EECS 20. Solutions to Practice Problems No. 3.

8.4 (a) No, since the response to an impulse includes non-zero samples earlier than time zero.
(b) The frequency response is the DTFT of the impulse response,

$$
\begin{aligned}
H(\omega) & =\sum_{m=-\infty}^{\infty} h(m) e^{-i \omega m} \\
& =\sum_{m=-\infty}^{\infty}(\delta(m-1) / 2+\delta(m+1) / 2) e^{-i \omega m} \\
& =\left(e^{-i \omega}+e^{i \omega}\right) / 2 \\
& =\cos (\omega) .
\end{aligned}
$$

This is periodic with period 2π because

$$
\forall \omega \in \text { Reals }, \quad \cos (\omega+2 \pi)=\cos (\omega) .
$$

(c) The fundamental frequency $\omega_{0}=\pi / 2$, in units of radians per sample. To get the Fourier series coefficients, just write the signal as a sum of complex exponentials,

$$
x(n)=(1 / 2) e^{-i \pi n}+(i / 2) e^{-i \pi n / 2}+2-(i / 2) e^{i \pi n / 2}+(1 / 2) e^{-i \pi n},
$$

from which we can read off the coefficients,

$$
\begin{aligned}
X_{-2} & =1 / 2 \\
X_{-1} & =i / 2 \\
X_{0} & =2 \\
X_{1} & =-i / 2 \\
X_{2} & =1 / 2 .
\end{aligned}
$$

The rest of the coefficients are zero.
(d) The Fourier series coefficients of the output will be the above Fourier series coefficients multiplied by $H(\omega)$ for the corresponding value of ω. This yields

$$
\begin{aligned}
y(n) & =-(1 / 2) e^{-i \pi n}+2-(1 / 2) e^{i \pi n} \\
& =2-\cos (\pi n)
\end{aligned}
$$

8.5 We can calculate the CTFT of the impulse response,

$$
\begin{aligned}
H(\omega) & =\int_{-\infty}^{\infty} h(t) e^{-i \omega t} d t \\
& =\int_{0}^{3}(1 / 3) e^{-i \omega t} d t \\
& =\left(1-e^{-i 3 \omega}\right) /(3 i \omega)
\end{aligned}
$$

The following Matlab code plots the magnitude response:

Figure 1: Magnitude response of a 3 -second continuous-time moving average.

```
f = [-5:1/100:5];
H = (1-exp(-i*3*2*pi*f))./(3*i*2*pi*f);
plot(f,abs(H));
```

Note that this gives a "Warning: Divide by zero" at frequency 0 , but generates a correct plot anyway. You can use L'Hopital's rule to find that the value at frequency zero is 1 . The plot is shown in figure 1.
8.6 (a) Using convolution,

$$
\begin{aligned}
y(t) & =\int_{-\infty}^{\infty} h(\tau) x(t-\tau) d \tau \\
& =\int_{-\infty}^{\infty}(\delta(\tau-1)+\delta(\tau-2)) x(t-\tau) d \tau \\
& =\int_{-\infty}^{\infty} \delta(\tau-1) x(t-\tau) d \tau+\int_{-\infty}^{\infty} \delta(\tau-2) x(t-\tau) d \tau \\
& ==x(t-1)+x(t-2),
\end{aligned}
$$

using the sifting rule.

Figure 2: The magnitude frequency response of an LTI system with impulse response $h(t)=\delta(t-$ 1) $+\delta(t-2)$.
(b) The frequency response is the CTFT of the impulse response,

$$
\begin{aligned}
H(\omega) & =\int_{-\infty}^{\infty} h(t) e^{-i \omega t} d t \\
& =\int_{-\infty}^{\infty}(\delta(t-1)+\delta(t-2)) e^{-i \omega t} d t \\
& =e^{-i \omega}+e^{-i 2 \omega},
\end{aligned}
$$

using the sifting rule.
(c) The following Matlab code creates the plot:

```
f = [-5:1/100:5];
H = (exp(-i*2*pi*f) +exp(-i*2*2*pi*f));
plot(f,abs(H));
```

which yields the plot shown in figure 2.
9.8 (a) Note that

$$
X(-\omega)=i \sin (-K \omega)=-i \sin (K \omega)=X^{*}(-\omega)
$$

using the fact that $\sin (\theta)=-\sin (-\theta)$. Thus, X is conjugate symmetric, which implies that x is real.
(b) Using Euler's relation,

$$
X(\omega)=\left(e^{i K \omega}-e^{-i K \omega}\right) / 2
$$

We can recognize the inverse DTFT of each of these terms to get

$$
x(n)=(\delta(n+K)-\delta(n-K)) / 2
$$

where δ is the Kronecker delta function.
9.9 First, note that y is periodic with period p, just as x is. Its Fourier series coefficients are given by the formula

$$
\begin{aligned}
Y_{m} & =\frac{1}{p} \int_{0}^{p} y(t) e^{-i m \omega_{0} t} d t \\
& =\frac{1}{p} \int_{0}^{p} x(t-\tau) e^{-i m \omega_{0} t} d t \\
& =\frac{1}{p} \int_{-\tau}^{p-\tau} x(t) e^{-i m \omega_{0}(t+\tau)} d t \\
& =e^{-i m \omega_{0} \tau} \frac{1}{p} \int_{-\tau}^{p-\tau} x(t) e^{-i m \omega_{0} t} d t \\
& =e^{-i m \omega_{0} \tau} \frac{1}{p} \int_{0}^{p} x(t) e^{-i m \omega_{0} t} d t \\
& =e^{-i m \omega_{0} \tau} X_{m}
\end{aligned}
$$

where we have changed variables in the integral (replacing t with $t-\tau$), and then changed the limits from $-\tau$ to $p-\tau$ to 0 to p. The change of limits is valid because we are integrating over one cycle of a periodic function, so it does not matter where the integral begins. The end result is

$$
Y_{m}=e^{-i m \omega_{0} \tau} X_{m},
$$

so just as with a CTFT, a time delay affects Fourier series coefficients by multiplying them by a complex exponential.
9.10 Use the inverse CTFT,

$$
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{i \omega_{0} t} d \omega
$$

$$
\begin{aligned}
& =\frac{T}{2 \pi} \int_{-\pi / T}^{\pi / T} e^{i \omega_{0} t} d \omega \\
& =\frac{T}{2 \pi i t}\left[e^{i t \pi / T}-e^{-i t \pi / T}\right] \\
& =\frac{\sin (t \pi / T)}{t \pi / T}
\end{aligned}
$$

9.11 Use the CTFT,

$$
\begin{aligned}
Y(\omega) & =\int_{-\infty}^{\infty} y(t) e^{-i \omega t} d t \\
& =\int_{-\infty}^{\infty} X(t) e^{-i \omega t} d t
\end{aligned}
$$

so

$$
\begin{aligned}
\frac{1}{2 \pi} Y(-\omega) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(t) e^{i \omega t} d t \\
& =x(\omega)
\end{aligned}
$$

recognizing this as an inverse CTFT with symbols ω and t swapped. Thus,

$$
\frac{1}{2 \pi} Y(-\omega)=x(\omega)
$$

which implies that

$$
Y(\omega)=2 \pi x(-\omega) .
$$

9.12 Define

$$
y(t)=X(t)=2 \pi \frac{\sin (a t)}{a t} .
$$

From exercise, with π / T replaced by a,

$$
Y(\omega)= \begin{cases}(2 \pi) \pi / a, & \text { if }|\omega| \leq a \\ 0, & \text { if }|\omega|>a\end{cases}
$$

From exercise ,

$$
Y(\omega)=2 \pi x(-\omega)
$$

so

$$
x(t)=\frac{1}{2 \pi} Y(-t)
$$

Hence,

$$
x(t)= \begin{cases}\pi / a, & \text { if }|t| \leq a \\ 0, & \text { if }|t|>a\end{cases}
$$

10.2 Note that $\cos (\theta)=\cos (-\theta)$. Therefore,

$$
\cos (-2 \pi 440 n T+\phi)=\cos (2 \pi 440 n T-\phi)
$$

Thus, $f=440$ and $\theta=-\phi$.
10.6 (a) The sketch is shown below:

The height of each of the peaks is $1 / T$, which in this case is 40,000 .
(b) The sketch is shown below:

The height of each of the peaks is $1 / T$, which in this case is 20,000 .
(c) The sketch is shown below:

The height of each of the peaks is $1 / T$, which in this case is 15,000 . Notice that the overlapping CTFTs caused aliasing distortion.

1. (a) The impulse response is shown below:

(b) Use convolution to relate the input and output

$$
\begin{aligned}
y(n) & =\sum_{k=-\infty}^{\infty} h(k) x(n-k) \\
& =x(n)+2 x(n-1),
\end{aligned}
$$

using the sifting rule. When the input is the unit step, this becomes

$$
y(n)=u(n)+2 u(n-1)= \begin{cases}0 & \text { if } n<0 \\ 1 & \text { if } n=0 \\ 3 & \text { if } n \geq 1\end{cases}
$$

Here is a plot:

(c) If the input is r, then the output is

$$
y(n)=r(n)+2 r(n-1)= \begin{cases}0 & \text { if } n \leq 0 \\ 3 n-2 & \text { if } n \geq 1\end{cases}
$$

Here is a plot:

(d) The frequency response is the DTFT of the impulse response,

$$
\begin{aligned}
H(\omega) & =\sum_{k=-\infty}^{\infty} h(k) e^{-i \omega k} \\
& =1+2 e^{-i \omega} .
\end{aligned}
$$

(e) For all $\omega \in$ Reals,

$$
\begin{aligned}
H(\omega+2 \pi) & =1+2 e^{-i(\omega+2 \pi)} \\
& =1+2 e^{-i \omega} e^{-i 2 \pi} \\
& =1+2 e^{-i \omega}, \text { since } e^{-i 2 \pi}=1 \\
& =H(\omega) .
\end{aligned}
$$

(f)

$$
\begin{aligned}
H(-\omega) & =1+2 e^{i \omega} \\
& =\left(1+2 e^{-i \omega}\right)^{*} \\
& =H^{*}(\omega) .
\end{aligned}
$$

(g) The magnitude response is

$$
\begin{aligned}
|H(\omega)| & =\left|1+2 e^{-i \omega}\right| \\
& =|1+2 \cos (\omega)-2 i \sin (\omega)| \\
& =\sqrt{(1+2 \cos (\omega))^{2}+(2 \sin (\omega))^{2}} \\
& =\sqrt{1+4 \cos (\omega)+4 \cos ^{2}(\omega)+4 \sin ^{2}(\omega)} \\
& =\sqrt{5+4 \cos (\omega)} .
\end{aligned}
$$

We have used the facts that for real numbers a and b,

$$
|a+i b|=\sqrt{a^{2}+b^{2}}
$$

and for any $\omega \in$ Reals,

$$
\cos ^{2}(\omega)+\sin ^{2}(\omega)=1
$$

(h) The phase response is

$$
\begin{aligned}
\angle H(\omega) & =\angle\left(1+2 e^{-i \omega}\right) \\
& =\angle(1+2 \cos (\omega)-2 i \sin (\omega)) \\
& =\tan ^{-1}(-2 \sin (\omega) /(1+2 \cos (\omega))) \\
& =-\tan ^{-1}(2 \sin (\omega) /(1+2 \cos (\omega))) .
\end{aligned}
$$

We have used the fact that for real numbers a and b,

$$
\angle(a+i b)=\tan ^{-1}(b / a) .
$$

(i) The output will be

$$
y(n)=|H(\pi / 2)| \cos (\pi n / 2+\pi / 6+\angle H(\pi / 2))+|H(\pi)| \sin (\pi n+\pi / 3+\angle H(\pi)) .
$$

In this case,

$$
H(\pi / 2)=1-2 i
$$

and

$$
H(\pi)=-1 .
$$

So

$$
|H(\pi / 2)|=\sqrt{5}, \quad \angle H(\pi / 2)=-\tan ^{-1}(2) \approx 1.107
$$

and

$$
|H(\pi)|=1, \quad \angle H(\pi)=\pi .
$$

Hence,

$$
y(n)=\sqrt{5} \cos (\pi n / 2+\pi / 6+1.107)+\sin (\pi n+\pi / 3+\pi) .
$$

