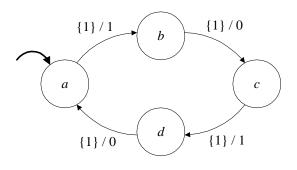
EECS 20. Midterm No. 1 Solution, February 23, 2000.

1. 40 points. Consider the state machine below



where

 $Inputs = \{1, absent\} \text{ and } Outputs = \{0, 1, absent\}$

(a) Is this machine deterministic or nondeterministic?

Answer:

Deterministic.

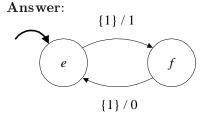
(b) Give the update table.

Answer:

The *update* function is given by:

state	(next state, output)	
	1	absent
a	(b,1)	(a, absent)
b	(c,0)	(b, absent)
с	(d,1)	(c, absent)
d	(a,0)	(d, absent)

(c) Find a deterministic state machine that is bisimilar to this one and has only two states Give it as a state transition diagram by completing the diagram below:



(d) Give the bisimulation relation.

Answer:

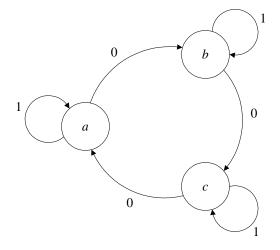
The bisimulation relation is

$$S = \{(a, e), (b, f), (c, e), (d, f)\},\$$

or equivalently,

$$S' = \{(e, a), (e, b), (f, c), (f, d)\}$$

2. 30 points. Let $X = \{a, b, c\}$ represent a set of circles in the following picture:



Consider the following relations, all subsets of $X \times X$:

 $\begin{array}{rcl} F_0 &=& \{(x_1,x_2) \mid \text{there is an arc going from } x_1 \text{ to } x_2 \text{ with a } 0\} \\ F_1 &=& \{(x_1,x_2) \mid \text{there is an arc going from } x_1 \text{ to } x_2 \text{ with a } 1\} \\ F_{0and1} &=& \{(x_1,x_2) \mid \text{there are two arcs going from } x_1 \text{ to } x_2, \text{ one with a } 0 \text{ and one with a } 1\} \\ F_{0or1} &=& \{(x_1,x_2) \mid \text{there is an arc going from } x_1 \text{ to } x_2 \text{ with a } 0 \text{ or one with a } 1\} \end{array}$

(a) Give the elements of the four relations.

Answer:

$$\begin{array}{lll} F_0 &=& \{(a,b),(b,c),(c,a)\} \\ F_1 &=& \{(a,a),(b,b),(c,c)\} \\ F_{0and1} &=& \emptyset \\ F_{0or1} &=& \{(a,b),(b,c),(c,a),(a,a),(b,b),(c,c)\} \end{array}$$

(b) Which of the four relations are the graph of a function of the form $f: X \to X$? List **all** that are such a graph.

Answer: F_0 and F_1 .

(c) Are the following assertions true or false?

 $F_{0and1} = F_0 \cap F_1$ $F_{0or1} = F_0 \cup F_1$

Answer: Both are true.

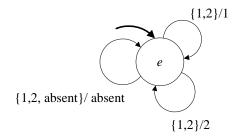
3. 20 points Consider all state machines with

 $Inputs = \{1, 2, absent\} \text{ and } Outputs = \{1, 2, absent\}$ $States = \{a, b, c, d\}.$

Assume all these state machines stutter, as usual, when presented with the stuttering input, *absent*.

- (a) Give a state machine B that simulates all of these state machines. You will lose points if your machine is more complicated than it needs to be.
- (b) Give the simulation relation.

Answer



The simulation relation is

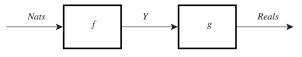
$$S = \{(a, e), (b, e), (c, e), (d, e)\}.$$

4. 30 points Consider the functions

 $g: Y \to Reals$ and $f: Nats \to Y$.

where Y is a set.

(a) Draw a block diagram for $(g \circ f)$, with one block for each of g and f, and label the inputs and output of the blocks with the domain and range of g and f.



(b) Suppose Y is given by

 $Y = [\{1, \cdots, 100\} \rightarrow Reals]$

(Thus, the function f takes a natural number and returns a sequence of length 100, while the function g takes a sequence of length 100 and returns a real number.)

Suppose further that g is given by: for all $y \in Y$,

$$g(y) = \sum_{i=1}^{100} y(i) = y(1) + y(2) + \dots + y(100),$$

and f by: for all $x \in Nats$ and $z \in \{1, \dots, 100\}$,

 $(f(x))(z) = \cos(2\pi z/x).$

(Thus, x gives the period of a cosine waveform, and f gives 100 samples of that waveform.) Give a one-line Matlab expression that evaluates $(g \circ f)(x)$ for any $x \in Nats$. Assume the value of x is already in a Matlab variable called **x**.

Answer:

sum(cos(2*pi*[1:100]/x))

(c) Find (g ∘ f)(1).
Answer: 100