EECS 20. Solutions to Midterm 1. 2 October 1998

1. 15 points

(a) Find θ so that

$$
\operatorname{Re}[(1+i) \exp i \theta]=-1 .
$$

Answer Using $\exp (i \theta)=\cos (\theta)+i \sin (\theta)$,

$$
\operatorname{Re}[(1+i) \exp i \theta=\operatorname{Re}[\cos (\theta)-\sin (\theta)+i(\cos (\theta)+\sin (\theta)]=-1
$$

so

$$
\cos (\theta)-\sin (\theta)=-1
$$

one solution of which is $\theta=\pi / 2$. Another solution is $\theta=\pi$. The general solution is $\pi / 2 \pm 2 n \pi, \pi \pm 2 n \pi$.
(b) Define $x:$ Reals \rightarrow Reals

$$
\forall t \in \operatorname{Reals}, x(t)=\sin \left(\omega_{0} t+1 / 4 \pi\right)
$$

Find $A \in$ Comps so that

$$
\forall t \in \operatorname{Reals}, x(t)=A \exp \left(i \omega_{0} t\right)+A^{*} \exp \left(-i \omega_{0} t\right)
$$

where A^{*} is the complex conjugate of A.
Answer Using $\sin (\theta)=1 / 2 i[\exp (i \theta)-\exp (-i \theta)]$,

$$
\sin \left(\omega_{0} t+1 / 4 \pi\right)=1 / 2 i\left[\exp \left(i\left(\omega_{0} t+1 / 4 \pi\right)\right)-\exp \left(-i\left(\omega_{0} t+1 / 4 \pi\right)\right)\right.
$$

so $A=1 / 2 i \exp (i 1 / 4 \pi)=1 / 2[\sin (\pi / 4)-i \cos (\pi / 4)]$.

2. 15 points

Draw the following sets
(a) $\left\{(x, y) \in\right.$ Reals $\left.^{2} \mid x y=1\right\}$.
(b) $\left\{(x, y) \in\right.$ Reals $\left.^{2} \mid y-x^{2} \geq 0\right\}$.
(c) $\left\{z \in \operatorname{Comps} \mid z^{5}=1+0 i\right\}$.

Answer In drawing the third set, we use the fact that $z^{5}=1=\exp i(2 n \pi)$, so $z=\exp i(2 n \pi / 5), n=0,1,2,3,4$. There are no more solutions, since $\exp i(2 \times 5 \pi / 5)=$ $\exp i 2 \pi=1$ which we have already.
Note A very important result of complex variables is that a polynomial of degree n in a complex variable z has exactly n roots. In the case here check that

$$
z^{5}-1=\prod_{n=0}^{4}(z-\exp i(2 n \pi / 5))
$$

Figure 1: The three sets

3. 25 points

(a) Evaluate the truth values of

$$
S=[P \wedge(\neg Q)] \vee R
$$

for the following values of P, Q, R.

P	Q	R	S
True	False	False	
False	True	False	
True	False	True	

Answer

P	Q	R	S
True	False	False	True
False	True	False	False
True	False	True	True

(b) The following sequence of statements is a complete context.

Let

$$
\begin{equation*}
x=5, y=6 \tag{1}
\end{equation*}
$$

Then,

$$
\begin{equation*}
x \neq y \tag{2}
\end{equation*}
$$

Now let

$$
\begin{equation*}
Z=\{z \in \text { Reals } \mid z \geq x+y\} \tag{3}
\end{equation*}
$$

Then

$$
\begin{equation*}
x \in Z \tag{4}
\end{equation*}
$$

Let

$$
\begin{equation*}
w=\text { smallest non-negative number in } Z \tag{5}
\end{equation*}
$$

Answer the following:
i. Are the two expressions in (1) both assignments or assertions?

Ans Both are assignments
ii. Is the expression (2) an assertion or a predicate?

Ans It is a true assertion
iii. Is the equality in (3) an assignment or an assertion?

Ans It is an assignment in which Z is assigned the set on the right-hand side.
iv. Is the expression " $z \geq x+y$ " in (3) an assertion or a predicate?

Ans It is a predicate which is true if and only if $z \geq 11$
v. Is (4) an assertion or a predicate?

Ans It is a false assertion
vi. Is (5) an assignment or an assertion?

Ans It is an assignment equivalent to the assignment $w=11$.

4. 20 points

A signal is a function. We have studied signals that are functions of time and space and functions that are data and event sequences. Mathematically, we model a signal as a function with some range and common domain. For example, Sound: Time \rightarrow Pressure. Propose mathematical models for the signals with the following intuitive descriptions. Give a very brief justification for your proposed models.
(a) A gray-scale video with 256 gray-scale values .

Ans A video is a sequence of images. Let

$$
\text { Images }=[\text { HorSpace } \times \text { VerSpace } \rightarrow\{0, \cdots, 255\}]
$$

Then a video is represented by a function

$$
\text { Video }: \text { Time } \rightarrow \text { Images }
$$

where Time $=\{0,1 / 30,2 / 30, \cdots\}$.
(b) The position of a bird in flight.

Ans The bird's position at time t in flight can be represented as a point in three-dimensional space, $(x(t), y(t), z(t))$, so

$$
\text { Position : Time } \rightarrow \text { Reals }^{3}
$$

where Time $=[a, b]$ is the duration of the flight.
(c) The buttons you press with your TV remote control.

Ans Let Buttons $=\{$ power, play, fwd, rew, $\cdots\}$ be the buttons we can press. Then the sequence of button presses can be modeled by a function

$$
\text { ButtonPress : Indices } \rightarrow \text { Buttons }
$$

where Indices $=\{1,2, \cdots\}$
5. 25 points The function $x:$ Reals \rightarrow Reals is given by its graph shown in Figure 2. Note that $\forall t \notin[0,1], x(t)=0$, and $x(0.4)=1$. Define y by

Figure 2: The graph of x

$$
\forall t \in \operatorname{Reals}, y(t)=\sum_{k=-\infty}^{\infty} x(t-k p)
$$

where $p \in$ Reals.
(a) Prove that y is periodic with period p, i.e.

$$
\forall t \in \operatorname{Reals}, y(t)=y(t+p) .
$$

Ans We must verify this using the definition of y. Substituting $t+p$ for t we get

$$
\begin{aligned}
y(t+p) & =\sum_{k=-\infty}^{\infty} x(t+p-k p) \\
& =\sum_{k=-\infty}^{\infty} x(t+(1-k) p) \\
& =\sum_{m=-\infty}^{\infty} x(t-m p), \text { by taking } m=1-k \\
& =y(t), \text { by definition of } y
\end{aligned}
$$

(b) Plot y for $p=1$.
(c) Plot y for $p=2$.
(d) Plot y for $p=0.5$.

Ans See Figure 3. Note that the period in the top plot is 1.0 , in the middle it is 2.0 and in the lower plot it is 0.5 .
(e) Suppose the function z is obtained by advancing x by 0.4 , i.e.

$$
\forall t, z(t)=x(t+0.4)
$$

Define w by

$$
\forall t \in \operatorname{Reals}, w(t)=\sum_{k=-\infty}^{\infty} z(t-k p)
$$

Figure 3: The graphs of y, w

What is the relation between w and y. Use this relation to plot w for $p=1$.
Ans We have

$$
\begin{aligned}
w(t) & =\sum_{k=-\infty}^{\infty} z(t-k p) \\
& =\sum_{k=-\infty}^{\infty} x(t+0.4-k p) \\
& =y(t+0.4)
\end{aligned}
$$

So the plot of w is obtained by moving the plot of y to the left by 0.4 , as shown in the top panel of Figure 3 in bold.

