1. $\mathbf{1 5}$ points. $\mathbf{5}$ points for (a), $\mathbf{1 0}$ points for (b)

(a) The deterministic machine A is like the CodeRecognizer machine studied in the text and in the homework.

Let x denote an input signal and y the corresponding output signal. Complete the expression for $y(n)$ below, ignoring stuttering inputs, (i.e. replace the \cdots by an expression involving x)

$$
\begin{aligned}
\forall x \in \text { InputSignals, } & \forall n \in \text { Naturals }_{0}, \\
y(n)= & \begin{cases}\text { recognize, }, & \text { if } \ldots \\
\text { absent }, & \text { otherwise }\end{cases}
\end{aligned}
$$

Answer $(x(n-3), x(n-2), x(n-1), x(n))=(1,1,1,1)$
(b) Determine whether the non-deterministic machine B simulates A and write down the relevant simulation relation if it does.

Answer Yes, B simulates A with the simulation relation

$$
\{(\text { start }, \text { start }),(1, \text { maybe }),(11, \text { maybe }),(111, \text { maybe })\}
$$

2. 20 points. $\mathbf{5}$ points for (a), (b), $\mathbf{1 0}$ points for (c) The input signal x and output signal y of an LTI system are related by the differential equation

$$
\forall t \in \operatorname{Reals}, \quad \dot{y}(t)+y(t)=x(t)
$$

(a) The frequency response of this system is

$$
\forall \omega \in \text { Reals }, \quad H(\omega)=\frac{1}{1+i \omega}
$$

and the magnitude and phase response for $\omega=0, \pm 1$, and $\omega \rightarrow \pm \infty$ are:

$$
|H(0)|=1, \angle H(0)=0 ; \quad|H(\pm 1)|=\frac{1}{\sqrt{2}}, \angle H(\pm 1)=\mp \frac{\pi}{4}
$$

$$
\lim _{\omega \rightarrow \pm \infty}|H(\omega)|=0, \lim _{\omega \rightarrow \pm \infty} \angle H(\omega)=\mp \frac{\pi}{2}
$$

(b) Using the hint, the impulse response of this system is

$$
\forall t \in \text { Reals } h(t)= \begin{cases}0, & \text { if } t<0 \\ e^{-t}, & \text { if } t>0\end{cases}
$$

(c) Now consider an LTI system whose impulse response $g=h * h$, where h is as in (2b). Let G be the frequency response of this system. Then

$$
\begin{aligned}
& \forall \omega \in \text { Reals, } \quad G(\omega)=[H(\omega)]^{2}=\frac{1}{(1+i \omega)^{2}}, \\
& |G(1)|=\boxed{\frac{1}{2}}, \quad \angle G(1)=-\frac{\pi}{2} \\
& \forall t \in \text { Reals }, \quad g(t)=(h * h)(t)= \begin{cases}0, & \text { if } t<0 \\
\int_{0}^{t} e^{-\tau} e^{-(t-\tau)} d \tau=t e^{-t}, & \text { if } t>0\end{cases}
\end{aligned}
$$

3. 20 points, 4 points each part Let M be a state machine with input and output alphabet $\{0,1, a b s e n t\}$. State whether the following propositions are true or false.
(a) Suppose M has a finite number of states. Let $y=(y(0), y(1), \cdots$,$) be the output$ signal corresponding to the input signal $x=(0,0,0, \cdots)$ (all zero sequence). Then the output signal y must be eventually periodic, i.e. there are integers N, p such that $\forall n>N, y(n+p)=y(n)$.
Answer: True
(b) Suppose the output signal y of M is related to its input signal x by: $\forall n \geq 0$,

$$
y(n)= \begin{cases}1, & \text { if } x(0), \cdots, x(n) \text { contain an unequal number of } 0 \mathrm{~s} \text { and } 1 \mathrm{~s}, \\ 0, & \text { otherwise }\end{cases}
$$

Then M has an infinite number of states.
Answer: True
(c) Suppose all the states of M are reachable (from the initial state). Then all states of the side-by-side composition of M with itself are reachable. The composition is shown below.

Answer: True
(d) Suppose all the states of M are reachable (from the initial state). Then all states of the cascade composition of M with itself are reachable. The composition is shown below.

Answer: False
(e) Suppose N is another deterministic state machine that simulates M. Then M simulates N. Answer: True
4. $\mathbf{2 5}$ points, $\mathbf{5}$ points each part This is a block diagram of a sampling and reconstruction system. The input signal $x_{i}:$ Reals \rightarrow Complex is multiplied by the periodic impulse train p to produce the sampled signal w_{i}. Here

$$
\forall t \in \text { Reals, } \quad p(t)=\sum_{n=-\infty}^{\infty} \delta(t-n T),
$$

T is the sampling period ($f=T^{-1}$ is the sampling frequency in Hz). The ideal reconstruction filter has frequency response H given by

$$
\forall \omega, \quad H(\omega)= \begin{cases}T, & \text { if }|\omega|<\pi / T \\ 0, & \text { otherwise }\end{cases}
$$

Assume below that $f=8,000 \mathrm{~Hz}, T=125 \mu \mathrm{~s}$.

(a) The Fourier transform of p is

$$
\forall \omega \in \text { Reals, } \quad P(\omega)=\frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta\left(\omega-\frac{2 \pi}{T} k\right)
$$

(b) In terms of X_{i}, the Fourier Transform of x_{i}, the Fourier Transform of w_{i} is

$$
\forall \omega \in \text { Reals }, \quad W_{i}(\omega)=\frac{1}{T} \sum_{k=-\infty}^{\infty} X_{i}\left(\omega-\frac{2 \pi}{T} k\right)
$$

and the Fourier Transform of z_{i} is

$$
\forall \omega \in \text { Reals }, \quad Z_{i}(\omega)=\sum_{k=-\infty}^{\infty} X_{i}\left(\omega-\frac{2 \pi}{T} k\right),|\omega|<\frac{\pi}{T} ;=0, \text { else }
$$

(c) Suppose $\forall t, x_{1}(t)=\cos (2 \pi \times 1000 t)$. Then $\forall \omega \in$ Reals,

$$
\begin{aligned}
X_{1}(\omega) & =\pi[\delta(\omega-2000 \pi)+\delta(\omega+2000 \pi)] \\
W_{1}(\omega) & =\pi \frac{\pi}{T} \sum_{k}[\delta(\omega-2000 \pi-16000 \pi k)+\delta(\omega+2000 \pi-16000 \pi k)] \\
Z_{1}(\omega) & =\pi[\delta(\omega-2000 \pi)+\delta(\omega+2000 \pi)]=X_{1}(\omega)
\end{aligned}
$$

(d) Suppose $\forall t, x_{2}(t)=\cos (2 \pi \times 7000 t)$. Then $\forall \omega \in$ Reals,

$$
\begin{aligned}
X_{2}(\omega) & =\pi[\delta(\omega-14000 \pi)+\delta(\omega+14000 \pi)] \\
W_{2}(\omega) & =\frac{\pi}{T} \sum_{k}[\delta(\omega-14000 \pi-16000 \pi k)+\delta(\omega+14000 \pi-16000 \pi k)] \\
Z_{2}(\omega) & =\pi[\delta(\omega-2000 \pi)+\delta(\omega+2000 \pi)]=X_{1}(\omega)
\end{aligned}
$$

(e) Suppose $\forall t, x_{3}(t)=\cos (2 \pi \times 1000 t)-\cos (2 \pi \times 7000 t)$. Then, by linearity, $\forall \omega \in$ Reals,

$$
Z_{3}(\omega)=Z_{1}(\omega)-Z_{2}(\omega)=0
$$

and so $\forall t \in$ Reals,

$$
z_{3}(t)=0
$$

5. 20 points, 5 points each part The step input for a continuous time system is defined as $x(t)=0, t<0 ; x(t)=1, t \geq 0$, and for a discrete time system it is defined as $x(n)=0, n<$ $0 ; x(n)=1, n \geq 0$.
(a) If the impulse response of a continuous time LTI system is

$$
\forall t, \quad h(t)= \begin{cases}0, & t<0 \\ e^{-t}, & t \geq 0\end{cases}
$$

its step response is

$$
s(t)=\int_{-\infty}^{t} h(\tau) d \tau= \begin{cases}0, & t<0 \\ 1-e^{-t}, & t \geq 0\end{cases}
$$

(b) If the impulse response of a continuous time LTI system is

$$
h(t)= \begin{cases}e^{-|t|}, & t<0 \\ 0, & t \geq 0\end{cases}
$$

its step response is

$$
s(t)=\int_{-\infty}^{t} h(\tau) d \tau= \begin{cases}e^{t}, & t<0 \\ 1, & t \geq 0\end{cases}
$$

(c) If the impulse response of a discrete time LTI system is

$$
h(n)= \begin{cases}1, & n=0,1,2 \\ 0, & \text { otherwise }\end{cases}
$$

its step response is

$$
s(n)=\sum_{k=-\infty}^{n} h(k)=\left\{\begin{array}{ll}
0, & n<0 \\
1, & n=0 \\
2, & n=1 \\
3, & n=2 \\
3, & n>2
\end{array}\right\}
$$

(d) If the impulse response of a discrete time LTI system is

$$
h(n)= \begin{cases}1, & n=1,2,3 \\ 0, & \text { otherwise }\end{cases}
$$

its step response is

$$
\left.s(n)=\sum_{k=-\infty}^{n} h(k)=\begin{array}{ll}
0, & n<1 \\
1, & n=1 \\
2, & n=2 \\
3, & n=3 \\
3, & n>3
\end{array}\right]
$$

6. 10 points For each continuous time signals x_{i}, write down its Fourier transform X_{i}
(a)

$$
\forall t, x_{1}(t)=e^{i 20 t}, \quad \forall \omega, X_{1}(\omega)=2 \pi \delta(\omega-20)
$$

(b)

$$
\forall t, x_{2}(t)=1,|t|<T ; x_{2}(t)=0,|t|>T
$$

$$
\forall \omega, X_{2}(\omega)=\frac{2 \sin (T \omega)}{\omega}
$$

(c) $\quad \forall t, x_{3}(t)=x_{1}(t) \times x_{2}(t)$.

$$
\forall \omega, X_{3}(\omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X_{1}(\Omega) X_{2}(\omega-\Omega) d \Omega=\frac{2 \sin (T(\omega-20))}{\omega-20}
$$

(d) The unit of ω above is $\mathrm{rad} / \mathrm{sec}$
7. 10 points For each of the following discrete-time systems with input signal x and output signal y, state whether it is linear (L), time-invariant (T), linear and time-invariant (LTI), or none (N).

$$
\begin{array}{lll}
\forall n, & y(n)=x(2-n) & \text { Answer: L } \\
\forall n, \quad y(n)=[x(n-1)]^{2} & \text { Answer: TI } \\
\forall n, \quad y(n)=\sum_{m=-\infty}^{\infty} 0.5^{|m|} x(n-m) & \text { Answer: LTI } \\
\forall n, \quad y(n)=x(2-n)+x(n-2) & \text { Answer: L } \\
\forall n, \quad y(n)=n^{2} x(n) & \text { Answer: L }
\end{array}
$$

