, the value is an empty string.

Note that an HttpActor actor always produces a record with the fields specified
in requestedCookies, so downstream actors can always assume a record with the
specified field. Hence, for example, the Expression actor named Expression1 in
Figure 16.17 extracts the name field of the record using the syntax cookies.name.
If value of the field is an empty string, then the model generates a generic welcome
message, as shown in Figure 16.18(a). Otherwise, it customizes the page, as shown
in Figure 16.18(c).

From the initial page, Figure 16.18(a), the user can specify a name and save a
cookie with the name, which yields the response Figure 16.18(b). This is accom-
plished using an HTTP POST with parameter name. Notice in Figure 16.17 that the
postParameters output port is fed back to the setCookies input port, so the response
to this HTTP POST will be to set a cookie in the browser with whatever value is
provided by the POST.

Clicking on the “Refresh page” button causes another HTTP GET, which now
yields the customized page, Figure 16.18(c).

Clicking on the “Delete cookie” button sends a POST request to http://
localhost:8078/cookies/delete. This request is mapped to HttpActor2.
The response has two parts. First, Const1 sends a record with the label name and
an empty string value to the setCookies port on HttpActor2. HttpActor2 interprets
this as a request to delete the cookie. Note that, because of this implementation,
the HttpActor actor will interpret any RecordToken label with an empty string
value as a request to delete the cookie with that label. Hence, a missing cookie is
equivalent to a cookie with an empty value. In addition, the model will generate a
response confirming deletion of the cookie, Figure 16.18(d).

Ptolemaeus, System Design 593

http://localhost:8078/cookies/delete
http://localhost:8078/cookies/delete
http://Ptolemy.org

16.2. WEB SERVICES

Assembling Web Pages

The model in Example 16.4 and Figure 16.17 serves some non-trivial web pages. To
facilitate construction of these web pages, the model uses the HTMLPageAssembler actor.
This actor inserts contents from its input ports into a specified template file, and outputs
the resulting HTML page. The names of the input ports match HTML tag IDs in the
template file.

Example 16.5: Figure 16.19 shows the HTML template referenced by the HTML-
PageAssembler actors in Figure 16.17. Notice the div tag with ID “welcomeMes-
sage.” Notice further that the actors each have an input port named welcomeMes-
sage, which has been added by the builder of the model. Whatever is received on
this input port will be inserted into this div tag position in the response HTML page.

Note that the Save cookie and Refresh page buttons are HTML forms. These
buttons perform the action specified when clicked. For example, the Save cookie

button generates a POST request to the relative URL cookies, at http://
localhost:8078/cookies, as specified by line 7. The Refresh page but-
ton generates a GET request to that same URL, as specified by line 24.

An alternative technique, also used in Figure 16.17, is to use JavaScript to update a page
instead of returning a new page. This technique is known as AJAX (for asynchronous
JavaScript and XML).

Example 16.6: The Delete cookie button calls the JavaScript function
deleteCookie(), as shown on lines 17-18 of Figure 16.19. Figure 16.20 shows
the deleteCookie() function definition. The function submits a POST request to
the relative URL cookies/delete. If the request is successful, the response data
are inserted into the HTML element with the ID welcomeMessage (overwriting
any previous data). If the request is not successful, an error message is inserted into
this element.

This example illustrates two reasons for using Ajax. First, returning a whole page is
not necessary for the delete case. A simple message is sufficient. There are many cases

594 Ptolemaeus, System Design

http://localhost:8078/cookies
http://localhost:8078/cookies
http://Ptolemy.org

16. WEB INTERFACES

where a developer might want to insert a small update into a larger page. This promotes
separation of concerns, where one developer could be responsible for the main page, and
a second could be responsible for updates without having to know the structure of the
rest of the main page. The second developer might also want to create a web service to
provide data to many different pages.

1 <body>
2 <div>
3 <div id="welcomeMessage">
4 </div>
5

6 <div> <p> You can: </p> </div>
7 <form accept-charset="UTF-8" action="cookies
8 method="post">
9 <p> Save a cookie with your name </p>

10 <p> Please enter a name:
11 <input type="text" name="name" id="name"/>
12

13 <input type="submit" value="Save cookie"/>
14 </p>
15 </form>
16

17 <div> <p> Delete the cookie with your name </p>
18 <input type="button" value="Delete cookie"
19 onclick="deleteCookie()"/>
20 </div>
21

22 <div> <p>
23 Refresh the page for a personalized greeting
24 </p> </div>
25

26 <form name="input" action="/cookies" method="get">
27 <input type="submit" value="Refresh page" />
28 </form>
29

30 </div>
31 </body>
32 </html>

Figure 16.19: The HTML template referenced by the HTMLPageAssembler actors
in Figure 16.17.

Ptolemaeus, System Design 595

http://Ptolemy.org

16.2. WEB SERVICES

1 <!DOCTYPE HTML>
2 <html>
3 <head>
4 <script type="text/javascript"
5 src="http://code.jquery.com/jquery-1.6.4.min.js">
6 </script>
7 <script type="text/javascript">
8 function deleteCookie() {
9 jQuery.ajax({

10 url: "/cookies/delete",
11 type: "post",
12 success: function(data) {
13 jQuery(’#welcomeMessage’)
14 .html(data);
15 },
16 error: function(data) {
17 jQuery(’#welcomeMessage’)
18 .html("Error deleting cookie.");
19 }
20 });
21 }
22 </script>
23 <title>Cookies demo</title>
24

25 </head>

Figure 16.20: The head section of the HTML template page used in Figure 16.17.

A more subtle reason for using Ajax is that the URL of the website remains unchanged, at
http://localhost:8078/cookies, while still being able to use a URL structure
for the delete web service, cookies/delete. If the URL were to change to http:
//localhost:8078/cookies/delete, this would cause problems when the user
clicks on further buttons, because the button URLs are defined as relative URLs. E.g., the
URL would then be http://localhost:8078/cookies/delete/cookies.

There are, of course, many other ways to create web pages to respond to HTTP requests.
A particularly interesting possibility is to use the techniques covered in Section 16.1 above
to generate web pages from Ptolemy II models. In fact, a web service model could include
an instance of the HTMLModelExporter actor, which refers to another Ptolemy II model,
executes it, generates a web page with the results, and returns the web page. This offers a
particularly powerful way to combine models to provide sophisticated services.

596 Ptolemaeus, System Design

http://localhost:8078/cookies
http://localhost:8078/cookies/delete
http://localhost:8078/cookies/delete
http://localhost:8078/cookies/delete/cookies
http://Ptolemy.org

16. WEB INTERFACES

16.3 Summary

Building web pages and web services by constructing models offers a potentially very
powerful way to combine sophisticated components in a modular way. At a minimum,
the ability to export a web page that documents a model is valuable, enabling teams of
designers to more effectively communicate with one another. But more interestingly,
the ability to incorporate web servers into models offers a particularly powerful way to
combine distributed services.

Ptolemaeus, System Design 597

http://Ptolemy.org

EXERCISES

Exercises

1. Figure 4.3, discussed in Example 4.3 of Chapter 4, implements a simple chat client
that uses HTTP Get and HTTP Post to enable a client to chat with other clients on
the Internet. In this exercise, we build a simple (and rather limited) web server that
supports this client. This server will support exactly two clients, one that will use
URL
http://localhost:8078/chat/Claudius

for its Get requests, and one that will use URL
http://localhost:8078/chat/Ptolemaeus

for its Get requests. Both will use the same URL,
http://localhost:8078/chat/post

to post chat data.

(a) A key property of this server is that it must implement long polling, where it
sits on an HTTP Get request until a chat client issues an HTTP Post, which
provides some chat text, and then it responds to all clients that have pending
Gets with the contents of the Post. To support this, create an actor-oriented
class composite actor with two input ports, get and post, and one output port
response. This class should queue a get request (at most one) and when a post
arrives, if there is a pending get request in the queue, then it should respond
with the contents of the post.

(b) Use the class definition created in part (a) to build a web server that supports
the two clients.

(c) A limitation of the chat client in Figure 4.3 is that it does not stop gracefully.
The stop button in the Vergil window eventually stops it, but not until the
FileReader actor times out, which can take a long time. In a better design, the
server would always respond to an HTTP Get request within some amount
of time, given by parameter maximumResponseTime. It could respond with
an empty string, and the client could then filter out empty strings so that it
does not display them to the user. In this design, stopping the client will
succeed within the maximumResponseTime. Modify your server and the client
to implement this.

(d) (Open-ended question) One of the limitations of the web server you have been
asked to design is that only exactly two clients are supported. Another is that
there is no authentication of clients. Discuss how to address these limitations,

598 Ptolemaeus, System Design

http://Ptolemy.org

16. WEB INTERFACES

and implement a more elaborate server that addresses at least one of these
limitations.

Ptolemaeus, System Design 599

http://Ptolemy.org

