Synchronous Reactive Systems and the SR Domain

Stephen Edwards

http://www.eecs.berkeley.edu/~sedwards/

University of California, Berkeley

SR Systems

Zero-delay blocks compute continuous functions

Instantaneous communication with feedback

Single driver, multiple receiver wires with values from flat CPOs

- Block functions may change between instants for time-varying behavior
- Block functions may be specified in any language
Reactive Embedded Systems

- Run at the speed of their environment
- *When* as important as *what*
- Concurrency for controlling the real world
- Determinism desired
- Limited resources (e.g., memory)
- Discrete-valued, time-varying

Examples:
- Systems with user interfaces
 * Digital Watches
 * CD Players
- Real-time controllers
 * Anti-lock braking systems
 * Industrial process controllers

The SR Domain

- A new model of computation in Ptolemy
 - Good for reactive systems
 - Good for describing control
 - Synchronous model of time
 - Supports heterogeneity: opaque blocks
 - Unbuffered multiple-receiver communication channels
- Deterministic
 - Guaranteed by fixed-point semantics
- Fast, predictable execution time
 - Chaotic iteration-based execution
 - Fully static scheduling
The Synchronous Model of Time

- Synchronous: time is an ordered sequence of instants
- Reactive: Instants initiated by environmental events

System responds to each instant
Nothing happens between instants

A system only needs to be “fast enough” to simulate synchronous behavior

SR Systems

- Reactive systems need concurrency
- The synchronous model makes for deterministic concurrency
 - No “interleaving” semantics
 - Events are totally-ordered
 - “Before,” “after,” “at the same time” all well-defined and controllable
- Embedded systems need boundedness; dynamic process creation a problem
- SR system: fixed set of synchronized, communicating processes
Zero Delay and Feedback

How to maintain determinism?

Which goes first?
Need an order-invariant semantics

Contradictory!
Need to attach meaning to such systems.

Fixed-point Semantics are Natural for Synchronous Specifications with Feedback

Why a fixed point?

Self-reference:
The essence of a cycle

\[f(x_t) = x_t \]

System function Vector of signals
(composition of block functions) at time \(t \)

\(f(x_t) = x_t \)

fixed point \(\iff \) stable state

determinism \(\iff \) unique solution
Vector of Signals is a CPO

Values along an upward path grow more defined.

```
1 0  
|  
|  
⊥  
```

“Undefined”

More Defined

Less Defined

```
11 01 10 00  
|  |  |  
|  |  |  
1 1 1 0 0 
```

Formally, $x \sqsubseteq y$ if y is at least as defined as x.

Adding \bot Is Enough

Any set $\{a_1, a_2, \ldots, a_n, \ldots\}$ can easily be “lifted” to give a flat partial order:

```
a_1 a_2 a_3 \ldots a_n \ldots  
\bot  
```

A CPO for signals with pure events:

```
absent present  
\bot  
```

A CPO for valued events:

```
absent $v_1$ $v_2$ \ldots $v_n$ \ldots  
\bot  
```

Why not absent \sqsubseteq present?

```
present A then ... else ... end  
```

Violates monotonicity
Monotonic Block Functions

Giving a more defined input to a monotonic function always gives a more defined output.

Formally, $x \sqsubseteq y$ implies $f(x) \sqsubseteq f(y)$.

A monotonic function never recants (“changes its mind”).

Many Languages Use Strict Functions, Which Are Monotonic

A strict function:

$$g(\ldots, \bot, \ldots) = (\bot, \ldots, \bot)$$

Outside: A strict monotonic function

Inside: Simple “function call” semantics

Most common imperative languages only compute strict functions.

Danger: Cycles of strict functions deadlock—fixed point is all \bot—need some non-strict functions.
A Simple Way to Find the Least Fixed Point

\[\bot \subseteq f(\bot) \subseteq f(f(\bot)) \subseteq \cdots \subseteq \text{LFP} = \text{LFP} = \cdots \]

For each instant,

1. Start with all signals at \(\bot \)
2. Evaluate all blocks (in some order)
3. If any change their outputs, repeat Step 2

\[
\begin{align*}
(a, b, c) &= (\bot, \bot, \bot) \\
f_0(\bot, \bot, \bot) &= (0, \bot, \bot) \\
f_1(0, \bot, \bot) &= (0, 1, \bot) \\
f_2(0, 1, \bot) &= (0, 1, 0) \\
f_2(f_1(f_0(0, 1, 0))) &= (0, 1, 0)
\end{align*}
\]

Asymptotic Schedule Cost

Number of Outputs