Multidimensional Dataflow

Ptolemy ILP Conference

March 14, 1997

Praveen Murthy,
Dept. of EECS,
UC Berkeley

Multidimensional Dataflow Extension

Balance equations:

\[r_{A,1} O_{A,1} = r_{B,1} I_{B,1} \]
\[r_{A,2} O_{A,2} = r_{B,2} I_{B,2} \]

Solve for the smallest integers \(r_{X,i} \), which then give the number of repetitions of actor \(X \) in dimension \(i \).

Higher dimensionality follows similarly.
Generalization to Arbitrary Lattices

- MDSDF handles only rectangularly sampled signals.
- GMDSDF handles signals on arbitrary lattices, *without sacrificing compile-time schedulability.*

Non-rectangular Sampling

Definition: The set of all sample points given by \(\hat{i} = V \hat{n} \), \(\hat{n} \in \mathbb{R} \) is called the *lattice* generated by \(V \). It is denoted \(LAT(V) \).
The Fundamental Parallelepiped

The fundamental parallelepiped, denoted by $FPD(V)$, is the set of points given by Vx where $x = [x_1, x_2]^T$ with $0 \leq x_1, x_2 < 1$.

Definition: The set of integer points in $FPD(V)$ is denoted as $N(V)$.

Lemma: $J(V) = |N(V)| = |\text{det}(V)|$ for an integer matrix V.

$L = \begin{bmatrix} 2 & -2 \\ 3 & 2 \end{bmatrix}$.

Multidimensional Decimators

M-D decimation is given by the relationship:

$y(\hat{n}) = x(\hat{n}), \hat{n} \in LAT(V_I M)$

where x is defined on the points $V_I k$, V_I being the sampling matrix.

$M = \begin{bmatrix} 1 & 1 \\ 2 & -2 \end{bmatrix}$

$V_I = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$

Decimation ratio: $|\text{det}(M)|$
Multidimensional Expanders

M-D expander:

\[
y(n) = \begin{cases}
 x(n) & n \in \text{LAT}(V_I) \\
 0 & \text{otherwise}
\end{cases} \quad \forall n \in \text{LAT}(V_I L^{-1})
\]

where \(x \) is defined at the points \(V_I k \), \(V_I \) being the sampling matrix.

![Rectangular expansion vs Non-rectangular expansion]

- **Rectangular expansion**
- **Non-rectangular expansion**

\[
L = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}
\]

Renumbered samples from the expander output

\[
L = \begin{bmatrix} 1 & 1 \\ 2 & -2 \end{bmatrix}
\]

Expansion ratio:

\[|\det(L)| \]

Genarlized MDSDF (GMDSDF): Sources

Definition: The containability condition: let \(X \) be a set of integer points in \(\mathbb{R}^m \). We say that \(X \) satisfies the containability condition if there exists an \(m \times m \) matrix \(W \) such that \(N(W) = X \).

Definition: We will assume that any source actor in the system produces data in the following manner. A source \(S \) will produce a set of samples \(\zeta \) on each firing such that each sample in \(\zeta \) will lie on the lattice \(\text{LAT}(V_S) \). We assume that the renumbered set \(\tilde{\zeta} \) satisfies the containability condition.

\[
V_S = \begin{bmatrix} 1 & 1 \\ 2 & -2 \end{bmatrix}
\]

\[
Q = \begin{bmatrix} 3 & 1.5 \\ 3 & 1.5 \end{bmatrix}
\]

\[
\tilde{\zeta} = \{ V_S^{-1} x : x \in \zeta \}, \tilde{\zeta} = N(Q)
\]
Concise Problem Statement

MDSDF
- Rectangular lattice
- Regions of data produced = rectangular arrays
- Rectangular arrays specified concisely by tuples of produced/consumed.
- Coordinate axes for dataflow along arcs orthogonal to each other (x and y axes).

GMDSDF
- Arbitrary lattice
- Regions of data produced = parallelograms
- Parallelograms specified concisely as the set of integer points inside a support matrix.
- Coordinate axes for dataflow along arcs not necessarily orthogonal.

Support Matrices

Want to describe regions where the data is contained.
- In MDSDF, these are ordinary arrays
- In the extension, these are *support matrices*.

![Diagram](image)

Theorem:

For the decimator,

\[V_f = V_e M \] and \[W_f = M^{-1} W_e. \]

For the expander,

\[V_f = V_e L^{-1} \] and \[W_f = LW_e. \]
Semantics of GMDSDF

$V_{SA} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

$L = \begin{bmatrix} 2 & -2 \\ 3 & -2 \end{bmatrix}$, $|L| = 5 \times 2$

$M = \begin{bmatrix} 1 & 1 \\ 2 & -2 \end{bmatrix}$, $|M| = 2 \times 2$

$W_{SA} = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$

A consumes (1,1) and produces (5,2).

B consumes (2,2) and produces (1,1) on average.

T consumes (1,1)

GMDSDF — Balance Equations

• We don’t know yet exactly how many samples on each firing the decimator will produce.

• Idea: Assume that it produces (1,1) and solve balance equations:

 $3r_{S,1} = 1r_{A,1}$ $5r_{A,1} = 2r_{B,1}$ $r_{B,1} = r_{T,1}$
 $3r_{S,2} = 1r_{A,2}$ $2r_{A,2} = 2r_{B,2}$ $r_{B,2} = r_{T,2}$

• Solution:

 $r_{S,1} = 2$, $r_{S,2} = 1$
 $r_{A,1} = 6$, $r_{A,2} = 3$
 $r_{B,1} = 15$, $r_{B,2} = 3$
 $r_{T,1} = 15$, $r_{T,2} = 3$
Balance equations cont’d

Question: Have we really “balanced”?

No: by counting the number of samples that have been kept in the previous slide.

More systematically:

\[W_{SA} = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} r_{S,1} & 0 \\ 0 & r_{S,2} \end{bmatrix} = \begin{bmatrix} 3r_{S,1} & 0 \\ 0 & 3r_{S,2} \end{bmatrix} \]

\[W_{AB} = LW_{SA} = \begin{bmatrix} 2 & -2 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 3r_{S,1} & 0 \\ 0 & 3r_{S,2} \end{bmatrix} = \begin{bmatrix} 6r_{S,1} & -6r_{S,2} \\ 9r_{S,1} & 6r_{S,2} \end{bmatrix} \]

\[W_{BT} = M^{-1}W_{AB} = \frac{1}{4} \begin{bmatrix} 2 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 6r_{S,1} & -6r_{S,2} \\ 9r_{S,1} & 6r_{S,2} \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 21r_{S,1} & -6r_{S,2} \\ 3r_{S,1} & -18r_{S,2} \end{bmatrix} \]
Balance equations cont’d

Want to know if

\[|N(W_{BT})| = \frac{|N(W_{AB})|}{|M|} \]

We have

\[|N(W_{AB})| = |det(W_{AB})| = 90r_{S,1}r_{S,2} \]

The right hand side becomes

\[\frac{90r_{S,1}r_{S,2}}{4} = \frac{45r_{S,1}r_{S,2}}{2} \]

Therefore, we need

\[r_{S,1}r_{S,2} = 2k \quad k = 0, 1, 2, … \]

The balance equations gave us \(r_{S,1} = 2, r_{S,2} = 1 \).

With these values, we get

\[W_{BT} = \begin{bmatrix} 21/2 & -3/2 \\ 3/2 & -9/2 \end{bmatrix} \]

This matrix has 47 points inside its FPD (determined by drawing it out).

\[\Rightarrow \text{Balance equation solution is not quite right.} \]

Augmented Balance Equations

To get the correct balance, take into account the constraint given by

\[|N(W_{BT})| = \frac{|N(W_{AB})|}{|M|} \]

Sufficiency: force \(W_{BT} \) to be an integer matrix.

\[\Rightarrow r_{S,1} = 4k, k = 1, 2, … \]

\[\Rightarrow r_{S,2} = 2k, k = 1, 2, … \]

Therefore,

\[r_{S,1} = 4, r_{S,2} = 2. \]

- So decimator produces (1,1) on average but has cyclostatic behavior.

Production sequence: 2,1,1,2,1,0,1,1,0,1,2,1,1,2,1,....

Theorem: Always possible to solve these **augmented** balance equations.
Effect of Different Factorizations

Suppose we let $|\text{det}(M)| = 1 \times 4$ instead. Balance equations give:

\[
\begin{align*}
 r_{S,1} &= 1, r_{S,2} = 2 \\
 r_{A,1} &= 3, r_{A,2} = 6 \\
 r_{B,1} &= 15, r_{B,2} = 3 \\
 r_{T,1} &= 15, r_{T,2} = 3
\end{align*}
\]

Also,

\[
W_{BT} = \begin{bmatrix} \frac{21}{4} & -3 \\ \frac{3}{4} & -9 \end{bmatrix}
\]

It turns out that

\[
|N(W_{BT})| = 45
\]

as required.

=> Lower number of overall repetitions with this factoring choice.

Dataspace on Arc AB

[Diagram showing a 1x4 rectangle consumed by a decimator, with original samples produced by source, samples retained by decimator, samples added by expander, and discarded by decimator highlighted.]
Summary of Extended Model

- Each arc has associated with it a lattice-generating matrix, and a support matrix.
- The source actor for an arc establishes the ordering of the data on that arc.
- Expander: consumes $(1,1)$ and produces $FPD(L)$, ordered as an (L_1, L_2) rectangle where $L_1 L_2 = |\text{det}(L)|$.
- Decimator: consumes an (M_1, M_2) rectangle, where $M_1 M_2 = |\text{det}(M)|$ and produces $(1,1)$ on average.
- Write down balance equations.
- Additional equations for support matrices on decimator outputs.
- The above two sets are simultaneously solved to determine the smallest non-zero number of times each node is to be invoked in a periodic schedule.
- Actors are then scheduled as in SDF or MDSDF.

Aspect Ratio Conversion

Format conversion of 2:1 interlaced video from 4/3 aspect ratio to 16/9 aspect ratio.

Format conversion of 2:1 interlaced video from 4/3 aspect ratio to 16/9 aspect ratio.

Format conversion of 2:1 interlaced video from 4/3 aspect ratio to 16/9 aspect ratio.
Concrete Data Structures

- “Cells” can have specific “Values”
- Enabling relationship says when a cell can be filled.
- “Cell” dependency partial order can be arbitrary
- Formalizes most forms of “real-world” data structures: lists, trees, arrays etc.
- Kahn-Plotkin sequential functions on CDS provide an elegant model of computation with many formal properties, like full abstraction.
- CDS approach has been mostly semantic; need to sort out operational issues (like scheduling).

Array-OL

- Array-oriented language developed at Thomson
- Graphical syntax for specifying “array access patterns”
 - In many multidimensional programs, manipulating data aligned in various dimensions is a challenge. For example: Transpose.
 - Patterns specified by “paving” and “tiling” relationships.
- Combine with MDSDF...