EECS20n, Quiz 4 Solution, 3/19/03

1. The signal $s:$ Reals \rightarrow Reals is given by

$$
\forall t \in \text { Reals, } \quad s(t)=2+\sin 2 \pi t+\sin 3 \pi t .
$$

(a) What is the period of s in seconds (assume t is in seconds)?

The period is 2 s . We can see this by rewriting s as

$$
\forall t, \quad s(t)=\sin 2 \pi \times 1 \times t+\sin 2 \pi \times 3 / 2 \times t,
$$

so the fundamental frequency is $f_{0}=g c d(1,3 / 2)=1 / 2$ and the period is $1 / f_{0}=2 \mathrm{~s}$.
(b) Write down the Fourier series expansion of s in the form

$$
\forall t, \quad s(t)=A_{0}+\sum_{k=1}^{\infty} A_{k} \cos \left(2 \pi k f_{0} t+\phi_{k}\right),
$$

i.e. identify f_{0} and the coefficients, A_{0}, A_{k}, ϕ_{k}.

Rewrite the signal as

$$
\forall t, \quad s(t)=2+\cos \left(2 \pi 2 f_{0} t-\frac{\pi}{2}\right)+\cos \left(2 \pi 3 f_{0} t-\frac{\pi}{2}\right) .
$$

Comparing coefficients with Fourier series representation gives:

$$
f_{0}=\frac{1}{2} ; A_{0}=2, A_{2}=1, A_{3}=1, A_{k}=0, \text { otherwise } ; \phi(k)=-\frac{\pi}{2}, \text { all } k .
$$

(c) In the following x is a discrete-time signal $x:$ Integers \rightarrow Reals. For each case determine whether x is periodic and if it is periodic find its period (in samples).
i.

$$
\forall n, \quad x(n)=1+\cos (2 \pi \times 5 n) .
$$

The period p is the smallest integer p such that $2 \pi 5 p$ is a multiple of 2π, which gives $p=1$ sample. Indeed, $\forall n, \quad \cos (2 \pi \times 5 n)=1$. The signal is periodic.
ii.

$$
\forall n, \quad x(n)=\sin \left(2 \pi \times \frac{5}{7} n\right) .
$$

The period is the smallest integer p such that $2 \pi \frac{5}{7} p$ is a multiple of 2π, which gives $p=7$ samples. The signal is periodic.

