EECS20n, Quiz 3 Solution, 3/17/00

The quiz will take 15 minutes. Do your calculations on the sheet.
Please print your name here:

Last Name: \qquad First: \qquad Lab time: \qquad

1. Consider each of the functions $x:$ Ints \rightarrow Comps given below Is it periodic? If so, what is the period?
(a) $\forall n \in$ Ints, $\quad x(n)=e^{i(\omega n+a)}$, where $\omega=3 \pi$ and $a=\pi$.

Answer
Yes, it is periodic. The period is the smallest integer $p>0$ such that $x(n+p)=$ $x(n)$ for all integers n. I.e.,

$$
e^{i(\omega(n+p)+a)}=e^{i(\omega n+a)} .
$$

The left side equals

$$
e^{i a} e^{i \omega n} e^{i \omega p}
$$

This is equal to the right side if $\omega p=K 2 \pi$ for some integer K, or if $3 \pi p=$ $2 K \pi$ or $p=2 K / 3$. The smallest integer p for which this can be true is $p=2$.
(b) $\forall n \in \operatorname{Ints}, \quad x(n)=e^{n(i \omega+a)}$, where $\omega=3 \pi$ and $a=\pi$.

Answer

No, it is not periodic, because of the factor $e^{n a}$. Following the same method as above, if it were periodic, then its period p would have to be an integer such that

$$
e^{(n+p)(i \omega+a)}=e^{n(i \omega+a)} .
$$

This would require that

$$
p(i \omega+a)=p(i 3 \pi+\pi)=K 2 \pi
$$

for some integer K, which is clearly not possible.
2. Use Euler's relation to prove that $\forall \theta \in$ Reals, $\quad \cos ^{2}(\theta)+\sin ^{2}(\theta)=1$.

Answer

$$
\begin{aligned}
e^{i \theta} e^{-i \theta} & =(\cos (\theta)+i \sin (\theta))(\cos (\theta)-i \sin (\theta)) \\
& =\cos ^{2}(\theta)+\sin ^{2}(\theta) .
\end{aligned}
$$

Moreover,

$$
e^{i \theta} e^{-i \theta}=\left|e^{i \theta}\right|^{2}=1 .
$$

Therefore,

$$
\left.\cos ^{2}(\theta)+\sin ^{2}(\theta)\right)=1 .
$$

