
nesC 1.1 Language Reference Manual

David Gay, Philip Levis, David Culler, Eric Brewer

May 2003

1 Introduction

nesC is an extension to C [2] designed to embody the structuring concepts and execution model of
TinyOS [1]. TinyOS is an event-driven operating system designed for sensor network nodes that
have very limited resources (e.g., 8K bytes of program memory, 512 bytes of RAM). TinyOS has
been reimplemented in nesC. This manual describes v1.1 of nesC, changes from v1.0 are summarised
in Section 3.

The basic concepts behind nesC are:

• Separation of construction and composition: programs are built out of components, which are
assembled (“wired”) to form whole programs. Components define two scopes, one for their
specification (containing the names of their interface instances) and one for their implemen-
tation. Components have internal concurrency in the form of tasks. Threads of control may
pass into a component through its interfaces. These threads are rooted either in a task or a
hardware interrupt.

• Specification of component behaviour in terms of set of interfaces. Interfaces may be provided
or used by the component. The provided interfaces are intended to represent the functionality
that the component provides to its user, the used interfaces represent the functionality the
component needs to perform its job.

• Interfaces are bidirectional: they specify a set of functions to be implemented by the inter-
face’s provider (commands) and a set to be implemented by the interface’s user (events).
This allows a single interface to represent a complex interaction between components (e.g.,
registration of interest in some event, followed by a callback when that event happens). This
is critical because all lengthy commands in TinyOS (e.g. send packet) are non-blocking; their
completion is signaled through an event (send done). By specifying interfaces, a component
cannot call the send command unless it provides an implementation of the sendDone event.

Typically commands call downwards, i.e., from application components to those closer to
the hardware, while events call upwards. Certain primitive events are bound to hardware
interrupts (the nature of this binding is system-dependent, so is not described further in this
reference manual).

• Components are statically linked to each other via their interfaces. This increases runtime
efficiency, encourages rubust design, and allows for better static analysis of program’s.

1

• nesC is designed under the expectation that code will be generated by whole-program com-
pilers. This allows for better code generation and analysis. An example of this is nesC’s
compile-time data race detector.

• The concurrency model of nesC is based on run-to-completion tasks, and interrupt handlers
which may interrupt tasks and each other. The nesC compiler signals the potential data races
caused by the interrupt handlers.

This document is a reference manual for nesC rather than a tutorial. The TinyOS tutorial1 presents
a gentler introduction to nesC.

The rest of this document is structured as follows: Section 2 presents the notation used in the
reference manual. Section 3 summarises the new features in nesC 1.1. Sections 4, 5, 6, and 7
present nesC interfaces and components. Section 8 presents nesC’s concurrency model and data-
race detection. Section 9 explains how C files, nesC interfaces and components are assembled into
an application. Section 10 covers the remaining miscellaneous features of nesC. Finally, Appendix A
fully defines nesC’s grammar (as an extension to the C grammar from Appendix A of Kernighan and
Ritchie (K&R) [2, pp234–239]), and Appendix B is a glossary of the terms used in this reference
manual.

2 Notation

The typewriter font is used for nesC code and for filenames. Single symbols in italics, with
optional subscripts, are used to refer to nesC entities, e.g., “component K” or “value v”.

The grammar of nesC is an extension the ANSI C grammar. We chose to base our presentation
on the ANSI C grammar from Appendix A of Kernighan and Ritchie (K&R) [2, pp234–239]. We
will not repeat productions from that grammar here. Words in italics are non-terminals and non-
literal terminals, typewriter words and symbols are literal terminals. The subscript opt indicates
optional terminals or non-terminals. In some cases, we change some ANSI C grammar rules. We
indicate this as follows: also indicates additional productions for existing non-terminals, replaced
by indicates replacement of an existing non-terminal.

Explanations of nesC constructs are presented along with the corresponding grammar fragments.
In these fragments, we sometimes use . . . to represent elided productions (irrelevant to the construct
at hand). Appendix A presents the full nesC grammar.

Several examples use the uint8 t and uint16 t types from the C99 standard inttypes.h file.

3 Changes

The changes from nesC 1.0 to 1.1 are:

1. atomic statements. These simplify implementation of concurrent data structures, and are
understood by the new compile-time data-race detector.

2. Compile-time data-race detection gives warnings for variables that are potentially accessed
concurrently by two interrupt handlers, or an interrupt handler and a task.

1Available with the TinyOS distribution at http://webs.cs.berkeley.edu

2

3. Commands and events which can safely be executed by interrupt handlers must be explicitly
marked with the async storage class specifier.

4. The results of calls to commands or events with “fan-out” are automatically combined by
new type-specific combiner functions.

5. uniqueCount is a new “constant function” which counts uses of unique.

6. The NESC preprocessor symbol indicates the language version. It is 110 for nesC 1.1.

4 Interfaces

Interfaces in nesC are bidirectional: they specify a multi-function interaction channel between two
components, the provider and the user. The interface specifies a set of named functions, called
commands, to be implemented by the interface’s provider and a set of named functions, called
events, to be implemented by the interface’s user.

This section explains how interfaces are specified, Section 5 explains how components specify the
interfaces they provide and use, Section 6 explains how commands and events are called from and
implemented in C code and Section 7 explains how component interfaces are linked together.

Interfaces are specified by interface types, as follows:

nesC-file:
includes-listopt interface
. . .

interface:
interface identifier { declaration-list }

storage-class-specifier: also one of
command event async

This declares interface type identifier. This identifier has global scope and belongs to a separate
namespace, the component and interface type namespace. So all interface types have names distinct
from each other and from all components, but there can be no conflicts with regular C declarations.

Each interface type has a separate scope for the declarations in declaration-list. This declaration-list
must consist of function declarations with the command or event storage class (if not, a compile-time
error occurs). The optionalasync keyword indicates that the command or event can be executed
in an interrupt handler.

An interface can optionally include C files via the includes-list (see Section 9).

A simple interface is:

interface SendMsg {
command result_t send(uint16_t address, uint8_t length, TOS_MsgPtr msg);
event result_t sendDone(TOS_MsgPtr msg, result_t success);

}

3

Provides of the SendMsg interface type must implement the send command, while users must
implement the sendDone event.

5 Component Specification

A nesC component is either a module (Section 6) or a configuration (Section 7):

nesC-file:
includes-listopt module
includes-listopt configuration
. . .

module:
module identifier specification module-implementation

configuration:
configuration identifier specification configuration-implementation

Component’s names are specified by the identifier. This identifier has global scope and belongs to
the component and interface type namespace. A component introduces two per-component scopes:
a specification scope, nested in the C global scope, and an implementation scope nested in the
specification scope.

A component can optionally include C files via the includes-list (see Section 9).

The specification lists the specification elements (interface instances, commands or events) used or
provided by this component. As we saw in Section 4, a component must implement the commands
of its provided interfaces and the events of its used interfaces. Additionally, it must implement its
provided commands and events.

Typically, commands “call down” towards the hardware components and events “call up” towards
application components (this assumes a view of nesC applications as a graph of components with
application components on top). A thread of control crosses components only though its specifica-
tion elements.

Each specification element has a name (interface instance name, command name or event name).
These names belong to the variable namespace of the per-component-specification scope.

specification:
{ uses-provides-list }

uses-provides-list:
uses-provides
uses-provides-list uses-provides

uses-provides:
uses specification-element-list
provides specification-element-list

4

specification-element-list:
specification-element
{ specification-elements }

specification-elements:
specification-element
specification-elements specification-element

There can be multiple uses and provides directives in a component specification. Multiple used
or provided specification elements can be grouped in a single directive by surrounding them with
{ and }. For instance, these two specifications are identical:

module A1 { module A1 {
uses interface X; uses {
uses interface Y; interface X;

} ... interface Y;
}

} ...

An interface instance is specified as follows:

specification-element:
interface renamed-identifier parametersopt
. . .

renamed-identifier:
identifier
identifier as identifier

interface-parameters:
[parameter-type-list]

The complete syntax for interface instance declaration is interface X as Y, explicitly specifying
Y as the instance’s name. The interface X syntax is a shorthand for interface X as X.

If the interface-parameters are omitted, then interface X as Y declares a simple interface in-
stance, corresponding to a single interface to this component. If the interface-parameters are
present (e.g., interface SendMsg S[uint8 t id]) then this is a declaration of a parameterised
interface instance, corresponding to multiple interfaces to this component, one for each distinct
tuple of parameter values (so interface SendMsg S[uint8 t id] declares 256 interfaces of type
SendMsg). The types of the parameters must be integral types (enums are not allowed at this time).

Commands or events can be included directly as specification elements by including a standard C
function declaration with command or event as its storage class specifier:

specification-element:
declaration
. . .

5

storage-class-specifier: also one of
command event async

It is a compile-time error if the declaration is not a function declaration with the command or event
storage class. As in interfaces, async indicates that the command or event can be executed in an
interrupt handler.

As with interface instances, commands (events) are simple commands (simple events) if no interface
parameters are specified, or parameterised commands (parameterised events) if interface parameters
are specified. The interface-parameters are placed before the function’s regular parameter list, e.g.,
command void send[uint8 t id](int x):

direct-declarator: also
direct-declarator interface-parameters (parameter-type-list)
. . .

Note that interface parameters are only allowed on commands or events within component specifi-
cations, not within interface types.

Here is a full specification example:

configuration GenericComm {
provides {

interface StdControl as Control;

// The interface are parameterised by the active message id
interface SendMsg[uint8_t id];
interface ReceiveMsg[uint8_t id];

}
uses {

// signaled after every send completion for components which wish to
// retry failed sends
event result_t sendDone();

}
} ...

In this example, GenericComm:

• Provides simple interface instance Control of type StdControl.

• Provides parameterised instances of interface type SendMsg and ReceiveMsg; the parame-
terised instances are named SendMsg and ReceiveMsg respectively.

• Uses event sendDone.

We say that a command (event) F provided in the specification of component K is provided com-
mand (event) F of K; similarly, a command (event) used in the specification of component K is
used command (event) F of K.

A command F in a provided interface instance X of component K is provided command X.F of
K; a command F in a used interface instance X of K is used command X.F of K; an event F in

6

a provided interface instance X of K is used event X.F of K; and an event F in a used interface
instance X of K is provided event X.F of K (note the reversal of used and provided for events due
to the bidirectional nature of interfaces).

We will often simply refer to the “command or event α of K” when the used/provided distinction
is not relevant. Commands or events α of K may be parameterised or simple, depending on the
parameterised or simple status of the specification element to which they correspond.

6 Modules

Modules implement a component specification with C code:

module-implementation:
implementation { translation-unit }

where translation-unit is a list of C declarations and definitions (see K&R [2, pp234–239]).

The top-level declarations of the module’s translation-unit belong to the module’s component-
implementation scope. These declarations have indefinite extent and can be: any standard C
declaration or definition, a task declaration or definition, a commands or event implementation.

6.1 Implementing the Module’s Specification

The translation-unit must implement all provided commands (events) α of the module (i.e., all
directly provided commands and events, all commands in provided interfaces and all events in used
interfaces). A module can call any of its commands and signal any of its events.

These command and event implementations are specified with the following C syntax extensions:

storage-class-specifier: also one of
command event async

declaration-specifiers: also
default declaration-specifiers

direct-declarator: also
identifier . identifier
direct-declarator interface-parameters (parameter-type-list)

The implementation of simple command or event α has the syntax of a C function definition for α
(note the extension to direct-declarator to allow . in function names) with storage class command
or event. Additionally, the async keyword must be included iff it was included in α’s declaration.
For example, in a module that provides interface Send of type SendMsg:

command result_t Send.send(uint16_t address, uint8_t length, TOS_MsgPtr msg) {
...
return SUCCESS;

}

7

The implementation of parameterised command or event α with interface parameters P has the
syntax of a C function definition for α with storage class command or event where the function’s
regular parameter list is prefixed with the parameters P within square brackets (this is the same
syntax as parameterised command or event declarations within a component specification). These
interface parameter declarations P belong to α’s function-parameter scope and have the same extent
as regular function parameters. For example, in a module that provides interface Send[uint8 t
id] of type SendMsg:

command result_t Send.send[uint8_t id](uint16_t address, uint8_t length,
TOS_MsgPtr msg) {

...
return SUCCESS;

}

Compile-time errors are reported when:

• There is no implementation for a provided command or event.

• The type signature, optional interface parameters and presence or absence of the async
keyword of a command or event does not match that given in the module’s specification.

6.2 Calling Commands and Signaling Events

The following extensions to C syntax are used to call events and signal commands:

postfix-expression:
postfix-expression [argument-expression-list]
call-kindopt primary (argument-expression-listopt)
. . .

call-kind: one of
call signal post

A simple command α is called with call α(...), a simple event α is signaled with signal
α(...). For instance, in a module that uses interface Send of type SendMsg: call Send.send(1,
sizeof(Message), &msg1).

A parameterised command α (respectively, an event) with n interface parameters of type τ1, . . . , τn

is called with interface parameters expressions e1, . . . , en as follows: call α[e1, . . . , en](...) (re-
spectively, signal α[e1, . . . , en](...)). Interface parameter expression ei must be assignable to
type τi; the actual interface parameter value is ei cast to type τi. For instance, in a module that
uses interface Send[uint8 t id] of type SendMsg:

int x = ...;
call Send.send[x + 1](1, sizeof(Message), &msg1);

Execution of commands and events is immediate, i.e., call and signal behave similarly to function
calls. The actual command or event implementations executed by a call or signal expression

8

depend on the wiring statements in the program’s configurations. These wiring statements may
specify that 0, 1 or more implementations are to be executed. When more than 1 implementation
is executed, we say that the module’s command or event has “fan-out”.

A module can specify a default implementation for a used command or event α that it calls or
signals. A compile-time error occurs for default implementations of provided commands or events.
Default implementations are executed when α is not connected to any command or event implemen-
tation. A default command or event is defined by prefixing a command or event implementation
with the default keyword:

declaration-specifiers: also
default declaration-specifiers

For instance, in a in a module that uses interface Send of type SendMsg:

default command result_t Send.send(uint16_t address, uint8_t length,
TOS_MsgPtr msg) {

return SUCCESS;
}
/* call is allowed even if interface Send is not connected */
... call Send.send(1, sizeof(Message), &msg1) ...

Section 7.4 specifies what command or event implementations are actually executed and what result
gets returned by call and signal expressions.

6.3 Tasks

A task is an independent locus of control defined by a function of storage class task returning
void and with no arguments: task void myTask() { ... }.2 A task can also have a forward
declaration, e.g., task void myTask();.

Tasks are posted by prefixing a call to the task with post, e.g., post myTask(). Post returns
immediately; its return value is 1 if the task was successfully posted for independent execution, 0
otherwise. The type of a post expression is unsigned char.

storage-class-specifier: also one of
task

call-kind: also one of
post

nesC’s concurrency model, including tasks, is presented in detail in Section 8.

6.4 Atomic statements

Atomic statements:
2nesC functions with no arguments are declared with (), not (void). See Section 10.1.

9

atomic-stmt:
atomic statement

guarantee that the statement is executed “as-if” no other computation occured simultaneously. It
is used to implement mutual exclusion, for updates to concurrent data structures, etc. A simple
example is:

bool busy; // global

void f() {
bool available;

atomic {
available = !busy;
busy = TRUE;

}
if (available) do_something;
atomic busy = FALSE;

}

Atomic sections should be short, though this is not currently enforced in any way. Control may
only flow “normally” in or out of on atomic statement: any goto, break or continue that jumps
in or out of an atomic statement is an error. A return statement is never allowed inside an atomic
statement.

Section 8 discusses the relation between atomic and nesC’s concurrency model and data-race de-
tector.

7 Configurations

Configurations implement a component specification by connecting, or wiring, together a collection
of other components:

configuration-implementation:
implementation { component-listopt connection-list }

The component-list lists the components that are used to build this configuration, the connection-
list specifies how these components are wired to each other and to the configuration’s specification.

In the rest of this section, we call specification elements from the configuration’s specification
external, and specification elements from one of the configuration’s components internal.

7.1 Included components

The component-list specifies the components used to build this configuration. These components
can be optionally renamed within the configuration, either to avoid name conflicts with the con-
figuration’s specification elements, or to simplify changing the components a configuration uses (to

10

avoid having to change the wiring). The names chosen for components belong to the component’s
implementation scope.

component-list:
components
component-list components

components:
components component-line ;

component-line:
renamed-identifier
component-line , renamed-identifier

renamed-identifier:
identifier
identifier as identifier

A compile-time error occurs if two components are given the same name using as (e.g., components
X, Y as X).

There is only ever a single instance of a component: if a component K is used in two different
configurations (or even twice within the same configuration) there is still only instance of K (and
its variables) in the program.

7.2 Wiring

Wiring is used to connect specification elements (interfaces, commands, events) together. This
section and the next (Section 7.3) define the syntax and compile-time rules for wiring. Section 7.4
details how a program’s wiring statements dictate which functions get called at each call and
signal expression.

connection-list:
connection
connection-list connection

connection:
endpoint = endpoint
endpoint -> endpoint
endpoint <- endpoint

endpoint:
identifier-path
identifier-path [argument-expression-list]

identifier-path:
identifier

11

identifier-path . identifier

Wiring statements connect two endpoints. The identifier-path of an endpoint specifies a specification
element. The argument-expression-list optionally specifies interface parameter values. We say that
an endpoint is parameterised if its specification element is parameterised and the endpoint has no
parameter values. A compile-time error occurs if an endpoint has parameter values and any of the
following is true:

• The parameter values are not all constant expressions.

• The endpoint’s specification element is not parameterised.

• There are more (or less) parameter values than there are parameters on the specification
element.

• The parameter values are not in range for the specification element’s parameter types.

A compile-time error occurs if the identifier-path of an endpoint is not of one the three following
forms:

• X, where X names an external specification element.

• K.X where K is a component from the component-list and X is a specification element of K.

• K where K is a some component name from the component-list. This form is used in implicit
connections, discussed in Section 7.3. Note that this form cannot be used when parameter
values are specified.

There are three wiring statements in nesC:

• endpoint1 = endpoint2 (equate wires): Any connection involving an external specification
element. These effectively make two specification elements equivalent.

Let S1 be the specification element of endpoint1 and S2 that of endpoint2. One of the following
two conditions must hold or a compile-time error occurs:

– S1 is internal, S2 is external (or vice-versa) and S1 and S2 are both provided or both
used,

– S1 and S2 are both external and one is provided and the other used.

• endpoint1 -> endpoint2 (link wires): A connection involving two internal specification ele-
ments. Link wires always connect a used specification element specified by endpoint1 to a
provided one specified by endpoint2 . If these two conditions do not hold, a compile-time
error occurs.

• endpoint1 <- endpoint2 is equivalent to endpoint2 -> endpoint1.

In all three kinds of wiring, the two specification elements specified must be compatible, i.e., they
must both be commands, or both be events, or both be interface instances. Also, if they are
commands (or events), then they must both have the same function signature. If they are interface

12

instances they must be of the same interface type. If these conditions do not hold, a compile-time
error occurs.

If one endpoint is parameterised, the other must be too and must have the same parameter types;
otherwise a compile-time error occurs.

The same specification element may be connected multiple times, e.g.,:

configuration C {
provides interface X;

} implementation {
components C1, C2;

X = C1.X;
X = C2.X;

}

In this example, the multiple wiring will lead to multiple signalers (“fan-in”) for the events in
interface X and for multiple functions being executed (“fan-out”) when commands in interface X
are called. Note that multiple wiring can also happen when two configurations independently wire
the same interface, e.g.:

configuration C { } configuration D { }
implementation { implementation {

components C1, C2; components C3, C2;

C1.Y -> C2.Y; C3.Y -> C2.Y;
} }

All external specification elements must be wired or a compile-time error occurs. However, internal
specification elements may be left unconnected (these may be wired in another configuration, or
they may be left unwired if the modules have the appropriate default event or command imple-
mentations).

7.3 Implicit Connections

It is possible to write K1 <- K2.X or K1.X <- K2 (and the same with =, or ->). This syntax
iterates through the specification elements of K1 (resp. K2) to find a specification element Y such
that K1.Y <- K2.X (resp. K1.X <- K2.Y) forms a valid connection. If exactly one such Y
can be found, then the connection is made, otherwise a compile-time error occurs.

For instance, with:

module M1 { module M2 {
provides interface StdControl; uses interface StdControl as SC;

} ... } ...

configuration C { }
implementation {

13

interface X { module M {
command int f(); provides interface X as P;
event void g(int x); uses interface X as U;

} provides command void h();
} implementation { ... }

configuration C {
provides interface X;
provides command void h2();

}
implementation {

components M;
X = M.P;
M.U -> M.P;
h2 = M.h;

}

Figure 1: Simple Wiring Example

components M1, M2;
M2.SC -> M1;

}

The M2.SC -> M1 line is equivalent to M2.SC -> M1.StdControl.

7.4 Wiring Semantics

We first explain the semantics of wiring in the absence of parameterised interfaces. Section 7.4.1
below covers parameterised interfaces. Finally, Section 7.4.2 specifies requirements on the wiring
statements of an application when viewed as a whole. We will use the simple application of Figure 1
as our running example.

We define the meaning of wiring in terms of intermediate functions.3 There is one intermediate
function Iα for every command or event α of every component. For instance, in Figure 1, module
M has intermediate functions IM.P.f, IM.P.g, IM.U.f, IM.U.g, IM.h. In examples, we name intermediate
functions based on their component, optional interface instance name and function name.

An intermediate function is either used or provided. Each intermediate function takes the same
arguments as the corresponding command or event in the component’s specification. The body of
an intermediate function I is a list of calls (executed sequentially) to other intermediate functions.
These other intermediate functions are the functions to which I is connected by the application’s
wiring statements. The arguments I receives are passed on to the called intermediate functions
unchanged. The result of I is a list of results (the type of list elements is the result type of
the command or event corresponding to I), built by concatenating the result lists of the called
intermediate functions. An intermediate function which returns an empty result list corresponds

3nesC can be compiled without explicit intermediate functions, so the behaviour described in this section has no
runtime cost beyond the actual function calls and the runtime dispatch necessary for parameterised commands or
events.

14

to an unconnected command or event; an intermediate function which returns a list of two or more
elements corresponds to “fan-out”.

Intermediate Functions and Configurations The wiring statements in a configuration specify
the body of intermediate functions. We first expand the wiring statements to refer to intermediate
functions rather than specification elements, and we suppress the distinction between = and ->
wiring statements. We write I1 <-> I2 for a connection between intermediate functions I1 and I2.
For instance, configuration C from Figure 1 specifies the following intermediate function connections:
IC.X.f <-> IM.P.f IM.U.f <-> IM.P.f IC.h2 <-> IM.h
IC.X.g <-> IM.P.g IM.U.g <-> IM.P.g

In a connection I1 <-> I2 from a configuration C one of the two intermediate functions is the callee
and the other is the caller. The connection simply specifies that a call to the callee is added to
the body of the caller. I1 (similarly, I2) is a callee if any of the following conditions hold (we use
the internal, external terminology for specification elements with respect to the configuration C
containing the connection):

• If I1 corresponds to an internal specification element that is a provided command or event.

• If I1 corresponds to an external specification element that is a used command or event.

• If I1 corresponds to a command of interface instance X, and X is an internal, provided or
external, used specification element.

• If I1 corresponds to an event of interface instance X, and X is an external, provided or
internal, used specification element.

If none of these conditions hold, I1 is a caller. The rules for wiring in Section 7.2 ensure that a
connection I1 <-> I2 cannot connect two callers or two callees. In configuration C from Figure 1,
IC.X.f, IC.h2, IM.P.g, IM.U.f are callers and IC.X.g, IM.P.f, IM.U.g, IM.h are callees. Thus the connections of
C specify that a call to IM.P.f is added to IC.X.f, a call to IC.X.g is added to IM.P.g, etc.

Intermediate Functions and Modules The C code in modules calls, and is called by, inter-
mediate functions.

The intermediate function I for provided command or event α of module M contains a single call
to the implementation of α in M . Its result is the singleton list of this call’s result.

The expression call α(e1, . . . , en) is evaluated as follows:

• The arguments e1, . . . , en are evaluated, giving values v1, . . . , vn.

• The intermediate function I corresponding to α is called with arguments v1, . . . , vn, with
results list L.

• If L = (w) (a singleton list), the result of the call is w.

• If L = (w1, w2, . . . , wm) (two or more elements), the result of the call depends on the result
type τ of α. If τ = void, then the result is void. Otherwise, τ must have an associated
combining function c (Section 10.3 shows how combining functions are assocated with types),
or a compile-time error occurs. The combining function takes two values of type τ and returns

15

list of int IM.P.f() { list of void IM.P.g(int x) {
return list(M.P.f()); list of int r1 = IC.X.g(x);

} list of int r1 = IM.U.g(x);
return list concat(r1, r2);

}

list of int IM.U.f() { list of void IM.U.g(int x) {
return IM.P.f(); return list(M.U.g(x));

} }

list of int IC.X.f() { list of void IC.X.g(int x) {
return IM.P.f(); return empty list;

} }

list of void IC.h2() { list of void IM.h() {
return IM.h(); return list(M.h());

} }

Figure 2: Intermediate Functions for Figure 1

a result of type τ . The result of the call is c(w1, c(w2, . . . , c(wm−1, wm))) (note that the order
of the elements of L was arbitrary).

• If L is empty the default implementation for α is called with arguments v1, . . . , vn, and its
result is the result of the call. Section 7.4.2 specifies that a compile-time error occurs if L
can be empty and there is no default implementation for α.

The rules for signal expressions are identical.

Example Intermediate Functions Figure 2 shows the intermediate functions that are produced
for the components of Figure 1, using a C-like syntax, where list(x) produces a singleton list
containing x, empty list is a constant for the 0 element list and concat list concatenates two
lists. The calls to M.P.f, M.U.g, M.h represent calls to the command and event implementations in
module M (not shown).

7.4.1 Wiring and Parameterised Functions

If a command or event α of component K is parameterised with interface parameters of type
τ1, . . . , τn then there is an intermediate function Iα,v1,...,vn for every distinct tuple (v1 : τ1, . . . , vn :
τn).

In modules, if intermediate function Iv1,...,vn corresponds to parameterised, provided command (or
event) α then the call in Iv1,...,vn to α’s implementation passes values v1, . . . , vn as the values for
α’s interface parameters.

The expression call α[e′1, . . . , e
′
m](e1, . . . , en) is evaluated as follows:

• The arguments e1, . . . , en are evaluated, giving values v1, . . . , vn.

16

• The arguments e′1, . . . , e
′
m are evaluated, giving values v′1, . . . , v

′
m.

• The v′i values are cast to type τi, where τi is the type of the ith interface parameter of α.

• The intermediate function Iv′
1,...,v′

m
corresponding to α is called with arguments v1, . . . , vn,

with results list L.4

• If L has one or more elements, the result of the call is produced as in the non-parameterised
case.

• If L is empty the default implementation for α is called with interface parameter values
v′1, . . . , v

′
m and arguments v1, . . . , vn, and its result is the result of the call. Section 7.4.2

specifies that a compile-time error occurs if L can be empty and there is no default imple-
mentation for α.

The rules for signal expressions are identical.

There are two cases when an endpoint in a wiring statement refers to a parameterised specification
element:

• The endpoint specifies parameter values v1, . . . , vn. If the endpoint corresponds to com-
mands or events α1, . . . , αm then the corresponding intermediate functions are Iα1,v1,...,vn ,
. . . , Iαm,v1,...,vn and wiring behaves as before.

• The endpoint does not specify parameter values. In this case, both endpoints in the wiring
statement correspond to parameterised specification elements, with identical interface param-
eter types τ1, . . . , τn. If one endpoint corresponds to commands or events α1, . . . , αm and the
other to corresponds to commands or events β1, . . . , βm, then there is a connection Iαi,w1,...,wn

<-> Iβi,w1,...,wn for all 1 ≤ i ≤ m and all tuples (w1 : τ1, . . . , wn : τn) (i.e., the endpoints are
connected for all corresponding parameter values).

7.4.2 Application-level Requirements

There are two requirement that the wiring statements of an application must satisfy, or a compile-
time error occurs:

• There must be no infinite loop involving only intermediate functions.

• At every call α (or signal α) expression in the application’s modules:

– If the call is unparameterised: if the call returns an empty result list there must be a
default implementation of α (the number of elements in the result list depends only on
the wiring).

– If the call is parameterised: if substituation of any values for the interface parameters of
α returns an empty result list there must be a default implementation of α (the number
of elements in the result list for a given parameter value tuple depends only on the
wiring).
Note that this condition does not consider the expressions used to specify interface
parameter values at the call-site.

4This call typically involves a runtime selection between several command implementations - this is the only place
where intermediate functions have a runtime cost.

17

8 Concurrency in nesC

nesC assumes an execution model that consists of run-to-completion tasks (that typically represent
the ongoing computation), and interrupt handlers that are signaled asynchronously by hardware.
The compiler relies on the user-provided hwevent and atomic hwevent attributes to recognise
interrupt handlers (see Section 10.3). A scheduler for nesC can execute tasks in any order, but
must obey the run-to-completion rule (the standard TinyOS scheduler follows a FIFO policy).
Because tasks are not preempted and run to completion, they are atomic with respect to each
other, but are not atomic with respect to interrupt handlers.

As this is a concurrent execution model, nesC programs are susceptible to race conditions, in
particular data races on the program’s shared state, i.e., its global and module variables (nesC does
not include dynamic memory allocation). Races are avoided either by accessing a shared state only
in tasks, or only within atomic statements. The nesC compiler reports potential data races to the
programmer at compile-time.

Formally, we divide the code of a nesC program into two parts:

Synchronous Code (SC): code (functions, commands, events, tasks) that is only
reachable from tasks.

Asynchronous Code (AC): code that is reachable from at least one interrupt handler.

Although non-preemption eliminates data races among tasks, there are still potential races between
SC and AC, as well as between AC and AC. In general, any update to shared state that is reachable
from AC is a potential data race. The basic invariant nesC enforces is:

Race-Free Invariant: Any update to shared state is either SC-only or occurs in
an atomic statement. The body of a function f called from an atomic statement is
considered to be “in” the atomic statement as long as all calls to f are “in” atomic
statements.

It is possible to introduce a race condition that the compiler cannot detect, but it must span
multiple atomic statements or tasks and use storage in intermediate variables.

nesC may report data races that cannot occur in practice, e.g., if all accesses are protected by
guards on some other variable. To avoid redundant messages in this case, the programmer can
annotate a variable v with the norace storage-class specifier to eliminate all data race warnings for
v. The norace keyword should be used with caution.

nesC reports a compile-time error for any command or event that is AC and that was not declared
with async. This ensures that code that was not written to execute safely in an interrupt handler
is not called inadvertently.

9 nesC Applications

A nesC application has three parts: a list of C declarations and definitions, a set of interface types
and a set of components. The naming environment of nesC applications is structured as follows:

• An outermost, global scope with three namespaces: a C variable and a C tag namespace for

18

the C declarations and definitions, and a component and interface type namespace for the
nesC interface types and components.

• C declarations and definitions may introduce their own nested scopes within the global scope,
as usual (for function declarations and definitions, code blocks within functions, etc).

• Each interface type introduces a scope that holds the interface’s commands or events. This
scope is nested in the global scope, therefore command and event definitions can refer to C
types and tags defined in the global scope.

• Each component introduces two new scopes. The specification scope, nested in the global
scope, contains a variable namespace which holds the component’s specification elements.
The implementation scope, nested in the specification scope, contains a variable and a tag
namespace.

For configurations, the implementation’s scope variable namespace contains the names by
which this component refers to its included components (Section 7.1). For modules, the im-
plementation scope holds the tasks, C declarations and definitions that form the module’s
body. These declarations, etc may introduce their own nested scopes within the implementa-
tion scope (for function bodies, code blocks, etc). As a result of the scope nesting structure,
code in modules has access to the C declarations and definitions in the global scope, but not
to any declarations or definitions in other components.

The C declarations and defintions, interface types and components that form a nesC application
are determined by an on-demand loading process. The input to the nesC compiler is a single
component K. The nesC compiler first loads C file tos (Section 9.1), then loads component K
(Section 9.2). The code for the application is all the code loaded as part of the process of loading
these two files. A nesC compiler can assume that all calls to functions, commands or events not
marked with the spontaneous attribute (Section 10.3) occur in the loaded code (i.e., there are no
“invisible” calls to non-spontaneous functions).5

During preprocessing of loaded files, nesC defines the NESC symbol to a number XYZ which identifies
the version of the nesC language and compiler. For nesC 1.1, XYZ is at least 110.6

Part of the process of loading a C file, nesC component or interface type involves locating the
corresponding source file. The mechanism used to locate files is outside the scope of this reference
manual; for details on how this works in the current compiler please see the ncc man page.

9.1 Loading C file X

If X has already been loaded, nothing more is done. Otherwise, file X.h is located and preprocessed.
Changes made to C macros (via #define and #undef) are visible to all subsequently preprocessed
files. The C declarations and definitions from the preprocessed X.h file are entered into the C
global scope, and are therefore visible to all subsequently processed C files, interface types and
components.

5For instance, the current nesC compiler uses this information to eliminate unreachable code.
6The NESC symbol was not defined in earlier versions of nesC.

19

9.2 Loading Component K

If K has already been loaded, nothing more is done. Otherwise, file X.nc is located and prepro-
cessed. Changes made to C macros (via #define and #undef) are discarded. The preprocessed file
is parsed using the following grammar:

nesC-file:
includes-listopt interface
includes-listopt module
includes-listopt configuration

includes-list:
includes
includes-list includes

includes:
includes identifier-list ;

If X.nc does not define module K or configuration K, a compile-time error is reported. Oth-
erwise, all C files specified by the includes-list are loaded (Section 9.1). Then all interface types
used in the component’s specification are loaded (Section 9.3). Next, the component specification
is processed (Section 5). If K is a configuration, all components specified (Section 7.1) by K are
loaded (Section 9.2). Finally, K’s implementation is processed (Sections 6 and 7)..

9.3 Loading Interface Type I

If I has already been loaded, nothing more is done. Otherwise, file X.nc is located and preprocessed.
Changes made to C macros (via #define and #undef) are discarded. The preprocessed file is parsed
following the nesC-file production above. If X.nc does not define interface I a compile-time error
is reported. Otherwise, all C files specified by the includes-list are loaded (Section 9.1). Then I’s
definition is processed (Section 4).

As an example of including C files in components or interfaces, interface type Bar might include C
file BarTypes.h which defines types used in Bar:

Bar.nc: BarTypes.h:
includes BarTypes; typedef struct {
interface Bar { int x;

command result_t bar(BarType arg1); double y;
} } BarType;

The definition of interface Bar can refer to BarType, as can any component that uses or pro-
vides interface Bar (interface Bar, and hence BarTypes.h, are loaded before any such component’s
specification or implementation are processed).

20

10 Miscellaneous

10.1 Functions with no arguments, old-style C declarations

nesC functions with no arguments are declared with (), not (void). The latter syntax reports a
compile-time error.

Old-style C declarations (with ()) and function definitions (parameters specified after the argument
list) are not allowed in interfaces or components (and cause compile-time errors).

Note that neither of these changes apply to C files (so that existing .h files can be used unchanged).

10.2 // comments

nesC allows // comments in C, interface type and component files.

10.3 Attributes

nesC uses gcc’s7 attribute syntax for declaring some properties of functions, variables and
typedefs. These attributes can be placed either on declarations (after the declarator) or function
definitions (after the parameter list).8 The attributes of x are the union of all attributes on all
declarations and definitions of x.

The attribute syntax in nesC is:

init-declarator-list: also
init-declarator attributes
init-declarator-list , init-declarator attributes

function-definition: also
declaration-specifiersopt declarator attributes declaration-listopt compound-statement

attributes:
attribute
attributes attribute

attribute:
attribute ((attribute-list))

attribute-list:
single-attribute
attribute-list , single-attribute

single-attribute:
identifier
identifier (argument-expression-list)

7http://gcc.gnu.org
8gcc doesn’t allow attributes after the parameter list in function definitions.

21

nesC supports five attributes:

• C: This attribute is used for a C declaration or definition d at the top-level of a module (it is
ignored for all other declarations). It specifies that d’s should appear in the global C scope
rather than in the module’s per-component-implementation scope. This allows d to be used
(e.g., called if it is a function) from C code.

• spontaneous: This attribute can be used on any function f (in modules or C code). It
indicates that there are calls f that are not visible in the source code. Typically, functions
that are called spontaneously are interrupt handlers, and the C main function. Section 9
discusses how the nesC compiler uses the spontaneous attribute during compilation.

• hwevent: This attribute can be used on any function f (in modules or C code). It indicates
that f is an interrupt handling function, invoked automatically by the hardware. This implies
that f is both spontaneous and asynchronous code (AC).

• atomic hwevent: This attribute can be used on any function f (in modules or C code). It
indicates that f is an interrupt handling function, invoked automatically by the hardware,
with interrupts disabled. This implies that f is both spontaneous and asynchronous code
(AC), and, additionally, that the body of f runs as if it was wrapped in an atomic statement.

• combine(fnname): This attribute specifies the combining function for a type in a typedef
declaration. The combining function specifies how to combine the multiple results of a call
to a command or event which has “fan-out”. For example:

typedef uint8_t result_t __attribute__((combine(rcombine)));

result_t rcombine(result_t r1, result_t r2)
{

return r1 == FAIL ? FAIL : r2;
}

specifies logical-and-like behaviour when combining commands (or events) whose result type
is result t. See Section 7.4 for the detailed semantics.

A compile-time error occurs if the combining function c for a type t does not have the following
type: t c(t, t).

Example of attribute use: in file RealMain.td:

module RealMain { ... }
implementation {

int main(int argc, char **argv) __attribute__((C, spontaneous)) {
...

}
}

This example declares that function main should actually appear in the C global scope (C), so that
the linker can find it. It also declares that main can be called even though there are no function
calls to main anywhere in the program (spontaneous).

22

10.4 Compile-time Constant Functions

nesC has a new kind of constant expression: constant functions. These are functions defined within
the language which evaluate to a constant at compile-time.

nesC currently has two constant functions:

• unsigned int unique(char *identifier)
Returns: if the program contains n calls to unique with the same identifier string, each
calls returns a different unsigned integer in the range 0..n− 1.

The intended use of unique is for passing a unique integer to parameterised interface instances,
so that a component providing a parameterised interface can uniquely identify the various
components connected to that interface.

• unsigned int uniqueCount(char *identifier)
Returns: if the program contains n calls to unique with the same identifier string, then
uniqueCount will return n.

The intended use of uniqueCount is for dimensioning arrays (or other data structures) which
will be indexed using the numbers returned by unique. For instance, a Timer service that
identifies its clients (and hence each independent timer) via a parameterised interface and
unique can use uniqueCount to allocate the correct number of timer data structures.

A Grammar

Please refer to Appendix A of Kernighan and Ritchie (K&R) [2, pp234–239] while reading this
grammar.

The following keywords are new for nesC: as, call, command, components, configuration, event,
implementation, interface, module, post, provides, signal, task, uses, includes. These
nesC keywords are not reserved in C files. The corresponding C symbols are accessible in nesC files
by prefixing them with nesc keyword (e.g., nesc keyword as).

nesC reserves all identifiers starting with nesc for internal use. TinyOS reserves all identifiers
starting with TOS and TOSH .

nesC files follow the nesC-file production; .h files included via the includes directive follow the
translation-unit directive from K&R.

New rules:

nesC-file:
includes-listopt interface
includes-listopt module
includes-listopt configuration

includes-list:
includes
includes-list includes

23

includes:
includes identifier-list ;

interface:
interface identifier { declaration-list }

module:
module identifier specification module-implementation

module-implementation:
implementation { translation-unit }

configuration:
configuration identifier specification configuration-implementation

configuration-implementation:
implementation { component-listopt connection-list }

component-list:
components
component-list components

components:
components component-line ;

component-line:
renamed-identifier
component-line , renamed-identifier

renamed-identifier:
identifier
identifier as identifier

connection-list:
connection
connection-list connection

connection:
endpoint = endpoint
endpoint -> endpoint
endpoint <- endpoint

endpoint:
identifier-path
identifier-path [argument-expression-list]

identifier-path:

24

identifier
identifier-path . identifier

specification:
{ uses-provides-list }

uses-provides-list:
uses-provides
uses-provides-list uses-provides

uses-provides:
uses specification-element-list
provides specification-element-list

specification-element-list:
specification-element
{ specification-elements }

specification-elements:
specification-element
specification-elements specification-element

specification-element:
declaration
interface renamed-identifier parametersopt

parameters:
[parameter-type-list]

Changed rules:

storage-class-specifier: also one of
command event async task norace

declaration-specifiers: also
default declaration-specifiers

direct-declarator: also
identifier . identifier
direct-declarator parameters (parameter-type-list)

init-declarator-list: also
init-declarator attributes
init-declarator-list , init-declarator attributes

function-definition: also
declaration-specifiersopt declarator attributes declaration-listopt compound-statement

25

attributes:
attribute
attributes attribute

attribute:
attribute ((attribute-list))

attribute-list:
single-attribute
attribute-list , single-attribute

single-attribute:
identifier
identifier (argument-expression-list)

statement: also
atomic-statement

atomic-statement:
atomic statement

postfix-expression: replaced by
primary-expression
postfix-expression [argument-expression-list]
call-kindopt primary (argument-expression-listopt)
postfix-expression . identifier
postfix-expression -> identifier
postfix-expression ++
postfix-expression --

call-kind: one of
call signal post

B Glossary

• combining function: C function that combines the multiple results of command call (or event
signal) in the presence of fan-out.

• command, event : A function that is part of a component’s specification, either directly as a
specification element or within one of the component’s interface instances.

When used directly as specification elements, commands and events have roles (provider, user)
and can have interface parameters. As with interface instances, we distinguish between simple
commands (events) without interface parameters and parameterised commands (events) with
interface parameters. The interface parameters of a command or event are distinct from its

26

regular function parameters.

• compile-time error : An error that the nesC compiler must report at compile-time.

• component : The basic unit of nesC programs. Components have a name and are of two kinds:
modules and configurations. A component has a specification and an implementation.

• configuration: A component whose implementation is provided by a composition of other
components with a specific wiring.

• endpoint : A specification of a particular specification element, and optionally some interface
parameter values, in a wiring statement of a configuration. A parameterised endpoint is an
endpoint without parameter values that corresponds to a parameterised specification element.

• event : See command.

• extent : The lifetime of a variable. nesC has the standard C extents: indefinite, function, and
block.

• external : In a configuration C, describes a specification element from C’s specification. See
internal.

• fan-in: Describes a provided command or event called from more than one place.

• fan-out : Describes a used command or event connected to more than one command or event
implementation. A combining function combines the results of calls to these used commands
or events.

• interface: When the context is unambiguous, we use interface to refer to either an interface
type or an interface instance.

• interface instance: An instance of a particular interface type in the specification of a compo-
nent. An interface instance has an instance name, a role (provider or user), an interface type
and, optionally, interface parameters. An interface instance without parameters is a simple
interface instance, with parameters it is a parameterised interface instance.

• interface parameter : An interface parameter has an interface parameter name and must be
of integral type.

There is (conceptually) a separate simple interface instance for each distinct list of parameter
values of a parameterised interface instance (and, similarly, separate simple commands or
events in the case of parameterised commands or events). Parameterised interface instances
allow runtime selection based on parameter values between a set of commands (or between a
set of events).

• interface type: An interface type specifies the interaction between two components, the
provider and the user. This specification takes the form of a set of commands and events.
Each interface type has a distinct name.

Interfaces are bi-directional: the provider of an interface implements its commands, the user
of an interface implements its events.

27

• intermediate function: A pseudo-function that represents the behaviour of the commands
and events of a component, as specified by the wiring statements of the whole application.
See Section 7.4.

• internal : In a configuration C, describes a specification element from one of the components
specified in C’s component list. See external.

• module: A component whose implementation is provided by C code.

• namespace: nesC has the standard C variable (also used for functions and typedefs), tagged
type (struct, union and enum tag names) and label namespaces. Additionally, nesC has a
component and interface type namespace for component and interface type names.

parameterised command, parameterised event, parameterised interface instance, endpoint : See
command, event, interface instance, endpoint.

provided, provider : A role for a specification element. Providers of interface instances must
implement the commands in the interface; provided commands and events must be imple-
mented.

provided command of K: A command that is either a provided specification element of K, or
a command of a provided interface of K.

provided event of K: An event that is either a provided specification element of K, or an
event of a used interface of K.

• scope: nesC has the standard C global, function-parameter and block scopes. Additionally
there are specification and implementation scopes in components and a per-interface-type
scope. Scopes are divided into namespaces.

simple command, simple event, simple interface instance: See command, event, interface
instance.

• specification: A list of specification elements that specifies the interaction of a component
with other components.

• specification element : An interface instance, command or event in a specification that is
either provided or used.

• task : A TinyOS task.

used, user : A role for a specification element. Users of interface instances must implement
the events in the interface.

used command of K: A command that is either a used specification element of K, or a
command of a used interface of K.

used event of K: An event that is either a used specification element of K, or an event of a
provided interface of K.

• wiring : The connections between component’s specification elements specified by a configu-
ration.

28

References

[1] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J. Pister. System Architecture
Directions for Networked Sensors. In Architectural Support for Programming Languages and
Operating Systems, pages 93–104, 2000. TinyOS is available at http://webs.cs.berkeley.edu.

[2] B. W. Kernighan and D. M. Ritchie. The C Programming Language, Second Edition. Prentice
Hall, 1988.

29

	Introduction
	Notation
	Changes
	Interfaces
	Component Specification
	Modules
	Implementing the Module's Specification
	Calling Commands and Signaling Events
	Tasks
	Atomic statements

	Configurations
	Included components
	Wiring
	Implicit Connections
	Wiring Semantics
	Wiring and Parameterised Functions
	Application-level Requirements

	Concurrency in nesC
	nesC Applications
	Loading C file X
	Loading Component K
	Loading Interface Type I

	Miscellaneous
	Functions with no arguments, old-style C declarations
	// comments
	Attributes
	Compile-time Constant Functions

	Grammar
	Glossary

