FORMULAS \& TABLES

Discrete Fourier Series (DFS) Complex exponential Fourier series synthesis and analysis equations for a periodic discrete-time signal having period p :

$$
x(n)=\sum_{k=\langle p\rangle} X_{k} e^{i k \omega_{0} n} \quad \longleftrightarrow \quad X_{k}=\frac{1}{p} \sum_{n=\langle p\rangle} x(n) e^{-i k \omega_{0} n}
$$

where $\omega_{0}=\frac{2 \pi}{p}$ and $\langle p\rangle$ denotes a suitable discrete interval of length p (i.e., an interval containing p contiguous integers). For example, $\sum_{k=\langle p\rangle}$ may denote $\sum_{k=0}^{p-1}$ or $\sum_{k=1}^{p}$.

Continuous-Time Fourier Series (FS) Complex exponential Fourier series synthesis and analysis equations for a periodic continuous-time signal having pe$\operatorname{riod} p$:

$$
x(t)=\sum_{k=-\infty}^{\infty} X_{k} e^{i k \omega_{0} t} \quad \longleftrightarrow \quad X_{k}=\frac{1}{p} \int_{\langle p\rangle} x(t) e^{-i k \omega_{0} t} d t
$$

where $\omega_{0}=\frac{2 \pi}{p}$ and $\langle p\rangle$ denotes a suitable continuous interval of length p. For example, $\int_{\langle p\rangle}$ can denote \int_{0}^{p}.

The DTFT and the Frequency Response of a DT LTI System Consider a real, discretetime LTI system having impulse response $h: \mathbb{Z} \rightarrow \mathbb{R}$. If the system has a frequency response $H: \mathbb{R} \rightarrow \mathbb{C}$, it is given by

$$
H(\omega)=\sum_{n=-\infty}^{\infty} h(n) e^{-i \omega n}, \quad \forall \omega \in \mathbb{R},
$$

which is also known as the DTFT Analysis Equation. The impulse response of the system is given by

$$
h(n)=\frac{1}{2 \pi} \int_{\langle 2 \pi\rangle} H(\omega) e^{i \omega n} d \omega,
$$

which is also known as the DTFT Synthesis Equation.
The CTFT and the Frequency Response of a CT LTI System Consider a real, continuoustime LTI system having impulse response $h: \mathbb{R} \rightarrow \mathbb{R}$. If the system has a frequency response $H: \mathbb{R} \rightarrow \mathbb{C}$, it is given by

$$
H(\omega)=\int_{-\infty}^{\infty} h(t) e^{-i \omega t} d t, \quad \forall \omega \in \mathbb{R},
$$

which is also known as the CTFT Analysis Equation. The impulse response of the system is given by

$$
h(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} H(\omega) e^{i \omega t} d \omega,
$$

which is also known as the CTFT Synthesis Equation.
Duality Let the signal $x: \mathbb{R} \rightarrow \mathbb{C}$ have CTFT $X: \mathbb{R} \rightarrow \mathbb{C}$. More compactly, let

$$
x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(\omega),
$$

where \mathcal{F} denotes the Fourier transform. Then

$$
X(t) \stackrel{\mathcal{F}}{\longleftrightarrow} 2 \pi x(-\omega) .
$$

Parseval-Plancherel-Rayleigh Identity Let the signals $x, y: \mathbb{R} \rightarrow \mathbb{C}$ have respective CTFTs $X, Y: \mathbb{R} \rightarrow \mathbb{C}$. Then

$$
\int_{-\infty}^{\infty} x(t) y^{*}(t) d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) Y^{*}(\omega) d \omega .
$$

Time domain	Frequency domain
$\forall n \in \mathbb{Z}, \quad x(n)$ is real	$\forall \omega \in \mathbb{R}, \quad X(\omega)=X^{*}(-\omega)$
$\forall n \in \mathbb{Z}, \quad x(n)=x^{*}(-n)$	$\forall \omega \in \mathbb{R}, \quad X(\omega)$ is real
$\forall n \in \mathbb{Z}, \quad y(n)=x(n-N)$	$\forall \omega \in \mathbb{R}, \quad Y(\omega)=e^{-i \omega N} X(\omega)$
$\forall n \in \mathbb{Z}, \quad y(n)=e^{i \omega_{1} n} x(n)$	$\forall \omega \in \mathbb{R}, \quad Y(\omega)=X\left(\omega-\omega_{1}\right)$
$\begin{gathered} \forall n \in \mathbb{Z}, \\ y(n)=\cos \left(\omega_{1} n\right) x(n) \end{gathered}$	$\begin{gathered} \forall \omega \in \mathbb{R} \\ Y(\omega)=\left(X\left(\omega-\omega_{1}\right)+X\left(\omega+\omega_{1}\right)\right) / 2 \end{gathered}$
$\begin{gathered} \forall n \in \mathbb{Z}, \\ y(n)=\sin \left(\omega_{1} n\right) x(n) \end{gathered}$	$\begin{gathered} \forall \omega \in \mathbb{R} \\ Y(\omega)=\left(X\left(\omega-\omega_{1}\right)-X\left(\omega+\omega_{1}\right)\right) / 2 i \end{gathered}$
$\begin{gathered} \forall n \in \mathbb{Z}, \\ x(n)=a x_{1}(n)+b x_{2}(n) \end{gathered}$	$\begin{gathered} \forall \omega \in \mathbb{R}, \\ X(\omega)=a X_{1}(\omega)+b X_{2}(\omega) \end{gathered}$
$\forall n \in \mathbb{Z}, \quad y(n)=(h * x)(n)$	$\forall \omega \in \mathbb{R}, \quad Y(\omega)=H(\omega) X(\omega)$
$\forall n \in \mathbb{Z}, \quad y(n)=x(n) p(n)$	$\begin{gathered} \forall \omega \in \mathbb{R} \\ Y(\omega)=\frac{1}{2 \pi} \int_{0}^{2 \pi} X(\Omega) P(\omega-\Omega) d \Omega \end{gathered}$
$\begin{gathered} \forall n \in \mathbb{Z}, \\ y(n)= \\ \begin{cases}x(n / N) & n \text { is a multiple of } N \\ 0 & \text { otherwise }\end{cases} \end{gathered}$	$\begin{gathered} \forall \omega \in \mathbb{Z}, \\ Y(\omega)=X(N \omega) \end{gathered}$

Table 1: Properties of the DTFT.

Signal	DTFT
$\forall n \in \mathbb{Z}, \quad x(n)=\delta(n)$	$\forall \omega \in \mathbb{R}, \quad X(\omega)=1$
$\begin{gathered} \forall n \in \mathbb{Z} \\ x(n)=\delta(n-N) \end{gathered}$	$\forall \omega \in \mathbb{R}, \quad X(\omega)=e^{-i \omega N}$
$\forall n \in \mathbb{Z}, \quad x(n)=1$	$\begin{gathered} \forall \omega \in \mathbb{R} \\ X(\omega)=2 \pi \sum_{k=-\infty}^{\infty} \delta(\omega-k 2 \pi) \end{gathered}$
$\begin{gathered} \forall n \in \mathbb{Z}, \\ x(n)=a^{n} u(n), \quad\|a\|<1 \end{gathered}$	$\begin{gathered} \forall \omega \in \mathbb{R}, \\ X(\omega)=\frac{1}{1-a e^{-i \omega}} \end{gathered}$
$\begin{gathered} \forall n \in \mathbb{Z}, \\ x(n)= \begin{cases}1 & \text { if }\|n\| \leq M \\ 0 & \text { otherwise }\end{cases} \end{gathered}$	$\begin{gathered} \forall \omega \in \mathbb{R} \\ X(\omega)=\frac{\sin (\omega(M+0.5))}{\sin (\omega / 2)} \end{gathered}$
$\begin{gathered} \forall n \in \mathbb{Z} \\ x(n)=\frac{\sin (W n)}{\pi n}, \quad 0<W<\pi \end{gathered}$	$\begin{gathered} \forall \omega \in[-\pi, \pi], \\ X(\omega)= \begin{cases}1 & \text { if }\|\omega\| \leq W \\ 0 & \text { otherwise }\end{cases} \end{gathered}$

Table 2: Discrete time Fourier transforms of key signals. The function u is the unit step.

Time domain	Frequency domain
$\forall t \in \mathbb{R}, \quad x(t)$ is real	$\forall \omega \in \mathbb{R}, \quad X(\omega)=X^{*}(-\omega)$
$\forall t \in \mathbb{R}, \quad x(t)=x^{*}(-t)$	$\forall \omega \in \mathbb{R}, \quad X(\omega)$ is real
$\forall t \in \mathbb{R}, \quad y(t)=x(t-T)$	$\forall \omega \in \mathbb{R}, \quad Y(\omega)=e^{-i \omega T} X(\omega)$
$\forall t \in \mathbb{R}, \quad y(t)=e^{i \omega_{1} t} x(t)$	$\forall \omega \in \mathbb{R}, \quad Y(\omega)=X\left(\omega-\omega_{1}\right)$
$\begin{gathered} \forall t \in \mathbb{R}, \\ y(t)=\cos \left(\omega_{1} t\right) x(t) \end{gathered}$	$\begin{gathered} \forall \omega \in \mathbb{R} \\ Y(\omega)=\left(X\left(\omega-\omega_{1}\right)+X\left(\omega+\omega_{1}\right)\right) / 2 \end{gathered}$
$\begin{gathered} \forall t \in \mathbb{R}, \\ y(t)=\sin \left(\omega_{1} t\right) x(t) \end{gathered}$	$\begin{gathered} \forall \omega \in \mathbb{R} \\ Y(\omega)=\left(X\left(\omega-\omega_{1}\right)-X\left(\omega+\omega_{1}\right)\right) / 2 i \end{gathered}$
$\begin{aligned} & \forall t \in \mathbb{R}, \\ x(t)= & a x_{1}(t)+b x_{2}(t) \end{aligned}$	$\begin{gathered} \forall \omega \in \mathbb{R} \\ X(\omega)=a X_{1}(\omega)+b X_{2}(\omega) \end{gathered}$
$\forall t \in \mathbb{R}, \quad y(t)=(h * x)(t)$	$\forall \omega \in \mathbb{R}, \quad Y(\omega)=H(\omega) X(\omega)$
$\forall t \in \mathbb{R}, \quad y(t)=x(t) p(t)$	$\begin{gathered} \forall \omega \in \mathbb{R} \\ Y(\omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\Omega) P(\omega-\Omega) d \Omega= \\ \frac{1}{2 \pi}(X * P)(\omega) \end{gathered}$
$\forall t \in \mathbb{R}, \quad y(t)=\dot{x}(t) \triangleq \frac{d x}{d t}(t)$	$\begin{gathered} \forall \omega \in \mathbb{R}, \\ Y(\omega)=i \omega X(\omega) \end{gathered}$
$\begin{gathered} \forall t \in \mathbb{R}, \\ y(t)=x(a t) \end{gathered}$	$\begin{gathered} \forall \omega \in \mathbb{R}, \\ Y(\omega)=\frac{1}{\|a\|} X(\omega / a) \end{gathered}$

Table 3: Properties of the CTFT.

Signal	CTFT
$\forall t \in \mathbb{R}, \quad x(t)=\delta(t)$	$\forall \omega \in \mathbb{R}, \quad X(\omega)=1$
$\forall t \in \mathbb{R}, \quad x(t)=\delta(t-\tau), \tau \in \mathbb{R}$	$\forall \omega \in \mathbb{R}, \quad X(\omega)=e^{-i \omega \tau}$
$\forall t \in \mathbb{R}, \quad x(t)=1$	$\forall \omega \in \mathbb{R}, \quad X(\omega)=2 \pi \delta(\omega)$
$\begin{gathered} \forall t \in \mathbb{R}, \\ x(t)=e^{-a t} u(t), \quad a>0 \end{gathered}$	$\begin{gathered} \forall \omega \in \mathbb{R}, \\ X(\omega)=\frac{1}{a+i \omega} \end{gathered}$
$\begin{gathered} \forall t \in \mathbb{R}, \\ x(t)=e^{-a\|t\|}, \quad a>0 \end{gathered}$	$\begin{gathered} \forall \omega \in \mathbb{R}, \\ X(\omega)=\frac{2 a}{a^{2}+\omega^{2}} \end{gathered}$
$\forall t \in \mathbb{R}$, $x(t)=\operatorname{sgn}(t), \forall t$	$\begin{aligned} \forall \omega & \in \mathbb{R}, \\ X(\omega) & =\frac{2}{i \omega} \end{aligned}$
$\begin{gathered} \forall t \in \mathbb{R}, \\ x(t)= \begin{cases}\pi / a & \text { if }\|t\| \leq a \\ 0 & \text { otherwise }\end{cases} \end{gathered}$	$\begin{gathered} \forall \omega \in \mathbb{R}, \\ X(\omega)=\frac{2 \pi \sin (a \omega)}{a \omega} \end{gathered}$
$\begin{gathered} \forall t \in \mathbb{R} \\ x(t)=\frac{\sin (\pi t / T)}{\pi t / T}, \end{gathered}$	$\begin{gathered} \forall \omega \in \mathbb{R}, \\ X(\omega)= \begin{cases}T & \text { if }\|\omega\| \leq \pi / T \\ 0 & \text { otherwise }\end{cases} \end{gathered}$

Table 4: Continuous time Fourier transforms of key signals. The function u is the unit step.

