EECS20n, Quiz 3 Solution, 3/5/03

A single-input single-output system has the $\left[A, b, c^{T}, d\right]$ representation given by

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right], \quad b=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad c^{T}=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right], \quad d=0
$$

1. Calculate $A^{n}, n \geq 0$, by carrying out the matrix multiplications.

$$
A^{0}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right], A^{2}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], A^{n}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], n \geq 3
$$

2. Recall that the impulse response is given by $h:$ Natural $_{s_{0}} \rightarrow$ Reals, in which $h(0)=$ $d, h(n)=c^{T} A^{n-1} b, n \geq 1$. Find the impulse response for the system given above.
By substituting for A^{n} we get:

$$
h(0)=0, h(1)=1, h(n)=0, n \geq 2 .
$$

3. For the input $x:$ Natural $_{0} \rightarrow$ Reals given by $x(1)=1$ and $x(n)=0, n \neq 1$, find the zero-state response $y:$ Natural $_{0} \rightarrow$ Reals.
We have

$$
\begin{aligned}
\forall n \geq 0, y(n) & =\sum_{k=0}^{n} h(n-k) x(k) \\
& =h(n-1)= \begin{cases}1, & n=2 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

