EECS 20. Final Exam Solution 9 December 1998

1. (a) Let $\rho=\exp (2 i \times 5 \pi / 12)$. Then

$$
\sum_{k=0}^{n} \exp (2 i k \times 5 \pi / 12)=\sum_{k=0}^{n} \rho^{k}=\frac{1-\rho^{n+1}}{1-\rho}
$$

So this sum is zero if
$1-\rho^{n+1}=0 \Leftrightarrow \rho^{n+1}=\exp [2(n+1) \times 5 \pi / 12]=1 \Leftrightarrow 2(n+1) \times 5 \pi / 12$ is a multiple of 2π
The smallest $n>0$ for which this holds is $n=11$.
(b) $\operatorname{Re}[(1+i) \exp i \theta]=\cos \theta-\sin \theta=0$ if $\theta=\pi / 4$.
(c) Let $A=\alpha \exp i \theta$ in polar coordinates. Then

$$
\begin{aligned}
A \exp (i \omega t)+A^{*} \exp (-i \omega t) & =2 R e[\alpha \exp (i \omega t+\theta) \\
& =2 \alpha \cos (\omega t+\theta)=\cos (\omega t+\pi / 4)
\end{aligned}
$$

if $\alpha=1 / 2, \theta=\pi / 4$. So $A=1 / 2 \exp (i \pi / 4)$.
2. The sets are shown in Figure 2

Figure 1: These are the required sets.
3. (a) The lists are

$$
\begin{aligned}
F_{0} & =\{(a, a),(a, b),(b, c),(c, c),(c, d),(d, b)\} \\
F_{1} & =\{(a, a),(b, b),(b, c),(d, a),(d, b),(d, d)\} \\
F_{01} & =\{(a, a),(b, c),(d, b)\} \\
F_{0 o r 1} & =\{(a, a),(a, b),(b, b),(b, c),(c, c),(c, d),(d, a),(d, b),(d, d)\}
\end{aligned}
$$

(b) Both assertions are true.
(c) We have

$$
F_{00}=\{(a, a),(a, b),(a, c),(b, c),(b, d),(c, c),(c, d),(c, b),(d, c)\}
$$

4. Observe that $x^{\prime}(t)=x(t)-x(t-1)$. By linearity and time invariance, it must therefore be true that

$$
y^{\prime}(t)=y(t)-y(t-1)= \begin{cases}1, & \text { if } 0 \leq t<1 \\ -1, & \text { if } 2 \leq t<3 \\ 0, & \text { otherwise }\end{cases}
$$

This is sketched below:

Figure 2: The output signal.
5. (a) Observe that $x(n)=\cos (\pi n / 2)=\left(e^{j \pi n / 2}+e^{-j \pi n / 2}\right) / 2$. Since $H(\pi / 2)=H(-\pi / 2)=$ $\pi / 2$, it follows that $y(n)=\frac{\pi}{2} \cos (\pi n / 2)$.
(b) Observe that $x(n)=5 e^{j 0 n}$. Since $H(0)=0$, it follows that $y(n)=0$.
(c) Observe that $x(n)=\cos (\pi n)=\left(e^{j \pi n}+e^{-j \pi n}\right) / 2$. Since $H(\pi)=H(-\pi)=\pi$, it follows that

$$
y(n)=\pi \cos (\pi n)= \begin{cases}+\pi, & n \text { even } \\ -\pi, & n \text { odd }\end{cases}
$$

6. The state transition diagram is shown in Figure 3. Note the names of the four states indicate the pattern that is remembered. The output sequence is $f f f f t f f t f t \cdots$.

Figure 3: Required state transition diagram.
7. (a) The general expression is $\forall t=0,1, \cdots$

$$
y(t)=c^{\prime} A^{t} x_{0}+\sum_{s=0}^{t-1} c^{\prime} A^{s} b u(t-s-1)
$$

(b) We have $\forall t$

$$
\begin{equation*}
1=c^{\prime} A^{t} x_{0}+\sum_{s=0}^{t-1} c^{\prime} A^{s} b \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
4=2 c^{\prime} A^{t} x_{0}+\sum_{s=0}^{t-1} c^{\prime} A^{s} b \tag{2}
\end{equation*}
$$

i. If we subtract (1) from (2) we get $\forall t$

$$
\begin{equation*}
3=c^{\prime} A^{t} x_{0} \tag{4}
\end{equation*}
$$

so the zero-input response is $\forall t, y(t)=3$.
ii. If we subtract (4) from (1) we get

$$
-2=\sum_{s=0}^{t-s-1} c^{\prime} A^{s} b
$$

So the zero-state response is $\forall t, y(t)=-2$.

