Large scale networked system simulation using MLDesigner

Horst Salzwedel, MLDesign Technologies, Inc.
2130 Hanover, Palo Alto CA 94303, http://www.mldesigner.com

- Why MLDesigner uses Ptolemy Technology
- What are large scale networked systems (LSNS)?
- Challenges and solutions in designing LSNS
- Challenges and solutions in simulating LSNS
- Summary

The Challenge of Complexity

- To cope with complexity, model based design techniques have been used in aerospace industry throughout its more than 100 years of development.
- Each time new technologies have been introduced, existing models have proved to be insufficient.
- Major problems have been
 - not validated specifications
 - incompatible models between disciplines
 - insufficient testing against specifications
 - organizational structure, training and operation
Move towards mission level design: Multi.
Models of execution/Ptolemy architecture

CHALLENGES

<table>
<thead>
<tr>
<th>Networked Systems/Organizations</th>
<th>Models of execution/Ptolemy architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>>100 Systems</td>
<td>RTOS, HW, SW - design process</td>
</tr>
<tr>
<td>Linux, User behavior</td>
<td>- test</td>
</tr>
<tr>
<td></td>
<td>- operation</td>
</tr>
</tbody>
</table>

Networked Components	Performance level
>100 ECUs	specifications, reliability analysis
	BONeS

| Multi-Disciplinary Design | Tool coupling |
| | Integr. tools: Ctrl-C, MatrixX, Matlab |

Single Discipline Design	Mechanical CAD
	Library based Sim ACML
	VHDL, Verilog
	Functional level specifications
	SPW/COSSAP

Year	1970s
	1980s
	1990s
	2000s

MLDesigner Software System

Common MLDesigner GUI, Block Diagram Editor and Kernel XML Model Description, Simulation Control, CVS

<table>
<thead>
<tr>
<th>Design Domains</th>
<th>Libraries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete Event</td>
<td>Base Library</td>
</tr>
<tr>
<td>FSA/State Chart</td>
<td>Add-on Libraries</td>
</tr>
<tr>
<td>Static Data Flow</td>
<td>802.11 MAC</td>
</tr>
<tr>
<td>Dynamic Data Flow</td>
<td>Network Lib</td>
</tr>
<tr>
<td>Analogue</td>
<td>...</td>
</tr>
<tr>
<td>NS2</td>
<td>Bus systems</td>
</tr>
<tr>
<td>SystemC</td>
<td>User Libraries</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interfaces</th>
<th>MathLib</th>
</tr>
</thead>
<tbody>
<tr>
<td>MatLab</td>
<td>Add-on Libraries</td>
</tr>
<tr>
<td>MatLab</td>
<td>802.11 MAC</td>
</tr>
<tr>
<td>Octave</td>
<td>Network Lib</td>
</tr>
<tr>
<td>GDB</td>
<td>...</td>
</tr>
<tr>
<td>Other Sim Tools</td>
<td>Bus systems</td>
</tr>
<tr>
<td>Other Applications</td>
<td>User Libraries</td>
</tr>
<tr>
<td>Hardware</td>
<td></td>
</tr>
<tr>
<td>OpenGL</td>
<td></td>
</tr>
<tr>
<td>Tcl/Tk</td>
<td></td>
</tr>
<tr>
<td>Altia</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conversion Utility</th>
<th>BONeS => MLD</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSSAP => MLD</td>
<td></td>
</tr>
<tr>
<td>SystemC => MLD</td>
<td></td>
</tr>
<tr>
<td>UML => MLD</td>
<td></td>
</tr>
<tr>
<td>Ptolemy => MLD</td>
<td></td>
</tr>
<tr>
<td>MLD => C</td>
<td></td>
</tr>
<tr>
<td>MLD => SystemC</td>
<td></td>
</tr>
<tr>
<td>MLD => VHDL</td>
<td></td>
</tr>
</tbody>
</table>
MLDesigner Applications

- Networked systems
 - OnChip, Avionics, Aircraft, RPV, AUV, Satellites, Cars, Comm., Networked Computers (GRID), Large Scale IT Systems, Regional Conflicts, TTNT
 - Organizational, Design, Quality and Production Processes

- Electronic system design
 - Embedded systems for controls, comm., …
 - Electronic and mechatronic SoC
 - Architectural performance level

- Reconfigurable electronics
 - Reconfigurable FPGAs
 - Software radios
 - Soft redundancy

What are Large Scale Networked Systems?

- LSNS exhibit a complexity that can no longer be planned at a functional level
 - When subcomponents, designed from written specifications, are assembled to the overall system, the LSNS does not work. Hacking processes can only solve part of the problem
 - Dynamic events couple subcomponents thru the network. Interactions between components and reactions to dynamic events from the mission environment cannot be simulated functional or RTL level
 - Sufficient HIL tests are no longer feasible
 - Major flaws in the design of such systems are not uncommon
 - Problems are often both in the technical design process as well as the organizational process

- Examples include
 - Global satellite communication systems (e.g., Teledesic failed)
 - Integrated comm/nav systems
 - Large scale IT systems
 - Networked onboard ECUs
 - Networked defense systems
 - Organizational or production processes
Critical Design Problems
Solution to The Challenge

- Improving the quality of specification
 - Making specifications executable
 - Finding common Description language between engineering disciplines
 - Testing functional level designs against executable specifications
- Integrating the design flow for design, test and evaluation
- Determining requirements for collaborative organizational processes, qualification of engineers and production processes

Requirements for the design of LSNS

<table>
<thead>
<tr>
<th>AVAILABLE TECHNOLOGY</th>
<th>ENVIRONMENT</th>
<th>SYSTEM TO BE DESIGNED</th>
<th>USER REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experience of engineers</td>
<td>Other components</td>
<td>Hardware</td>
<td>Function</td>
</tr>
<tr>
<td>Design technology/tools</td>
<td>Inputs</td>
<td>Operating System</td>
<td>Performance/Security</td>
</tr>
<tr>
<td>Manufacturing technology</td>
<td>Disturbances</td>
<td>Software</td>
<td>Usage</td>
</tr>
</tbody>
</table>

OUR REQUIREMENTS

- MIN time-to-market/cost
- Acceptable risk
- Reusable components
Mission Level Design Flow

ML Design Flow with UML-based SW Development
LSNS Examples

- Air traffic management system for North Atlantic
- Aeronautical communication system with hundreds of airplanes
- US GRID
- Country-wide automated toll collection/vehicle information system
- Resource allocation for regional conflict
- Large scale IT system
- Tactical Target Network Technology
- Global satellite system
- Large scale onboard system

Analysis of Requirements for ADS Communications

- 345 Aircrafts in one direction
- 2 Inmarsat satellites for North Atlantic
- Worst Case Analysis for Inmarsat GAN
Worst Case Scenario for Inmarsat GAN

- Worst Case 345 Aircrafts within the Footprint
 - Total number of Aircraft flying from Europe to North America per day
- Mean Bandwidth Usage: 15 Mbps
- Maximum Bandwidth Usage: 17.7 Mbps

HORST SALZWEDEL, PTOLEMY/KEPLER CONFERENCE MAY 12th, 2005

DARPA Program
Tactical Targeting Network Technology (TTNT)

- "plug and play" tactical network extension to DoD Global Information Grid (GIG)
 - < 2 milliseconds
 - > 2 mbps
 - > 100 nm
 - 3 sec ingress time for new nodes
 - > 2000 users
- Rockwell Collins: TTNT

Adam Baddeley

HORST SALZWEDEL, PTOLEMY/KEPLER CONFERENCE MAY 12th, 2005
DARPA Program
Tactical Targeting Network Technology (TTNT)

- Over 3 years the simulation model has evolved from two-node prototype, to a 1000-node system (air, ground, water)
- Simulation of communication between 1000 nodes would have taken several month and exceeded the address space of 32 bit operating systems
- Update of simulator
 - Removing object oriented data transport reduced memory requirements by more than a factor 10
 - New schedulers reduced simulation time, e.g., from 2 month to 30 min
 - Dynamic instantiation
 - Distributed simulation

=> Detailed performance level analysis identified protocol and interface challenges that would otherwise been identified after hardware integration

=> High performance requires improvements at all levels of abstraction

TDM/WDM Pixel Bus Network Virtual Prototype

HCS-UFL/Rockwell Collins
Model of architecture and function

TMLLF = Terrain Masking Low Level Flight
- Implementation on distributed processor boards
- Communication with other systems over network
- Modeled with MLDesigner for a Two-Board-System of Level A and Level C functions.

Resource usage of parallel processors

Processing of loops

Resource VCU-Processor

Resource MLI0-Channels

Resource MLI1-Channels
HW in the loop tests

Applying LSNS abstraction/simulation techniques to an Automotive Power Management System model reduced simulation times from > 1 month to several seconds
Summary

- For simulating high performance LSNS the simulation technology had to be significantly improved in memory usage, speed and robustness of schedulers and parallel execution. Models had to be moved to higher levels of abstraction.

- Main experience with integrating design flow for LSNS from application/mission to implementation:
 - Reduced risk in design of complex systems because of validated specifications
 - Reduced number of iterations in design
 - Project completion in time
 - Speedup of design/development of up to 10x and more

Questions?

http://www.mldesigner.com