Demonstrations

- Retargetting from SDF to VHDL
- Multiple Targets within VHDL Domain
- Input to synthesis tools
- Coordinated use of synthesis and optimization with Ptolemy for design exploration
Design Exploration

- Precedence graph exposes concurrency, constraints
- Various options for execution order are possible
- Future goal to explore groupings into execution units
Generating VHDL for Synthesis

```
architecture behavior of LMSGal_LMS1_5 is
begin
process
    variable LMSGal_LMS1_tap0_1: INTEGER;
    variable LMSGal_LMS1_delay1_1: INTEGER;
    variable LMSGal_LMS1_tap1_1: INTEGER;
    variable LMSGal_LMS1_delay2_1: INTEGER;
    variable LMSGal_LMS1_tap2_1: INTEGER;
    variable LMSGal_LMS1_delay3_1: INTEGER;
    variable LMSGal_LMS1_tap3_1: INTEGER;

    LMSGal_LMS1_tap0_1 := LMSGal_LMS1_tap0_1_In;
    LMSGal_LMS1_delay1_1 := LMSGal_LMS1_delay1_1_In;
    LMSGal_LMS1_tap1_1 := LMSGal_LMS1_tap1_1_In;
    LMSGal_LMS1_delay2_1 := LMSGal_LMS1_delay2_1_In;
    LMSGal_LMS1_tap2_1 := LMSGal_LMS1_tap2_1_In;
    LMSGal_LMS1_delay3_1 := LMSGal_LMS1_delay3_1_In;
    --Emacs: LMSParts.vhdl ( Fundamental)--56%
```

• Future goal to simulate VHDL within dataflow
• Ptolemy/SDF for flexible test environment & data visualization
• Ptolemy/CG for heterogeneous system design
Generating VHDL for Simulation

- Retarget from SDF to VHDL, or begin in VHDL
- Generate sequential VHDL based on a valid SDF schedule
- Pass code to external simulator
Design of VHDL Domain Stars

- VHDL Targets: Polymorphic use of library Stars
 - Sequential VHDL: one process, no internal signals, for efficient simulation
 - Structural VHDL: multiple entities, connected by signals, for input to synthesis tools

```vhdl
defstar {
    name { FIR }
    domain { VHDL }
    desc {
        An n-tap FIR filter, with tap values tap0 through tapn, having states for storing the last n-1 input values.
    }
    codeblock (std) {
        $ref(output) $assign(output) $ref(input) * $ref(tap0) + $ref(delay1) * $ref(tap1) + $ref(delay2) * $ref(tap2) + $ref(delay3) * $ref(tap3) + ...;
        ...
        $ref(delay3) $assign(delay3) $ref(delay2);
        $ref(delay2) $assign(delay2) $ref(delay1);
        $ref(delay1) $assign(delay1) $ref(input);
    }
}```
New VHDL Domain in Ptolemy

SDF Domain Graph

BDF

DDF

Design at a higher level

VHDL Domain Graph

Target 1: Sequential code for efficient simulation

Target 2: Structural code 1 EXU:1 firing for synthesis

Simulation

Synthesis

Layout

Generate multiple styles of VHDL code

Other target options, e.g. 1 EXU:1 node and general EXU folding
Motivation

Current Goals:
• Retarget from SDF to VHDL, then simulate and synthesize
• Enable smooth transition from algorithm design to hardware synthesis
• Elevate level of design up from coding in VHDL
• Ensure equivalence of simulation and synthesized design: correct-by-construction

Future Goals:
• Enable high-level design exploration
• Begin with SDF, eventually extend to limited dynamic behavior (BDF, DDF)
Outline

- Motivation
- New VHDL Domain in Ptolemy
- VHDL for Simulation
- VHDL for Synthesis
- Design Exploration
- Demonstrations
VHDL CODE GENERATION FOR SIMULATION AND SYNTHESIS

Michael C. Williamson
Research Advisor: Prof. Edward A. Lee

Ptolemy Review
University of California at Berkeley
March 10, 1995

e-mail: cameron@eecs.berkeley.edu