EECS 20. Midterm 1. 2 October 1998
Please use these sheets for your answer. Add extra pages if necessary and staple them to these sheets. Write clearly and put a box around your answer

Print your name below

Last Name \qquad First

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Total

1. 15 points

(a) Find θ so that

$$
\operatorname{Re}[(1+i) \exp i \theta]=-1 .
$$

(b) Define $x:$ Reals \rightarrow Reals

$$
\forall t \in \operatorname{Reals}, x(t)=\sin \left(\omega_{0} t+1 / 4 \pi\right) .
$$

Find $A \in C o m p s$ so that

$$
\forall t \in \operatorname{Reals}, x(t)=A \exp \left(i \omega_{0} t\right)+A^{*} \exp \left(-i \omega_{0} t\right)
$$

where A^{*} is the complex conjugate of A.

2. 15 points

Draw the following sets
(a) $\left\{(x, y) \in\right.$ Reals $\left.^{2} \mid x y=1\right\}$.
(b) $\left\{(x, y) \in\right.$ Reals $\left.^{2} \mid y-x^{2} \geq 0\right\}$.
(c) $\left\{z \in \operatorname{Comps} \mid z^{5}=1+0 i\right\}$.

3. 25 points

(a) Evaluate the truth values of

$$
S=[P \wedge(\neg Q)] \vee R
$$

for the following values of P, Q, R.

P	Q	R	S
True	False	False	
False	True	False	
True	False	True	

(b) The following sequence of statements is a complete context.

Let

$$
\begin{equation*}
x=5, y=6 \tag{1}
\end{equation*}
$$

Then,

$$
\begin{equation*}
x \neq y \tag{2}
\end{equation*}
$$

Now let

$$
\begin{equation*}
Z=\{z \in \text { Reals } \mid z \geq x+y\} \tag{3}
\end{equation*}
$$

Then

$$
\begin{equation*}
x \in Z \tag{4}
\end{equation*}
$$

Let

$$
\begin{equation*}
w=\text { smallest non-negative number in } Z \tag{5}
\end{equation*}
$$

Answer the following:
i. Are the two expressions in (1) both assignments or assertions?
ii. Is the expression (2) an assertion or a predicate?
iii. Is the equality in (3) an assignment or an assertion?
iv. Is the expression " $z \geq x+y$ " in (3) an assertion or a predicate?
v. Is (4) an assertion or a predicate?
vi. Is (5) an assignment or an assertion?

4. 20 points

A signal is mathematically described as a function. We have studied signals described as functions of time and space and signals described as data and event sequences. For example, a mathematical model of a soundwave is a function Sound : Time \rightarrow Pressure. Propose mathematical models for the signals corresponding to the following intuitive descriptions. Give a very brief justification for your proposed models.
(a) A gray-scale video with 256 gray-scale values.
(b) The position of a bird in flight.
(c) The sequence of buttons you press with your TV remote control.

Figure 1: The graph of x
5. 25 points The function $x:$ Reals \rightarrow Reals is given by its graph shown in Figure 1. Note that $\forall t \notin[0,1], x(t)=0$, and $x(0.4)=1$. Define y by

$$
\forall t \in \operatorname{Reals}, y(t)=\sum_{k=-\infty}^{\infty} x(t-k p)
$$

where $p \in$ Reals.
(a) Prove that y is periodic with period p, i.e.

$$
\forall t \in \operatorname{Reals}, y(t)=y(t+p)
$$

(b) Plot y for $p=1$.
(c) Plot y for $p=2$.
(d) Plot y for $p=0.5$.
(e) Suppose the function z is obtained by advancing x by 0.4 , i.e.

$$
\forall t, z(t)=x(t+0.4)
$$

Define w by

$$
\forall t \in \operatorname{Reals}, w(t)=\sum_{k=-\infty}^{\infty} z(t-k p)
$$

What is the relation between w and y. Use this relation to plot w for $p=1$.

