Bravely Using
Java
in the New World of

Complex Real-time Systems

David F. Bacon
IBM T.J. Watson Research Center

Real-Time Systems: Then and Now

|Jr’#"‘f-’5f Planning
s 200ms - 5s

|J r Coordination
II'llll- S 20ms - 500ms

Il'lm'-ﬁ' Il'lm'-ﬁ' Il'lm'-ﬁ'

Why Real-Time Java?

= Traditional methodologies
Highly restricted programming models with verifiable properties
And/Or low-level languages for explicit control
"ad-hoc low-level methods with validation by simulation and prototyping”

= But: these methodologies do not scale
Halting problem
Low productivity (low-level languages, hand-optimization)

= And: complexity of real-time systems are growing extremely fast
From isolated devices to integrated multi-level networked systems
Traditional methodologies break down

A |

= it o

1995 1996 1997 1998 1999 2000 2001

Why Not Real-time Java?

Garbage Collection
Non-deterministic pauses from 100 ms to 1 second
Requirement for real-time behavior is 100 us to 10 ms
Just-in-Time Compilation
Unpredictable interruptions
Large variation in speed (10x)
Optimization technology optimizes average case
Thin locks, speculative in-lining, value prediction, etc.
Sometimes cause non-deterministic slowdowns

IBM Real-Time Java (J9 Virtual Machine)

RTSJ (Real-Time Specification for Java) - existing standard

Scheduling

Scopes
Metronome Real-time Garbage Collection

Provides real-time without changing the programming model
Ahead-of-Time Compilation

Ahead-of-time (AOT) compilation and JXE Linking

Removes JIT non-determinism, allows code to be moved intfo ROM
Status

Third alpha version delivered to customers, university partners 4/05

Surprise early adopter: defense industry

Slow, painful death of Ada
Lack of programmers
Mandated use of “commodity off-the-shelf" (COTS)
Elimination of duplication of effort by government
Sharing of systems, costs, expertise, training
Elimination of single source of supply
More competition
Longevity of systems: aircraft carrier, air traffic control
Move to open standards and “open source” ()
"Make it so"

IBM Real-time Java selected by Raytheon for DD(X)
First Navy "open architecture” project

Outline

RTSJ

Scheduling

Scopes
Real-time Garbage Collection
Handlers
Logical Execution Time
Ahead-of-Time Compilation
Conclusions

RTSJ Scheduling

Real TimeThread
+ Can contain general Java code
* No guaranteed response in the face of garbage collection
NoHeapReal TimeThread (NHRT)
+ Restricted code; can only access special memory regions
+ Can pre-empt garbage collector at any time
Scheduling: PriorityScheduler required; others optional
+ Scheduling may behave differently on different platforms
Thread types: Periodic, Aperiodic, Sporadic (has delta)

RTSJ Scoped Memory LEGEND

Legal RTSJ Pointer

Legal, NHRT Inaccessible

SCOPE 2 llegal RTSJ Pointer

IMMORTAL
MEMORY
(Includes Globals)

Problems with Scopes

= Change to fundamental Java semantics
- Both reads and writes can fail ("safe SEGFAULT")
- Smells like Java, but isn't
= Expensive to implement (read and write barriers)
* And hard to optimize
= Violates modularity
+ Incompatible with pre-existing code; no re-use
* Huge problem for builders of large systems

RTSJ Real-time Programming Abstractions

RealTimeThread (with heap)

=

> 200-1000ms

ScopedMemory + NoHeapRealTimeThread

Don't Avoid Garbage Collection - Fix It!

= Garbage collection invented by McCarthy [1960]
+ Work on real-time collection begins in 1978 [Baker]

= But fundamental problems were not solved
- Space overhead 4-8x
Fragmentation (impractical worst-case space bounds)
 Extra CPU required (collector run on separate CPU)
+ No guaranteed time bounds

= So: not credible in real-time and systems communities
* Led to design of Scopes in RTSJ

What is Metronome?

= A true real-time garbage collector
2 ms worst-case pause
- Sufficient for majority of real-time applications
* Guaranteed utilization (typically 70-80% at 10 ms resolution)
- Guaranteed # Proved (system is too complex)
= True to the Java programming model
* No change to memory semantics
Bounds based on simple application characterization
= Originally a uniprocessor algorithm...
- Embedded systems heritage
Forces highly accurate analysis, but simplifies concurrency
But now extended to small-scale SMP's

[POPL’03 w/ Perry Cheng, Dave Grove, V.T. Rajan]

Garbage Collection as a Periodic Task

Sensor Q

\ p O Actuator
B Nl N I -

Why it wasn't used
= Short period: low CPU utilization
* Missed deadlines

= Long period: low memory utilization
* Memory overflows -> Synchronous Collection -> Missed deadlines

Redistributing Collector Work

Example Application

Allocates half as fast as
the collector can collect
c=-2a

Note: collector frees
no memory until done!

Resulting Schedule

Can Application be Modeled So Simply?

Allocation Stability vs. Time Scale

Peak Allocation Rate

MB/s (peak)

0 m

500 1000 5000 10000 Average

Time Window (microseconds)

Space Yo Time

Scheduler Application (Mutator)

-~

Collector

Metronome: Collector Pause Times

Minimum Mutator Utilization

At At At

Y

= Metric for “real-timeness” ﬂ].

= What it's not
At =4ms
Throughput u=50%

Latency = 1ms

+ Latenc
4 Throughput = 75%

= What it is
Worst-case utilization over a time interval
* Interval may contain multiple short interruptions
- Upper bound on latency (interval x utilization)

Other intervals may have higher utilization (100% when GC off)

- Lower bound on throughput (utilization)

Instantaneous Utilization: 10 ms (100 Hz)

Hutator Utilization {18ns window)

Actual Utilization +
TPrget Utilili?atinn

L
1.5e+18 2e+18 2,5e+18

Tine {ns}

Metronome: Memory Consumption over Time

Metronome Programming Abstractions

RealTimeThread (with heap)

ScopedMemory + NoHeapRealTimeThread

Limits of Real-time Garbage Collection

= Changes to heap require synchronization
Application modifies pointers and allocates objects
Collector moves objects to compact memory
= Synchronization is expensive
To keep cost reasonable, done in quanta (Metronome “beats")
- Quantization has limit (250-500 us)
= Real-time collection works for many tasks, but not all
Currently, only alternative is Scopes

Handlers: Very Low Latency Operations

= General principle:
The higher the frequency, the simpler the task

= Many high-frequency tasks do buffer processing
Don't create new data structures, just move data

= Handlers
Data structure must be allocated in advance
- Usually includes some buffers
When Handler is created, code and data are checked
- If OK, then guaranteed to be free of memory exceptions
Handler can pre-empt garbage collector at any time
- Data structure doesn't change, so ho collector/application synchronization required
More complex processing can be done by low-frequency task

- Builds data structures collected by real-time garbage collector

[w/ Dan Spoonhower]

LEGEND
Handler's Pointer . Object

Final Pointer ' Pinned Object

. . . HEAP

o O
o O
() [DataAray |

Handlers vs. Scopes

Handlers Scopes

Preempt Collector Yes Yes
Access fo rest of Heap No No
Access from Heap Yes No
Allocation No

Memory Safety No

Metronome + Handler Abstractions

RealTimeThread (with heap)

Time Portability

Compelling Java feature: “write once, run anywhere”
As long as you don't care about timing

Time-portability is a critical problem
Otherwise, must re-test on every platform change

Logical execution time (LET) provides a framework
Specify external timing
Compile to infinitely fast abstract virtual machine (E-code)
Validate when loading application in a particular virtual machine

Implementing E-machine support directly in the JVM
Allows E-machine to be written almost entirely in Java
Initial version in April release of IBM Real-Time Java

[w/ Tom Henzinger, Christoph Kirsch]

G-code: Specifying Space as well as Time

S-code

Finite Speed
Infinite Capacity
Explicit Scheduling

Eliminating JIT Non-determinism

= Java is a dynamic language
- Compilation is " just-in-time"
* So unfortunately, meaning of “compile” is order-dependent
= Ahead-of-time Compilation (AOT)
+ Compiles jar files into loadable binary modules
- Splits modules into read-only (ROM) and read-write portions

* Supports all Java features:
- Dynamic class loading
- Reflection
+ Inhibited optimizations
- optimizations with high variability
- just-in-time (data dependent) optimizations
- 80-110% speed of JITted code

Conclusions

= Real-time Java has come a long way
Scheduling
Real-time garbage collection
Deterministic compilation
= Many challenges remain
Latencies competitive with C
Predictable scheduling
Time-portability
= IBM Real-Time Java is leading the way
Real-time garbage collection, RTSJ, AOT compilation, E-machine hooks

Highly integrated research and development effort

- IBM: Research, Software Group, Federal Systems

- Industry: Raytheon and others

- Government: Navy

- Academia: Berkeley, Salzburg, EPFL, Cambridge, CMU

Product-quality JVM with complete suite of libraries
= Seeking collaborators, especially to build real-time Java applications
Binary distribution available

Questions?

http://www.research.ibm.com/metronome

