EECS 20. Midterm No. 2 Solution

April 11, 2003.

1. $\mathbf{1 5}$ points For the following hybrid system sketch
(a) 10 points the state trajectory (both the mode and the continuous state) and
(b) 5 points the output signal for $0 \leq t \leq 3$.

2. $\mathbf{1 5}$ points, $\mathbf{5}$ points each part

Give the units of period and frequency below
(a) Consider the discrete-time signal x given by

$$
\forall n \in \text { Integers }, \quad x(n)=\cos \omega n
$$

For what values of ω is x periodic, and what is the period?
x is periodic with period p samples if ωp is a multiple of 2π, i.e. if $\omega=2 m \pi / p \mathrm{rad} / \mathrm{sample}$ for integers m, p. To get the smallest period p, m, p must be coprime.
(b) Consider the discrete-time signal x given by

$$
\forall n \in \text { Integers }, \quad x(n)=1+\cos (4 \pi n / 9)
$$

What is its period p and what is its fundamental frequency?
The period is $p=9$ samples, and the fundamental frequency is $\omega_{0}=2 \pi / 9 \mathrm{rads} / \mathrm{sample}$.
The signal has the Fourier series representation

$$
\forall n, \quad y(n)=A_{0}+\sum_{k=1}^{\lfloor p / 2\rfloor} A_{k} \cos \left(k \omega_{0} n+\phi_{k}\right)
$$

Identify $\omega_{0}, A_{0}, A_{k}, \phi_{k}$.
$A_{0}=1, A_{2}=1, \phi_{2}=0$, other coefficients are 0 .
(c) Consider the continuous-time periodic signal y given by

$$
\forall t \in \text { Reals }, \quad y(t)=\cos 5 t+\sin 3 t
$$

What is its period and what is its fundamental frequency?
Its fundamental frequency is $\omega_{0}=g c d\{3,5\}=1 \mathrm{rad} / \mathrm{sec}$ and the period is $p=2 \pi / p=2 \pi \mathrm{sec}$
The Fourier series representation of y is

$$
\forall t, \quad y(t)=A_{0}+\sum_{k=1}^{\infty} A_{k} \cos \left(k \omega_{0} t+\phi_{k}\right)
$$

Identify $\omega_{0}, A_{0}, A_{k}, \phi_{k}$.
We have

$$
\forall t, \quad y(t)=\cos 5 t+\cos (3 t-\pi / 2)
$$

So,

$$
A_{3}=1, \phi_{3}=-\pi / 2, A_{5}=1, \phi_{5}=0, \text { other coefficients are } 0
$$

3. 15 points, 3 points each part Consider the following discrete-time systems with input x : Integers \rightarrow Reals and output $y:$ Integers \rightarrow Reals. For each system, state whether it is linear (L), time-invariant (T), both (LTI), or neither (N).
(a) $\forall n, \quad y(n)=x(-n) . \mathbf{L}$
(b) $\forall n, \quad y(n)=[x(n)+x(n-1)]^{2}$. TI

(c) $\forall n, \quad y(n)=n[x(n)+x(n-1)]$. \mathbf{L}
(d) $\forall n, \quad y(n)=x(2 n) . \mathbf{L}$
(e) $\forall n, \quad y(n)=[x(n)+x(n+1)] / 2$. LTI
4. 20 points The R, L, C circuit in the figure has for its input signal the voltage x and its output signal is the inductor current y. From Kirchhoff's law one can determine that these signals are related by the differential equation
$\forall t, \quad R L C \frac{d^{2} y(t)}{d t^{2}}+L \frac{d y(t)}{d t}+R y(t)=x(t)$.
(a) 6 points Find the frequency response $H:$ Reals \rightarrow Complex of this system.

The frequency response is obtained by setting $\forall t, x(t)=e^{j \omega t}, y(t)=H(\omega) e^{i \omega t}$, substituting in the differential equation, to get

$$
\forall \omega \in \text { Reals, } \quad H(\omega)=\frac{1}{R-R L C \omega^{2}+i L \omega} .
$$

(b) $\mathbf{7}$ points Obtain an expression for the amplitude response and the phase response, assuming $R=L=C=1$.
Substituting gives

$$
H(\omega)=\frac{1}{\left(1-\omega^{2}\right)+i \omega},
$$

which in polar coordinates gives the amplitude response

$$
|H(\omega)|=\frac{1}{\left[\left(1-\omega^{2}\right)^{2}+\omega^{2}\right]^{1 / 2}},
$$

and the phase response

$$
\angle H(\omega)=-\tan ^{-1} \frac{\omega}{1-\omega^{2}}
$$

(c) $\mathbf{7}$ points Sketch the amplitude response and the phase response. Carefully mark the values for $\omega=0,1$ and $\omega \rightarrow \infty$.
We have

$$
H(0)=1, H(1)=\frac{1}{i}=e^{-i \pi / 2}, \lim _{\omega \rightarrow \infty}|H(\omega)|=0, \lim _{\omega \rightarrow \infty} \angle H(\omega)=-\pi .
$$

5. $\mathbf{1 5}$ points, $\mathbf{5}$ points each part Fill in the blanks:
(a) The five roots of $z^{5}=1$ are:

$$
z=e^{2 n \pi / 5}, n=0,1,2,3,4
$$

(b) $\forall t, \cos (\omega t)+\cos (\omega t+\pi / 2)=R e A e^{i[\omega t+\phi]}$ in which $A=\sqrt{2}, \phi=\pi / 4$.
(c) The polar representation of the following numbers are:

$$
\begin{aligned}
& 1+i=\sqrt{2} e^{i \pi / 4} \\
& 1-i=\sqrt{2} e^{-i \pi / 4} \\
& {[1+i]^{-1}=\frac{1}{\sqrt{2}} e^{-i \pi / 4}}
\end{aligned}
$$

