EECS20n, Quiz 3 Solution, 3/17/00

The quiz will take 15 minutes. Do your calculations on the sheet.

Please print your name here:

Last Name: _____ First: _____ Lab time: _____

- 1. Consider each of the functions $x: Ints \to Comps$ given below Is it periodic? If so, what is the period?
 - (a) $\forall n \in Ints$, $x(n) = e^{i(\omega n + a)}$, where $\omega = 3\pi$ and $a = \pi$.

Answer

Yes, it is periodic. The period is the smallest integer p > 0 such that x(n+p) = x(n) for all integers n. I.e.,

$$e^{i(\omega(n+p)+a)} = e^{i(\omega n+a)}.$$

The left side equals

$$e^{ia}e^{i\omega n}e^{i\omega p}$$
.

This is equal to the right side if $\omega p = K2\pi$ for some integer K, or if $3\pi p = 2K\pi$ or p = 2K/3. The smallest integer p for which this can be true is p = 2. (b) $\forall n \in Ints$, $x(n) = e^{n(i\omega+a)}$, where $\omega = 3\pi$ and $a = \pi$.

Answer

No, it is not periodic, because of the factor e^{na} . Following the same method as above, if it were periodic, then its period p would have to be an integer such that

$$e^{(n+p)(i\omega+a)} = e^{n(i\omega+a)}$$

This would require that

$$p(i\omega + a) = p(i3\pi + \pi) = K2\pi$$

for some integer K, which is clearly not possible.

2. Use Euler's relation to prove that $\forall \theta \in Reals$, $\cos^2(\theta) + \sin^2(\theta) = 1$.

Answer

$$e^{i\theta}e^{-i\theta} = (\cos(\theta) + i\sin(\theta))(\cos(\theta) - i\sin(\theta))$$

= $\cos^{2}(\theta) + \sin^{2}(\theta).$

Moreover,

 $e^{i\theta}e^{-i\theta} = |e^{i\theta}|^2 = 1.$

Therefore,

$$\cos^2(\theta) + \sin^2(\theta)) = 1.$$