Evolutionary Programming using Ptolemy II

Greg Rohling
Georgia Tech Research Institute
Georgia Institute of Technology
Greg.Rohling@gtri.gatech.edu

5th Biennial Ptolemy Miniconference
Berkeley, CA, May 9, 2003

Evolutionary Algorithms (EA)

- Evolutionary Algorithms
 - Inspired by Holland 1975
 - Mimic the processes of plant and animal evolution
 - Find a maximum of a complex function.

[Diagram of evolutionary processes: New Gene Pool, Fitness Evaluation, Genes w/ Measure, Mutation, Selection, Child Genes, Mating, Parental Genes]
Multiple Objective Evolutionary Algorithms (MOEA)

- Any multi-input, single output function

- Fun problems have multiple objectives
 - Pd, False Alarms
- Thus Multiple Objective Evolutionary Algorithms

MOEA – Pareto Optimality

- Pareto Optimal or Non-dominated
 - Not out-performed in every dimension by any single individual
 - Pareto Front
- Dominated or inferior
 - Outperformed by some other individual in EVERY objective
Evolutionary Programming (EP)

- Evolutionary Algorithms EA = Tuning parameters of an existing system

 ![Diagram](image)

- EP = Deriving new systems by allowing tuning of parameters for components, AND allowing modification of system topology

 ![Diagram](image)

Koza 1996

EP: Block Diagram Approach

Flexible topology
Feedback possible
Domain Specific Functions
Reusable components
Layered on Ptolemy II

Genome

Inputs

Outputs

Type Params
Function
Inputs

Type Params
Function
Inputs

Type Params
Function
Inputs

Output Select

Output

Ptolemy Miniconference 5
PRESTO

- **List of Possible Elements**
- **Search Space Generator**
- **Search Space**
- **GTMOEA**

Pattern Recognition Evolutionary Synthesis Through Optimization

- **Training Data**
- **Ptolemy II**

PRESTO: MoML Generator

- **GTMOEA** produces XML description of location in search space.
- **MoML Generator** produces MoML for Ptolemy II evaluation.
 - Reads Meta data description of Ptolemy II elements
 - # of Ports
 - Data types for ports
 - Data type relations between ports
 - Support for feedback
 - # of input/output required
 - Attributes Specified
 - MoML description
 - Error Correction
 - Feedback
 - Data types
 - Unconnected ports

- **XML Description**
- **Objective Values**
- **MoML Description**

Ptolemy Miniconference 7
PRESTO Example

• Desire: Build box that takes input of a ramp function and best meets 3 objectives
• Objective Space
 - 3 sets of training data
 • Noisy sinusoids
 - Minimize least square error
• Search Space
 - AddSubtract
 - Scaler
 - Constant
 - Multiplier
 - Sin/Cos

PRESTO Example

• Individual 6695, Good at Objective 2
PRESTO Real World Effort

• Creating “Sub-Algorithms” for AAR44 Missile Warning Receiver Operational Flight Program (OFP)
• Wrapped C++ (Really just C) OFP with JNI to allow calls from within Ptolemy II
• Using Discrete Event Domain to force Wrapped components to be called in sequential order
• Targeting 3 areas of the OFP

PRESTO Real World Effort

• Training/Evaluation Data
 - Sensor and Navigation data
 - 40 hrs of False Positive Data collected from flights
 - 10s of Live fire missile shots
 - 1000s of Simulated missile shots

• Objectives
 - Maximize
 • Probability of detection
 • Negative False Positive Count
 • Time To Intercept Minimum
 • Time To Intercept Average
Ptolemy Miniconference 13

PRESTO Advantages

- Tries many new ideas
- No preconceived notions
- Does not get discouraged with failure
- Works 24 hours a day 7 days a week
- Scalable
- Resulting Evolutionary Program can be graphically examined to understand algorithm evolved.

Ptolemy Miniconference 14

PRESTO Disadvantages

- **MOEP** - Requires evaluation of many (millions) of individuals
- **Ptolemy II** requires
 - 3 seconds to startup
 - Ptolemy Simulation running over 400 times slower than the C++-only implementation
Ptolemy II Suggestions

• Ptolemy II does a good job of error detection. How about adding default error correction?

Questions?