EECS20n, Quiz 5 Solution, 4/24/00

1. The fundamental frequency is $\omega_{0}=\pi / 10$, in units of radians per second. To get this systematically, note that the first cosine has a period of 10 and the second has a period of 20/3. The least common multiple of these is 20 , so the fundamental frequency is $2 \pi / 20=\pi / 10$.
To get the Fourier series coefficients, just write the signal as a sum of complex exponentials,

$$
x(t)=(1 / 2) e^{i(\pi / 10) 2 t}+(1 / 2) e^{-i(\pi / 10) 2 t}+(1 / 2) e^{i(\pi / 10) 3 t}+(1 / 2) e^{-i(\pi / 10) 3 t},
$$

from which we can read off the coefficients,

$$
\begin{aligned}
X_{-3} & =1 / 2 \\
X_{-2} & =1 / 2 \\
X_{2} & =1 / 2 \\
X_{3} & =1 / 2
\end{aligned}
$$

The rest of the coefficients are zero.
2. The Fourier series coefficients of the output will be the above Fourier series coefficients multiplied by $H(\omega)$ for the corresponding value of ω. At $\omega=2 \pi / 10$ and $-2 \pi / 10, H(\omega)=1$. At $\omega=3 \pi / 10$ and $-3 \pi / 10, H(\omega)=-1$. This yields

$$
y(t)=(1 / 2) e^{i(\pi / 10) 2 t}+(1 / 2) e^{-i(\pi / 10) 2 t}-(1 / 2) e^{i(\pi / 10) 3 t}-(1 / 2) e^{-i(\pi / 10) 3 t},
$$

so

$$
y(t)=\cos (\pi t / 5)-\cos (3 \pi t / 10) .
$$

