

Figure 1: A machine that implements CodeRecognizer

Problem session, week 5

10. (Chapter 3, new exercise) \mathbf{E} Consider the state machine in figure 2. It implements CodeRecognizer, but has more states than the one in figure 1 . Show that it is equivalent by giving a bisimulation relation with the machine in figure 1.
11. (Chapter 3, new exercise) \mathbf{E} Consider the state machine in figure 3. Suppose that the alphabets are

$$
\begin{gathered}
\text { Inputs }=\{1, a\} \\
\text { Outputs }=\{0,1, a\},
\end{gathered}
$$

where a (short for absent) is the stuttering element. State whether each of the following is in the set Behaviors for this machine. In each of the following, the ellipsis ". . ." means that the last element is repeated forever. Also, in each case, the input and output signals are given as sequences.
(a) $((1,1,1,1,1, \cdots),(0,1,1,0,0, \cdots))$
(b) $((1,1,1,1,1, \cdots),(0,1,1,0, a, \cdots))$
(c) $((a, 1, a, 1, a, \cdots),(a, 1, a, 0, a, \cdots))$
(d) $((1,1,1,1,1, \cdots),(0,0, a, a, a, \cdots))$
(e) $((1,1,1,1,1, \cdots),(0, a, 0, a, a, \cdots))$

Figure 2: A machine that implements CodeRecognizer, but has more states than the one in figure 1.

Figure 3: State machine for problem

