EECS 20. Midterm No. 2
April 11, 2003.
Please use these sheets for your answer and your work. Use the backs if necessary. Calculators are NOT allowed. Write clearly and put a box around your answer, and show your work.

Print your name and lab day and time below

Name: \qquad
Lab time: \qquad

Problem 1:
Problem 2:
Problem 3:
Problem 4:
Problem 5:
Total:

1. $\mathbf{1 5}$ points For the following hybrid system sketch in the graphs below
(a) ($\mathbf{1 0}$ points) the state trajectory (both the mode and the continuous state) and
(b) (5 points) the output signal y for $0 \leq t \leq 3$.

2. $\mathbf{1 5}$ points, $\mathbf{5}$ points each part Give the units of period and frequency below

(a) Consider the discrete-time signal x given by

$$
\forall n \in \text { Integers }, \quad x(n)=\cos (\omega n)
$$

For what values of ω is x periodic, and what is the period?
(b) Consider the discrete-time signal x given by

$$
\forall n \in \text { Integers }, \quad x(n)=1+\cos (4 \pi n / 9) .
$$

What is its period p and what is its fundamental frequency?

This signal has the Fourier series representation

$$
\forall n, \quad y(n)=A_{0}+\sum_{k=1}^{\lfloor p / 2\rfloor} A_{k} \cos \left(k \omega_{0} n+\phi_{k}\right) .
$$

Identify $\omega_{0}, A_{0}, A_{k}, \phi_{k}$.
(c) Consider the continuous-time periodic signal y given by

$$
\forall t \in \text { Reals }, \quad y(t)=\cos (5 t)+\sin (3 t) .
$$

What is its period and what is its fundamental frequency?

The Fourier series representation of y above is

$$
\forall t, \quad y(t)=A_{0}+\sum_{k=1}^{\infty} A_{k} \cos \left(k \omega_{0} t+\phi_{k}\right) .
$$

Identify $\omega_{0}, A_{0}, A_{k}, \phi_{k}$.
3. 15 points, 3 points each part Consider the following discrete-time systems with input x : Integers \rightarrow Reals and output signal $y:$ Integers \rightarrow Reals. For each system, state whether it is linear (L), time-invariant (T), both (LTI), or neither (N). No proof or counterexample is required.
(a) $\forall n, \quad y(n)=x(-n)$.
(b) $\forall n, \quad y(n)=[x(n)+x(n-1)]^{2}$.
(c) $\forall n, \quad y(n)=n[x(n)+x(n-1)]$.
(d) $\forall n, \quad y(n)=x(2 n)$.
(e) $\forall n, \quad y(n)=[x(n)+x(n+1)] / 2$.

4. 20 points The R, L, C circuit in the figure has for its input signal the voltage x and its output signal is the inductor current y. From Kirchhoff's law one can determine that these signals are related by the differential equation

$$
\forall t, \quad R L C \frac{d^{2} y(t)}{d t^{2}}+L \frac{d y(t)}{d t}+R y(t)=x(t)
$$

(a) $\mathbf{6}$ points Find the frequency response $H:$ Reals \rightarrow Complex of this system.
(b) $\mathbf{7}$ points Obtain an expression for the amplitude response and the phase response, assuming $R=L=C=1$.
(c) 7 points Sketch the amplitude response and the phase response in the graphs above. Carefully mark the values for $\omega=0,1$ and $\omega \rightarrow \infty$.

5. $\mathbf{1 5}$ points, $\mathbf{5}$ points each part

Fill in the blanks:
(a) The five roots of $z^{5}=1$ are:
(b) $\forall t, \quad \cos (\omega t)+\cos (\omega t+\pi / 2)=\operatorname{Re}\left\{A e^{i[\omega t+\phi]}\right\}$
in which $A=\quad$ and $\phi=\quad .(A$ should be a positive real number $)$
(c) The polar representation of the following numbers are:
$1+i=$
$1-i=$
$[1+i]^{-1}=$

Use this page for overflow

