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1. 15 points. 5 points for (a), 10 points for (b)

(a) The deterministic machine A is like the CodeRecognizer machine studied in the text and
in the homework.
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A

Let x denote an input signal and y the corresponding output signal. Complete the ex-
pression for y(n) below, ignoring stuttering inputs, (i.e. replace the · · · by an expression
involving x)

∀x ∈ InputSignals, ∀n ∈ Naturals0,

y(n) =

{
recognize, if · · ·
absent, otherwise

(b) Determine whether the non-deterministic machine B simulates A and write down the
relevant simulation relation if it does.
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2. 20 points. 5 points for (a), (b), 10 points for (c) The input signal x and output signal y of an
LTI system are related by the differential equation

∀t ∈ Reals, ẏ(t) + y(t) = x(t).

(a) The frequency response of this system is

∀ω ∈ Reals, H(ω) =

and the magnitude and phase response for ω = 0,±1, and ω → ±∞ are:

(b) The impulse response of this system is

∀t ∈ Reals h(t) =

{
, if t < 0
, if t > 0

Hint: The Fourier transform of the signal x(t) = 0, t < 0;x(t) = e−t, t ≥ 0 is
∀ω,X(ω) = [1 + iω]−1.

(c) Now consider an LTI system whose impulse response g = h ∗ h, where h is as in (2b).
Let G be the frequency response of this system. Then

∀ω ∈ Reals, G(ω) = ,

|G(1)| = , � G(1) =

∀t ∈ Reals, g(t) =

{
, if t < 0
, if t > 0
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3. 20 points, 4 points each part Let M be a deterministic state machine with input and output
alphabet {0, 1, absent}. State whether the following propositions are true or false.

(a) Suppose M has a finite number of states. Let y = (y(0), y(1), · · · , ) be the output
signal corresponding to the input signal x = (0, 0, 0, · · ·) (all zero sequence). Then
the output signal y must be eventually periodic, i.e. there are integers N, p such that
∀n > N, y(n + p) = y(n).
Answer:

(b) Suppose the output signal y of M is related to its input signal x by: ∀n ≥ 0,

y(n) =

{
1, if x(0), · · · , x(n) contain an unequal number of 0s and 1s,
0, otherwise

Then M has an infinite number of states.

Answer:

(c) Suppose all the states of M are reachable (from the initial state). Then all states of
the side-by-side composition of M with itself are reachable. The composition is shown
below.

M

M

{0,1, absent} {0,1, absent}

{0,1, absent}{0,1, absent}

Answer:

(d) Suppose all the states of M are reachable (from the initial state). Then all states of the
cascade composition of M with itself are reachable. The composition is shown below.

M M
{0,1, absent} {0,1, absent}

Answer:

(e) Suppose N is another deterministic state machine that simulates M . Then M simulates
N .

Answer:
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4. 25 points, 5 points each part In the block diagram below of a sampling and reconstruction
system, the input signal xi : Reals → Complex is multiplied by the periodic impulse train p
to produce the sampled signal wi. Here

∀t ∈ Reals, p(t) =
∞∑

n=−∞
δ(t− nT ),

The ideal reconstruction filter has frequency response H:

∀ω, H(ω) =

{
T, if |ω| < π/T
0, otherwise

H
xi

p

wi zi

multiplier 

Assume below that the sampling frequency is f = 8, 000 Hz, T = 125µs.

Note: Answers to questions below do not require much calculation

(a) The Fourier transform of p is

∀ω ∈ Reals, P (ω) = .

(b) In terms of Xi, the Fourier Transform of xi, the Fourier Transform of wi is

∀ω ∈ Reals, Wi(ω) = .

and the Fourier Transform of zi is

∀ω ∈ Reals, Zi(ω) = .
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(c) Suppose ∀t, x1(t) = cos(2π × 1000t). Then ∀ω ∈ Reals,

X1(ω) =
W1(ω) =
Z1(ω) =

(d) Suppose ∀t, x2(t) = cos(2π × 7000t). Then ∀ω ∈ Reals,

X2(ω) =
W2(ω) =
Z2(ω) =

(e) Suppose ∀t, x3(t) = cos(2π × 1000t) − cos(2π × 7000t). Then ∀ω ∈ Reals,

Z3(ω) =

and ∀t ∈ Reals,

z3(t) =
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5. 20 points, 5 points each part The step input for a continuous time system is defined as
x(t) = 0, t < 0, x(t) = 1, t ≥ 0; and for a discrete time system it is defined as x(n) =
0, n < 0, x(n) = 1, n ≥ 0.

(a) If the impulse response of a continuous time LTI system is

∀t, h(t) =

{
0, t < 0
e−t, t ≥ 0

its step response is

s(t) =

{
, t < 0
, t ≥ 0

(b) If the impulse response of a continuous time LTI system is

h(t) =

{
e−|t|, t < 0
0, t ≥ 0

its step response is

s(t) =

{
, t < 0
, t ≥ 0

(c) If the impulse response of a discrete time LTI system is

h(n) =

{
1, n = 0, 1, 2
0, otherwise

its step response is

s(n) =




(d) If the impulse response of a discrete time LTI system is

h(n) =

{
1, n = 1, 2, 3
0, otherwise

its step response is

s(n) =
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6. 10 points, 3 points for (a)-(c), 1 point for (d) For each continuous time signals xi, write
down its Fourier transform Xi

(a) ∀t, x1(t) = ei20t.

∀ω,X1(ω) =

(b) ∀t, x2(t) = 1, |t| < T ;x2(t) = 0, |t| > T.

∀ω,X2(ω) = .

(c) ∀t, x3(t) = x1(t) × x2(t), where x1, x2 are as above.

∀ω,X3(ω) = .

(d) The unit of ω above is
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7. 10 points For each of the following discrete-time systems with input signal x and output
signal y, state whether it is linear (L), time-invariant (T), linear and time-invariant (LTI), or
none (N).

∀n, y(n) = x(2 − n) Answer:

∀n, y(n) = [x(n− 1)]2 Answer:

∀n, y(n) =
∑∞

m=−∞ 0.5|m|x(n−m) Answer:

∀n, y(n) = x(2 − n) + x(n− 2) Answer:

∀n, y(n) = n2x(n) Answer:
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