EECS 20. Final Exam 9 December 1998 Please use these sheets for your answer. Add extra pages if necessary and staple them to these sheets. Write clearly and put a box around your answer

Print your name below

Last Name
First

Problem 1
Problem 2
Problem 3
Problem 4

Problem 5
Problem 6
Problem 7
Total

1. $\mathbf{1 5}$ points

Give a brief justification of your answer in each case.
(a) Find the smallest positive integer n such that

$$
\sum_{k=0}^{n} \exp (2 k \times 5 \pi / 12)=0
$$

(b) Find $\theta \in[0, \pi / 2]$ so that

$$
R e[(1+i) \exp i \theta]=0
$$

(c) Find $A \in C o m p s$ so that

$$
\forall t \in \text { Reals }, \quad A \exp (i \omega t)+A^{*} \exp (-i \omega t)=\cos \left(\omega_{0} t+\pi / 4\right)
$$

where A^{*} is the complex conjugate of A.
2. 15 points

Draw the following sets:
(a) $\left\{(x, y) \mid x^{2}+y^{2}=1\right\}$
(b) $\{(x, y)||x|+|y|=1\}$
(c) $\{(x, y) \mid \max \{|x|,|y|\}=1\}$

3. 15 points

A relation F between a set X to a set Y is a subset $F \subset X \times Y$. Figure 1 shows a

Figure 1: A graph. The edges are directional.
graph consisting of four nodes $X=\{a, b, c, d\}$. There are directional edges going from one node to another carrying labels 0 or 1 or both. Construct the following relations on $X \times X$

$$
\begin{aligned}
F_{0} & =\{(x, y) \mid \text { there is an edge from } x \text { to } y \text { labeled } 0\} \\
F_{1} & =\{(x, y) \mid \text { there is an edge from } x \text { to } y \text { labeled } 1\} \\
F_{01} & =\{(x, y) \mid \text { there is an edge from } x \text { to } y \text { labeled } 0 \text { and an edge labeled } 1\} \\
F_{0 o r 1} & =\{(x, y) \mid \text { there is an edge from } x \text { to } y \text { labeled } 0 \text { or1 }\}
\end{aligned}
$$

(a) Write each of these four relations as a list.
(b) Are the following assertions true or false?

$$
F_{01}=F_{0} \cap F_{1}, \quad F_{0 o r 1}=F_{0} \cup F_{1}
$$

(c) Define the relation

$$
F_{00}=\{(x, y) \mid \text { two consecutive edges labeled } 0 \text { connect } x \text { to } y\}
$$

List F_{00}.
Write your answer on the next page.

Answer sheet for question 3.
4. 15 points Consider a continuous-time LTI system H. Suppose that when the input x is given by

$$
\forall t \in \text { Reals, } \quad x(t)= \begin{cases}1, & \text { if } 0 \leq t<1 \\ 0, & \text { otherwise }\end{cases}
$$

then the output y is given by

$$
\forall t \in \text { Reals, } \quad y(t)= \begin{cases}1, & \text { if } 0 \leq t<2 \\ 0, & \text { otherwise }\end{cases}
$$

Give an expression and a sketch for the output of the same system if the input is

$$
\forall t \in \text { Reals, } \quad x^{\prime}(t)= \begin{cases}1, & \text { if } 0 \leq t<1 \\ -1, & \text { if } 1 \leq t<2 \\ 0, & \text { otherwise }\end{cases}
$$

5. 20 points Suppose that the frequency response H of a discrete-time LTI system Filter is given by:

$$
\forall \omega \in \text { Reals }, \quad H(\omega)=|\omega| .
$$

where ω has units of radians/sample. Give simple expressions for the output y when the input signal $x:$ Ints \rightarrow Reals, where Ints $=\{\cdots-2,-1,0,1,2, \cdots\}$, is such that $\forall n \in$ Ints each of the following is true:
(a) $x(n)=\cos (\pi n / 2)$.
(b) $x(n)=5$.
(c) $x(n)= \begin{cases}+1, & n \text { even } \\ -1, & n \text { odd }\end{cases}$
6. 20 points Construct a state machine with input and output set $U=\{0,1\}$, and output set $Y=\{t, f\}$ such that for any input sequence $u(0), u(1), \cdots$, the output sequence is

$$
y(n)= \begin{cases}t, & \text { if }(u(n-3), u(n-2), u(n-1))=(1,0,1) \\ f, & \text { otherwise }\end{cases}
$$

In words: the machine outputs t if the three previous inputs are 101, otherwise it outputs f.
What is the output sequence of your machine when the input sequence is $010110101 \cdots$?
7. 20 points A single-input, single-output difference equation system is of the form:
$\forall t=0,1, \cdots$

$$
\begin{aligned}
x(t+1) & =A x(t)+b u(t) \\
y(t) & =c^{\prime} x(t)
\end{aligned}
$$

where A is a $n \times n$ matrix, b and c are n-dimensional column vectors. Suppose the initial state is x_{0}.
(a) Write the general expression for the output sequence $y(t), t=0,1, \cdots$ when the input sequence is $u(0), u(1), \cdots$.
(b) Suppose that

- when the input sequence is $\forall t, u(t)=1$ and the initial state is x_{0}, the output sequence is $\forall t, y(t)=1$, and
- when the input sequence is $\forall t, u(t)=1$ and the initial state is $2 \times x_{0}$, the output sequence is $\forall t, y(t)=2$
i. Give an expression and a sketch of the output response when the initial state is x_{0} and the input sequence is $\forall t, u(t)=0$?
ii. Given an expression and a sketch of the output response when the initial state is 0 and the input sequence is $\forall t, u(t)=1$?

