
XPole: An Interactive, Graphical Signal Analysis and

Filter Design Tool

Kennard White

May 21, 1993

Abstract

XPole is an interactive, graphical signal analysis and �lter design tool for both

continuous-time and discrete-time systems. It serves as an educational tool for learning

about pole-zero plots, impulse responses, and frequency responses; as a �lter design tool

for rapidly designing �lters; and as a framework for developing new algorithms. It uses

the X Window System via Tcl/Tk.

Acknowledgements

This research was aided and supported by many people. My research advisor

Prof. Edward Lee originally suggested the concept behind XPole, and provided support

through out its development. Prof. Lee also used XPole in his EE123 classes, which

provided valuable feedback. Mei-Tjng Huang worked extensively on the eem library, a

major component of XPole. Phil Lapsley and Beorn Johnson for many useful discus-

sions and comments on Tcl/Tk usage, user interfaces, and signal processing algorithms.

Prof. Ousterhout's Tcl/Tk package is an integral part of XPole.

This work was supported by the Experimental Computing Facility (XCF) at U.C.

Berkeley, the California Microelectronics Fellowship (1990-91), Sony Corp. and by NSF

grant MIP-9201605.

Contents

1 XPole Overview 1

1.1 Introduction : 1

1.1.1 Organization : 1

1.1.2 Previous Work : 2

1.1.3 Purpose : 2

1.1.4 Implementation : 3

1.2 Capabilities : 3

1.2.1 Signal Processing Concepts : 4

1.2.2 Filter Design : 4

1.2.3 Windowing : 10

1.2.4 Scripting and Extensions : 12

1.3 Framework : 13

1.4 Future Plans : 13

2 XPole User's Guide 15

2.1 Introduction : 15

2.1.1 About XPole : 16

2.1.2 Acknowledgements : 17

i

ii CONTENTS

2.1.3 Help : 17

2.2 Kernel : 18

2.2.1 Filters : 18

2.2.2 Pipes : 19

2.3 Graphical User Interface : 21

2.3.1 Pole-Zero Window : 21

2.3.2 Frequency Domain Window : 23

2.3.3 Time Domain Window : 24

2.3.4 Complex Sequence Widget : 24

2.3.5 Axis Widget : 26

2.3.6 Filter Selection : 28

2.3.7 Export Filter : 28

2.4 Tcl/Tk : 28

2.4.1 Menus : 29

2.4.2 Entry Widget : 30

2.4.3 Complex Label : 30

2.4.4 Complex Entry : 31

2.5 Design Algorithms : 31

2.5.1 Standard Filter Design : 31

2.6 Commands and Scripts : 35

2.6.1 Command Line Options : 35

2.6.2 Variables : 35

2.6.3 Commands : 35

3 XPole Programmer's Guide 37

3.1 Introduction : 37

CONTENTS iii

3.2 Framework : 37

3.2.1 Current Framework : 37

3.2.2 Evolution : 44

3.2.3 Future Directions : 46

3.3 Libraries : 47

3.4 Event Loop : 48

3.5 EEM Library : 48

3.5.1 Polynomial Arithmetic : 48

3.5.2 Polynomial Factoring : 49

3.5.3 Partial Fraction Expansion : 49

3.5.4 Jacobian Elliptical Functions : 49

Chapter 1

XPole Overview

1.1 Introduction

XPole is a interactive, graphical signal analysis and �lter design tool for both continuous-
time and discrete-time systems. It serves as an educational tool for learning about pole-zero
plots, impulse responses, and frequency responses; as a �lter design tool for rapidly designing
�lters; and as a framework for developing new algorithms.

XPole graphically displays various representations of a system including its pole-zero plot,
impulse response, and frequency response. Each of these may be modi�ed by the user
while the other representations are interactively recalculated to correspond. In addition,
mappings such as the bilinear transform and spectral transformations may link two pole-
zero plots: user modi�cation of one plot causes the other to be updated. Standard �lter
design algorithms are implemented, with each step of the algorithm visible to the user.

1.1.1 Organization

Chapter 1 describes the purpose of XPole and overviews its capabilities. Chapter 2 is
the XPole User's Guide, and details how XPole is used and operated. It is aimed at the
reader who wishes to use XPole to accomplish a speci�c purpose. Chapter 3 is the XPole
Programmer's Guide, and details the implementation of XPole. It is of interest to anyone
wishing to modify or extend XPole. It also discusses XPole's development, and explains
approachs that were attempted and discarded.

1

2 CHAPTER 1. XPOLE OVERVIEW

1.1.2 Previous Work

Signal analysis and �lter design has a long history. XPole does not implement any new
system representations or new algorithms. Instead, it aims to encapsulate existing concepts
and algorithms into a common framework. The graphical interface helps provide intuition
about these concepts and exposes the fundamentals of these algorithms. Furthermore, the
common framework allows concepts and algorithms to be used as building blocks.

There are many commercial �lter design programs1. Some will display the pole-zero plots
of designed �lters. Most provide for tabular entry of poles and zeros and will display pole-
zero plots of designed �lters. A few allow graphical, interactive placement of poles and
zeros much like XPole. However, all of these tools are closed systems with their emphasis
on quickly and easily producing a �lter realization given a �lter speci�cation. In contrast,
XPole's emphasis is on illustrating concepts and providing an open framework that may be
easily extended.

Most of the algorithms used in XPole are available in any signal processing textbook e.g.,
[Jac89] and [ZTF83]. A collection of historically useful algorithms was published by the
IEEE in [Com79], and AT&T's netlib [NET] is an on-line source of many modern algorithms.
However, the emphasis in both cases is on single-purpose algorithms with little e�ort towards
integrating them into a single framework. Further, they provide little or no user interface,
much less an interactive graphical system.

1.1.3 Purpose

XPole serves three roles:

Education

The primary purpose of XPole is to aid the student in understanding basic concepts in
signal processing. Speci�cally, the tool demonstrates how di�erent system representa-
tions such as pole-zero plots, frequency domain behavior, and time domain behavior
relate to each other. The interactive, graphical nature of XPole allows the students to
quickly and easily experiment with systems to gain an intuitive understanding of their
underlying principles. Similarly, the operation of common �lter design algorithms is
visually exhibited, allowing the student to gain an understanding of the behavior of
the algorithms.

1An extensive survey of commercial �lter design tools may be found in [BLL93] from Berkeley Design

Technology, Inc.

1.2. CAPABILITIES 3

Filter design

XPole implements several standard �lter design algorithms; thus it may be used by a
system designer to automatically generate an appropriate �lter meeting some speci�-
cation. In addition to designing standard �lters, non-standard, special-purpose �lters
may be manually designed.

Algorithms

XPole provides a framework for describing, manipulating, and displaying �lters. Thus
an algorithm designer may implement his algorithm within the framework, building on
the pre-existing algorithms and the user interface provided by XPole. The immediate
visual feedback provided by XPole's user interface can be particularly useful during
algorithm development.

The �lter design aspect of XPole is secondary since, as described above, there are many
commercial �lter design tools. However, the requirements of �lter design algorithms are an
important driving force in designing the framework. Filter design algorithms also provide
an educational opportunity to demonstrate fundamental signal processing concepts.

1.1.4 Implementation

XPole is written in ANSI C-code (25,000 lines) and Tcl/Tk-code (8,000 lines), and runs under
the X Window System. The C-code implements the XPole framework, most of the signal
processing algorithms, and some custom Tk widgets (the kernel of the graphics interface).
The Tcl/Tk-code implements some of the simple signal processing algorithms and most of
the graphical user interface.

XPole currently runs on SparcStation and DECStation systems, and should run on any
UNIX workstation where the X Window System and an ANSI C compiler is available.
Complete source code is freely available from the author.

1.2 Capabilities

XPole is designed around �lters: linear, time-invariant (LTI), single-input, single-output
(SISO) systems.

It is important to note that mathematically there is no distinction between signals and
systems. More precisely, a given signal is equivalent to an LTI SISO system whose impulse

4 CHAPTER 1. XPOLE OVERVIEW

response is equal to the given signal. Thus �lter should be read as either system or signal,
as appropriate to the context.

A particular �lter may be represented in several di�erent ways; each such representation
is called a view. In particular, a �lter may be described by its pole-zero plot, its impulse
response, and its Fourier transform.

1.2.1 Signal Processing Concepts

XPole may be used to explore the relationship between views of a �lter. Figure 1.1 is a screen
dump showing a simple two-pole discrete-time system. The upper-left shows the Z-plane
with the two poles, the upper-right shows the magnitude and phase frequency response, and
the bottom shows the impulse response. The user may use the mouse to move the poles
around in the Z-plane, and the frequency and impulse responses will interactively update.
Similarly, the user can see the e�ect of adding and deleting new poles and zeros by similar
mouse manipulation.

Another simple concept demonstrated by XPole is the bilinear transform. Figure 1.2 is a
screen dump showing an approximate low-pass �lter. The upper-left shows the S-plane and
the upper-right shows the Z-plane. The poles and zeros in each are bound according to the
bilinear transform. The user may move any of the poles and zeros in either the S-plane or
Z-plane, and its `mate' under the bilinear transform will move appropriately. The bottom
portion of the �gure shows the frequency response of both the continuous-time (thin line)
and discrete-time (thick) �lters. Note that the discrete-time system is periodic while the
continuous-time system is not. The user may also select a matched-z or impulse invariant
transformation instead of bilinear. However, currently these only map from the S-plane to
Z-plane (e.g., user changes to the Z-plane will not a�ect the S-plane).

1.2.2 Filter Design

IIR Filters

XPole supports IIR �lter design using the menu shown in �gure 1.3. The pole-zero plot
and frequency response of the �lter obtained using the options and parameters in �gure 1.3
(6-th order elliptical band-pass) is shown in �gure 1.4; the user may also view its impulse
response. The user can change any of the options shown in �gure 1.3, as well as any of the
parameters, and the �lter will be immediately redesigned and the plots updated accordingly.
Through experimentation between di�erent design methods and parameters, this allows the

1.2. CAPABILITIES 5

Figure 1.1: Simple Two Pole System. Upper-left is pole-zero plot, upper-right is frequency
response, and bottom is impulse response.

6 CHAPTER 1. XPOLE OVERVIEW

Figure 1.2: Bilinear Transform. The discrete-time �lter in upper-right is the bilinear trans-
form of the continuous-time �lter in upper-left.

1.2. CAPABILITIES 7

Figure 1.3: IIR Filter Design Menu

user to develop an intuitive understanding for the �lter design process. For example, the left
side of �gure 1.5 shows the pole-zero plot of a Butterworth �lter designed using the same
parameters. The right side shows the frequency response of both �lters on a logarithmic
scale (thick line is Butterworth).

For educational uses, XPole will expose the details of the design process: the user may ask
to see the intermediate �lters that are used at each step of the process. In the example above
(6-th order elliptical band-pass), this includes the original low-pass S-domain �lter and the
low-pass Z-domain �lter. The pole-zero plot, frequency response and impulse response of
all intermediate �lters may be displayed. For example, �gure 1.6 shows the pole-zero plots
of the two intermediate �lters for the previous example, as well as their impulse responses.

FIR Filters

Currently, XPole does not support FIR �lter design. Algorithms for design by frequency
sampling are currently being implemented, and will be followed by more sophisticated de-

8 CHAPTER 1. XPOLE OVERVIEW

Figure 1.4: 6-th order Elliptical Band Pass Filter

Figure 1.5: 6-th order Butterworth Band Pass Filter

1.2. CAPABILITIES 9

Figure 1.6: Intermediate Filters in the Design Process for a 6-th order Elliptical Band Pass
Filter. Upper-left is a continuous-time, low-pass �lter, and upper-right is discrete-time
low-pass via the bilinear transform.

10 CHAPTER 1. XPOLE OVERVIEW

signs such as equiripple �lters.

Note that IIR and FIR designs require di�erent methodologies; in particular, IIR �lters
are designed by placing poles and zeros, while FIR �lters and designed by calculating the
desired impulse response (tap values). Which mathematically equivalent, in practice these
are very di�erent. For example, �nding the zeros of a 256-tap FIR �lter would require
factoring a 256-degree polynomial, which simply cannot be done robustly (the problem is
extremely ill-conditioned). Similarly, given an 256-zero FIR �lter, calculating the impulse
response requires multipling together 256 �rst-order polynomials. This leads to substantial
numerical round-o� noise, as well as dynamic range errors unless the zeros are well chosen.

Realization and Export

Typically, once a �lter has been designed, an implementable realization must be found, and
that realization must be exported to another application. XPole is designed to interface to
the Ptolemy system developed at U.C. Berkeley; see [BHLM93]. XPole will �nd realizations
for a variety of Ptolemy �lter stars, and export them in a format suitable for use by Ptolemy.
The realization can be communicated to the Ptolemy system either through �les or through
an inter-process communication (IPC) mechanism. The IPC mechanism is useful when
XPole is being used to interactively control a �lter running on a real-time system (via
QDM2). The realization may also be viewed directly: �gure 1.7 shows a biquad cascade
realization. When the �lter is modi�ed, the realization will be interactively updated.

1.2.3 Windowing

Windowing is a common concept is signal processing, and occurs in spectral estimation
and FIR �lter design. XPole may be used to demonstrate the e�ect of windowing. Figure
1.8 shows a 10th order elliptical �lter. On the left is the impulse response. The right side
shows the frequency response: the thin line is the complete IIR �lter, and the thick line
is the result of applying a 16-sample rectangular window to the impulse response. Other
windows, including the Hanning, Hamming, and Blackman windows, are available.

While windowing may be applied to standard IIR �lters to obtain an FIR �lter, such an
FIR �lter would be inferior to standard FIR designs. However, windowing will eventually
be part of XPole's FIR design system.

2QDM is an debugger and monitor for real-time DSP systems; see [Lap91]

1.2. CAPABILITIES 11

Figure 1.7: Elliptical Filter Biquad Cascade Realization

12 CHAPTER 1. XPOLE OVERVIEW

Figure 1.8: E�ects of Windowing on 10-th Order Elliptical Filter

1.2.4 Scripting and Extensions

XPole uses Tool Command Language (Tcl) [Ous90] to provide a command and script-
ing language. This is an interpreted, complete language (providing procedures, variables,
conditionals, and loops) and is extensible to provide custom commands for a particular ap-
plication. For XPole, commands have been added so that all views may be monitored and
modi�ed. This allows views to be manipulated in Tcl-code rather than C-code. In fact, the
simpler �lter design algorithms and the spectral transformation algorithm are implemented
in Tcl-code. This extensibility may be used in several di�erent ways:

� The instructor may write a script in Tcl that con�gures XPole to demonstrate a
particular signal processing concept of interest to students. The script may hide
implementation details that are not important to convey to students.

� The algorithm designer may quickly express an algorithm in Tcl code, and immedi-
ately invoke and test the algorithm. This avoids time-consuming and tedious compile
and link stages, since Tcl is interpreted.

� All XPole graphics are implemented using the X Window System Tk toolkit [Ous91],
which is based on Tcl. Thus a programmer may easily add to or modify the user

1.3. FRAMEWORK 13

interface by writing Tcl scripts. This requires no compilation nor linking.

Details on how to use Tcl/Tk and extensions are provided in the XPole Programmer's

Guide.

1.3 Framework

In addition to the capabilities described above, XPole is intended to be easily extensible.
To accomplish this goal, XPole is implemented as many independent modular components
interacting through a common framework. This framework allows components of the system
to be combined as building blocks to construct an arbitrarily large system. This allows an
algorithm designer to add a new component (e.g., a new pole-zero transformation), and
combine it with the existing algorithms. Further, the graphical user interface may be used
without change. Similarly, a programmer may desire to represent or display �lters in a new
way; this new approach may be easily implemented and integrated with the existing system.
The XPole Programmer's Guide explains the concept underlying the framework and how
to use it.

1.4 Future Plans

XPole is a useful tool for learning basic signal processing concepts. However, it is still in-
complete. FIR design capabilities would greatly improve its utility. Root-locus and Nyquist
plots would be very useful for understanding classical control theory. All-pass/minimum-
phase decompositions would be useful for communications. The framework must be ex-
tended to allow more complicated associations between several views. Finally, the user
interface is not as clean as could be hoped, and is too complicated for casual users.

14 CHAPTER 1. XPOLE OVERVIEW

Chapter 2

XPole User's Guide

This is the XPole User's Guide: it explains what XPole is and how to operate XPole. Basic
knowledge of signal processing terminology is assumed. This guide is available as both a
printed TEX document and as an on-line Info �le.

2.1 Introduction

XPole is a graphical signal analysis and �lter design tool. It supports both continuous-
time (S-domain) and discrete-time (Z-domain) �lters. Synthesis of standard �lters is also
supported.

Due to its graphical nature, XPole is an useful tool for gaining an intuitive understanding
of S- and Z- transforms, and for understanding the structure of standard �lters such a
Butterworth and elliptical designs.

XPole is not a replacement for numerical engines such as Matlab: explicit vector and matrix
manipulation is not supported. XPole is also not a replacement for symbolic algebra systems
such as Maple: the algorithms in XPole are intended to be quick and provide intuition, not
to provide exact solutions with known error bounds.

XPole may augment, but not replace, commercial �lter design tools such as QEDesign and
Monarch. Commercial packages allow rapid design of a large variety of �lter designs, whereas
XPole supports a smaller set of standard �lters and emphasizes understanding.

15

16 CHAPTER 2. XPOLE USER'S GUIDE

2.1.1 About XPole

XPole version 1.4.5 by Kennard White (based on tcl-6.6 and tk-3.1).

XPole and its related �les are the work of Kennard White. XPole was written at the
University of California, Berkeley with guidance by Prof. Edward A. Lee of the Electrical
Engineering and Computer Science Department. Mei-Tjng Huang wrote portions of the
numerical algorithms (see below) with guidance by Kennard White.

Development of XPole is or was supported by the following; however, their support is not
an endorsement nor recommendation of XPole.

� The Experimental Computing Facility (XCF) at U.C. Berkeley

� The California Microelectronics Fellowship (1990-91)

� Sony Corp.

� NSF grant MIP-9201605.

For information, comments, code-contributions or bug reports please contact the author at:

phone: 510/643-6686

e-mail: kennard@ohm.eecs.Berkeley.EDU

s-mail: Kennard White, Box #115

207 Cory Hall

U.C. Berkeley

Berkeley, CA 94720, USA

Other fun facts:

� The version number shown above is actually the version of this guide. Its possible that
the software you are using is a di�erent version. To see the actual version number,
use the tcl command

xpole version

� XPole source is organized into 4 packages (top, eem, tkgraph and xpole), with a total
of 25k lines of C source code and 6k lines of Tcl/Tk scripts.

2.1. INTRODUCTION 17

� Mei-Tjng Huang wrote portions of the eem library; in particular, she wrote initial
versions of the poly, pfe, and locus modules, and wrote much of the jef module.

� XPole uses Tool Command Language (Tcl) as its command interface and scripting
language, and Toolkit (Tk) for its graphical user interface. Both software packages
are by Prof. Ousterhout at U.C. Berkeley. See section 2.4 [Tcl/Tk], page 28.

� Guide RCS: $Revision: 1.1 $, $Date: 93/05/18 12:11:25 $.

2.1.2 Acknowledgements

The concept behind XPole was originally suggested by Prof. Edward Lee in an undergrad-
uate signal processing class during Spring '89. The �rst implementation was undertaken in
Fall '90, and Prof. Lee has supported its development since that time. I am grateful for
both the original idea and the support. I would also like to thank Prof. Lee for using XPole
in the EE123 classes of Spring '92 and '93, and the classes themselves for providing useful
feedback.

I thank Mei-Tjng Huang for her extensive work on the eem library, Phil Lapsley for discus-
sions of Tcl/Tk usage, user interfaces and signal processing algorithms, and Beorn Johnson
for countless discussions on user interfaces and data structures.

Prof. Ousterhout's Tcl/Tk package is an integral part of XPole; Tcl/Tk is an amazing
package and I thank Prof. Ousterhout for developing it and making it available.

2.1.3 Help

XPole has context-sensitive help to guide you. Just press the nearest help button, and a
help screen will appear. In most cases, pressing the HELP button will also work. You can
also get help through the command line interface: just type "help [topic]", and a help screen
will appear.

To learn how to use the help system, press the ? key over the help screen.

The help system is implemented using an Info �le with a texinfo �le as the source document.
See section Texinfo in Introduction, for details. The Info �le is displayed on the screen using
the tkinfo package. See Info �le `builtin', node `Top', for details.

18 CHAPTER 2. XPOLE USER'S GUIDE

2.2 Kernel

This chapter describes the core concepts, terminology and algorithms that are at the heart
of XPole.

2.2.1 Filters

XPole is designed around �lters: linear, time-invariant (LTI), single-input, single-output
(SISO) systems.

It is important to note that mathematically there is no distinction between signals and
systems; more precisely, a given signal is equivalent to an LTI SISO system whose impulse
response is equal to the given signal. Thus "�lter" should be read as either "system" or
"signal", as appropriate to the context.

Currently, the sample rate of all discrete-time �lters is assumed to be 1.0 sec. Hopefully
this will be user-controllable in the future.

A particular �lter may be expressed in several di�erent ways; each such expression is called
a view within XPole. In particular, a �lter may be described by its poles and zeros (S-
or Z-plane), its impulse response, and its Fourier transform. These views are described in
greater detail below.

Algorithms may be used to calculate one view from another. In XPole, such algorithms are
encapsulated in pipes, and are also described below.

Pole-Zero View

The Pole-Zero view describes the �lter in the S- or Z-domain by its poles and zeros. Specif-
ically, a Z-domain pole-zero view represents a �lter as:

(z-a1)(z-a2) ... (z-aN)

H(z) = G * -----------------------

(z-b1)(z-b2) ... (z-bM)

where

G is the complex gain

a1,...,aN are the complex zeros

b1,...,bM are the complex poles

2.2. KERNEL 19

The S-domain form is equivalent. The internal representation has special support for com-
plex conjugate pairs, and for poles and zeros with multiplicity. A pole or zero is described
by its location in the S or Z plane and its power (multiplicity or order). The location in the
complex plane can be expressed by its real(r) and imaginary(i) parts, or by its magnitude(m)
and phase(p).

This view may be displayed graphically, see section Polezero Win in Pole-Zero Window.

Internally, and pole or zero is called a singularity, or silar for short. XPole attempts to use
`pole-zero' everywhere; however, sometimes you might see `silar'. The term singularity
in this context is standard in complex analysis, see [MH87]. Essentially, poles and zeros are
exactly symmetric in the two-sided Laurent expansion; both are termed singularities.

Impulse View

The impulse view is the impulse response of the �lter; more precisely, it is samples of the
output of the �lter with an impulse function as input. For continuous-time �lters, the
sample locations are chosen based on the domain of the graph being displayed: a sample is
calculated every two or three pixels. For discrete-time �lters, the sample locations match
the sample rate.

This view may be displayed graphically, see section Time Win in Time Window.

Fourier View

The fourier view is the Fourier transform of the �lter; more precisely, it is samples of the
Fourier transform of the impulse response of the �lter. The sample locations are chosen
based on the domains of the graph being displayed: a sample is calculated every two or
three pixels.

This view may be displayed graphically, see section Freq Win in Frequency Window.

2.2.2 Pipes

Signal processing algorithms are accessed within XPole as pipes. A pipe maps one �lter
view into another �lter view. The currently implemented pipes are described below.

20 CHAPTER 2. XPOLE USER'S GUIDE

Polezero Fourier Pipe

This pipe maps a pole-zero view into its Fourier transform view. In S-domain, the silar
view provides a transfer function H(s); this is evaluated at s=jw to calculate the Fourier
sequence. In Z-domain, the silar view provides H(z); this is evaluated with z along the unit
circle.

Polezero Impulse Pipe

This pipe maps a pole-zero view into its impulse response view. This is implemented by
performing a partial fraction expansion (PFE) of the transfer function H(s) or H(z). The
impulse responses of the individual PFE terms are calculated and summed.

Caution: Partial fraction expansion, as implemented, is not numerically robust. In partic-
ular, poles with multiplicity may lead to considerable numerical error.

An alternative method for calculating the impulse response of a discrete-time �lter is to
synthesize a direct form or cascade form realization, and input an impulse into the synthe-
sized �lter. This method requires time-domain convolution for two-sided sequences, and
requires calculating the impulse response starting at time 0. Also, this method only works
for discrete-time �lters, though it could yield an approximation for continuous-time �lters.
For these reasons, this method is not used by XPole.

Impulse Fourier Pipe

This pipe takes an impulse response, windows it, and computes the DTFT, DFT or FFT
as appropriate to produce samples of the Fourier transform. You specify the window w(n)

by its length N and its type: rectangle, Bartlett, Hanning, Hamming, Blackman and steep-
blackman. See [Jac89, chap. 7] for details.

Fourier Impulse Pipe

This pipe does not exist yet. When it does, it will apply an inverse DTFT, DFT or FFT
algorithm.

2.3. GRAPHICAL USER INTERFACE 21

2.3 Graphical User Interface

The XPole interface consists of several windows. Below is a brief description of each.

Pole-Zero Plane This window plots the poles and zeros of the �lter on either the S- or Z-
plane. You may create, destroy and move poles and zeros on the plane, and instantly
see the other windows update.

Frequency Domain This window plots the Fourier transform of the �lter. You may view
the real, imaginary, magnitude and phase of the response with a multitude of options.

Time Domain This window plots the impulse response of the �lter. You may view the
real, imaginary, magnitude and phase of the response with a multitude of options.

Export Filter This window allows a �lter design to be exported to another application.
A variety of modes and formats are available.

2.3.1 Pole-Zero Window

The pole-zero window displays a �lter's pole-zero view (see section 2.2.1 [Polezero View],
page 18); that is, it plots the poles and zeros of the �lter on either the S- or Z-plane. You
may create, destroy and move poles and zeros on the plane, and see the other windows
update. Poles are shown as a cross (i.e., X) and zeros are shown as a circle. If a pole or zero
has power (multiplicity) greater than 1, its power will be shown as a subscript. A pole or
zero may be selected as described below. With the default color scheme, selected poles and
zeros are colored green and unselected are white.

The gain G is displayed in the upper left corner, and the current position of the mouse
pointer in the S or Z-plane is displayed in the upper right corner. Both the gain and
position values may be displayed in rectangular or polar coordinates (see section 2.4.3 [Tk
Complex Label], page 30).

The contents of the window may be manipulated using a combination of menus, keys, and
mouse buttons as described below. In addition, the individual axes may be controlled (e.g.,
scale, range, labeling format, etc.; see see section 2.3.5 [Axis Widget], page 26).

22 CHAPTER 2. XPOLE USER'S GUIDE

Menu

To use the pole-zero window menu, press the left mouse button over the top center button
that is labeled `Pole-Zero Window', and a menu will appear (see section 2.4.1 [Tk Menus],
page 29). The entries are:

Conjugate Pairs When on, new poles and zeros will either be created exactly on the real
line or in complex conjugate pairs. When o�, poles and zeros may be placed anywhere.
Filters whose poles and zeros are either on the real line or complex conjugate pairs
have a real-valued impulse response.

New Zero, New Pole Create a new pole or zero. The pole or zero will be placed at the
origin if invoked from the menu; it will be placed under the mouse pointer if invoked
by a key binding.

Zoom Full, Zoom Out, Zoom In Zooming "full" changes the view so that the unit cir-
cle and all poles and zeros are visible, zooming "out" shows more of the plane, and
zooming "in" shows less of the plane.

Edit Edit all currently selected poles and zeros. A small window will popup for each pole
and zero to be edited. The window will allow you to change the location, power, and
selection state. See section 2.3.1 [PolezeroWin EditPopup], page 23.

Delete Delete all currently selected poles and zeros.

Increment Power, Decrement Power Modify the power of all currently selected poles
and zeros. Note that poles have negative power, thus to increase a pole's multiplicity,
you must decrement its power. If the power becomes zero, the pole or zero will be
deleted.

New Zero, New Pole Con�gure the pole-zero window so that when the middle mouse
button (button #2) is pressed, a new pole or zero will be created under the mouse
pointer.

Zoom Region Con�gure the pole-zero window so that the middle mouse button (button
#2) may be used to zoom in on a region of the plot. This is the default mode and is
described below.

Display Impulse, Display Fourier Display the impulse response or the Fourier trans-
form of the �lter. See section 2.2.2 [Polezero Impulse Pipe], page 20. See section 2.2.2
[Polezero Fourier Pipe], page 20.

2.3. GRAPHICAL USER INTERFACE 23

Standard Design Use a standard �lter design. See section 2.5.1 [Std Fltr Design], page 31.

Zap Window Destroy this window. The �lter itself will not be a�ected.

Mouse Buttons

The mouse buttons have the following meanings in the pole-zero window:

left(B1) Select a group of poles and zeros. This unselects all poles and zeros and selects
the pole or zero nearest to the mouse pointer. You can also drag out a region while
holding the button down; in this case, all poles and zeros inside the dragged out region
will be selected. Also, if the SFT (shift) key is depressed with the mouse button, the
currently selected poles and zeros will remain selected.

middle(B2) The action of the middle mouse button depends on the current menu section.
The default action is Zoom Region. In this mode, you drag out a region while holding
the button down. The window will be zoomed in so that the selected region is displayed
in a larger scale. The other two modes are New Zero and New Pole. In these two
modes, a new pole or zero will be created under the mouse pointer when the button
is pressed.

right(B3) Move (drag) the currently selected poles and zeros. The poles and zeros will
track the mouse pointer movement while the button remains depressed. Note that
the currently selected poles and zeros will be moved, not the pole or zero nearest the
pointer.

Edit Popup Window

Pressing e or using the Pole-Zero Window menu entry `Edit' will bring up an edit popup
window. The window will allow you to change the location, power, and selection state of a
pole or zero. By default, the location is shown in rectangular form, but may be switched to
polar form (see section 2.4.4 [Tk Complex Entry], page 31).

2.3.2 Frequency Domain Window

This window displays a fourier view (see section 2.2.1 [Fourier View], page 19); that is, it
plots the Fourier transform of a �lter. It is generally calculated from another view; see

24 CHAPTER 2. XPOLE USER'S GUIDE

section 2.2.2 [Polezero Fourier Pipe], page 20, and section 2.2.2 [Impulse Fourier Pipe],
page 20.

The x-axis is scaled in radians/second. The right y-axis is for phase graphs and is scaled in
radians. The left y-axis is used for all non-phase graphs, including real-part, imaginary-part,
and magnitude.

This window is a special case of the Complex Sequence Widget. See section 2.3.4 [CSeq
Widget], page 24, for details of operation.

2.3.3 Time Domain Window

This window displays an impulse response view (see section 2.2.1 [Impulse View], page 19);
that is, it plots the impulse response of a �lter. It is generally calculated from another view;
see section 2.2.2 [Polezero Impulse Pipe], page 20, and section 2.2.2 [Fourier Impulse Pipe],
page 20.

The x-axis is scaled in seconds. The right y-axis is for phase graphs and is scaled in radians.
The left y-axis is used for all non-phase graphs, including real-part, imaginary-part, and
magnitude.

This window is a special case of the Complex Sequence Widget. See section 2.3.4 [CSeq
Widget], page 24, for details of operation.

2.3.4 Complex Sequence Widget

This window displays a set of complex sequences. The sequence is composed of samples of
a Fourier response, in the case of the fourier window (see section Freq Win in Frequency
Window), or samples of an impulse response in the case of the impulse window (see section
Time Win in Time Window). The window plots one or more such sequences.

A complex-valued sequence cannot itself be directly plotted; instead, its components (real-
part, imaginary-part, magnitude, phase) may be. Each component is plotted using lines

and marks. The lines joins the points of the sequence, while the marks indicate the sequence
points themselves.

The complex sequence widget's legend is at the top of the window. The legend is used both
to label the displayed components and to control their appearance (mark and line styles).
See section 2.3.4 [CSeqWdg Legend], page 25.

2.3. GRAPHICAL USER INTERFACE 25

The scale of the x-axis depends on the context. The right y-axis is used for phase components
(in radians), and the left y-axis for all others. The individual axes may be controlled; in
particular, linear/logarithmic, zooming and labeling modes are all controlled through the
axis widget. To modify and of these parameters, bring up the axis widget's menu by pressing
the left mouse button over the axis (where the numeric labels are, not the graphing area),
and see section 2.3.5 [Axis Widget], page 26.

Pressing the left mouse button over the label `Frequency Domain' or `Time Domain' (at the
top of the window), brings up the complex sequence widget's main menu with entries:

Add Sequence Specify an additional sequence to display in the window.

Zoom Full, Zoom Out, Zoom In Change how much of the sequences are visible. By
default, the axis have `Auto Full' mode enabled, which will tend to interfere with
attempts to manually control the zoom region.

Zap Window Destroy the window. The sequences themselves are not a�ected.

The middle mouse button may also be used to drag out a region; the selected region will
be enlarged.

Note: Currently, there is no mechanism to plot Dirac (continuous-time) delta functions.
(Discrete-time delta functions are plotted without di�culty).

Complex Sequence Widget Legend

The legend is used to both label the data plotted and to control how the data is displayed.
Each sequence on the graph corresponds to a row in the legend; the sequence name appears
in the middle of each row. Phase components are listed to the right of the sequence label
and all other components are to the left. Each component is shown with its name and a
sample line segment.

Pressing the left mouse button over the sequence label will bring up a menu with entries:

Rect, Polar Show the sequence in either rectangular (real & imaginary) or polar (magni-
tude & phase) form. These are short cuts to avoid using the checkbuttons described
next.

Real, Imag, Mag, Phase, WrapPhase These checkbuttons allow you to select which
components of the sequence to plot. `WrapPhase' has phase values from -PI to +PI,
while `Phase' has had the 2 PI ambiguity removed.

26 CHAPTER 2. XPOLE USER'S GUIDE

Zap Remove the entire sequence from the graph. The sequence itself is not a�ected.

Pressing the left mouse button over a component label will bring up a menu with entries:

Line Style Choose how the line for the component will be drawn using the submenu:

Solid, Fence, None Selects a variety of di�erent line styles.

xor Enables xor drawing. When o�, component lines overlay each other in a random
stacking order. When on, xor drawing mode will be used, leading to random
colors where ever component lines intersect.

0-9 Selects the line width. A line width of 0 may behave strangely on some X servers.

Mark Style Choose how the mark for the component will be drawn using the submenu:

Circle, Dot, Box, Cross, None Selects a variety of di�erent mark styles.

1-9 Selects the line width (diameter).

Zap Remove the component from the graph.

2.3.5 Axis Widget

The axis widget displays the labels on an axis of a graph. It also provides an interface to
allow you to modify how the data and labels are displayed. Pressing the left mouse button
or the m key over the axis numbers brings up the axis menu with entries:

Auto Scale When enabled, the axis will automatically zoom in or out as required to show
the entire picture.

Show Label When enabled, the textual label for the axis will be displayed.

Show Scrollbar When enabled, a scrollbar is placed adjacent to the axis. This scrollbar
may be used to pan the graph.

Scale For more information on the transforms for the scales described below, see section
2.3.5 [AxisWdg Scale], page 28.

Linear Use a linear mapping transform. Normally you will want to use `Natural'
labeling mode (see below) when using a linear scale.

2.3. GRAPHICAL USER INTERFACE 27

Log Use a logarithmic mapping transform. Clipping may be active for small values.
Normally you will want to use `dB-20' labeling mode (see below) when using a
logarithmic scale.

Dslog Use a double-sided logarithmic mapping transform. This is a logarithmic
transform that allows negative values to be displayed.

Label Selects one of several labeling modes. Note that the labeling mode is independent
of the scale; in particular, decibel labels may be used on a linear or log scale.

Natural Display the axis numeric labels as-is, without additional transform.

dB-10 Label the axis in power decibels (10*log10). Labels will be su�xed with `d'.

dB-20 Label the axis in signal decibels (20*log10). Labels will be su�xed with `D'.

PI Label the axis in multiples of PI. Labels will be su�xed with `P'.

Format Select how the labels are formatted.

Engineer Format the labels using engineering notation: the exponent is adjusted to
be a multiple of 3, and the standard abbreviations (f,n,u,m,K,M,G) are used.

Scienti�c Format the labels using scienti�c notation.

Short Sci Format the labels using shortened scienti�c notation: this is the sprintf()
format "%g".

Fixed Pt Format the labels in �xed point notation.

Ticks Select where the tick marks are displayed.

None Don't display any tick marks.

Inside Place the tick marks inside the picture area.

Outside Place the tick marks outside the picture area.

Set Lo, Set Mid, Set Hi, Set Clip When invoked a small dialog box will appear. You
may enter the desired new lo limit, middle point, hi limit, or clipping threshold and
press <Enter>. You may press <Escape> to abort the operation. The lo, middle or hi
point may also be adjusted by typing a number in the lower, middle or upper third
of the axis widget.

Zoom In, Zoom Out, Zoom Full Change the view area.

Help Display this description.

Dismiss Make the popup menu go away.

28 CHAPTER 2. XPOLE USER'S GUIDE

Axis Widget Scale

In logarithmic mode, it is not possible to display zero or negative values. In fact, very
small positive numbers are di�cult to display due to numeric problems. Such numbers
occurs often in frequency responses, particularly when there are zeros on the unit circle
(z-domain). To address this problem, the axis widget implements a clipping threshold:
values less than this will either not be displayed, or will be displayed in a modi�ed form.
Speci�cally, when the axis's lo limit is less than the clipping threshold then a small portion
of the axis edge near the bottom will be displayed in dark blue. This region corresponds to
values between the lo limit and the threshold, and values in this region are mapped linearly,
not logarithmicly. This allows you to see the full graph (by setting the lo limit to zero)
while viewing the bulk of the graph logarithmicly.

To change the clipping threshold use the menu entry `Set Clip'.

2.3.6 Filter Selection

This dialog window lets you select an existing �lter or create a new �lter. Use the two
listboxes to select an existing �lter, or type the name of a new �lter and/or view in the
entry widget towards the bottom.

2.3.7 Export Filter

This dialog window lets you export a �lter to a tool outside of XPole, typically Ptolemy.

2.4 Tcl/Tk

XPole uses Tcl (Tool Command Language) as its command language, and Tk (Took Kit) to
implement its graphical user interface. Both are software packages from Prof. Ousterhout
at U.C. Berkeley, and are documented elsewhere (see [Ous90] and [Ous91]).

Tcl is an interpreted, easily extensible language supporting variables, conditionals, looping
constructs and procedures. Most users will never need to use the command language; it is
primarily of interest to those wishing to extend XPole's capabilities. For example, most of
the standard IIR �lter designs are implemented entirely by Tcl code; a new �lter design
could be implemented in minutes. For more information, see the XPole Programmer's
Guide.

2.4. TCL/TK 29

Tk is an X11 toolkit based on Tcl. XPole's entire graphical user interface is implemented
in Tk. While this user interface is relatively straight forward, an explanation of some parts
may be helpful. The explanations below summarize standard operation of Tcl/Tk widgets;
for more details see the o�cial Tcl/Tk documentation. Some of the widgets have been
slightly customized for XPole.

2.4.1 Menus

Pulldown menus are activated by pressing the left mouse button over the associated menu's
menubutton. Normally the menubutton appears as a raised 3-D button. However, XPole
may be con�gured so that some menubuttons will not be raised; instead, they will look like
plain label. (This gives the windows a less cluttered and more attractive look.)

Once the menu is visible, it may be used in one of two ways:

� Release the mouse button over the menubutton. Then move the mouse pointer to
the desired entry, then press and release the left mouse button. To dismiss the menu
without selecting an entry, position the mouse pointer anywhere outside them menu
and then press and release the left mouse button.

� Keep the mouse button depressed. Move the mouse pointer to the desired entry, and
release the mouse button. To dismiss the menu without selecting an entry, move the
mouse pointer outside the menu and release the button.

Menus may be "torn" o�. Instead of pressing the left mouse button over the menubutton,
press the middle mouse button. The menu will appear. Keeping the button depressed,
drag the menu to a suitable location and release the button. The menu will remain in that
location: it will not go away after you select an entry. To dismiss the menu once torn, press
the left mouse button over the menubutton and dismiss the menu as usual.

The right side of some menus will list accelerator keys. Most accelerators are a single key;
however, some are a two character sequence. Typing the accelerator key or sequence in the
appropriate window will have the same action as selecting the corresponding menu entry.
It is not always obvious which windows the accelerators are valid in: experimentation may
be required.

30 CHAPTER 2. XPOLE USER'S GUIDE

2.4.2 Entry Widget

XPole allows entry of numbers and names using Tk entry widgets. There are many key
bindings for a entry widget, consult a Tk manual for the details. A short summary:

Left Arrow Move cursor left one character.

Right Arrow Move cursor right one character.

Backspace, Ctrl-h, Delete Delete character to the left of cursor.

Ctrl-u Erase everything.

Ctrl-w Erase word to left of cursor.

Ctrl-d Erase all selected characters, if any.

Escape Restore widget to previous value and abort entry. (Not always active).

Return Indicates text entry is done. Perform context-dependent processing. (Not always
active).

Many of the entry �elds within XPole require you to press \Return" within the entry widget
for the change to take a�ect. If you don't press Return, the change will be ignored and may
be over-written later. However, some windows will automatically process the value when
the mouse cursor leaves the entry window.

2.4.3 Complex Label

Some of the values displayed by XPole are complex numbers. Most such values are shown
with a label to the left of the complex number. The format used to display the number may
be controlled using either a menu or key bindings. Pressing the left mouse button over the
label brings up a menu with the entries:

Rectangular The complex number is displayed with rectangular coordinates (real and
imaginary parts). If the imaginary part is zero, it will sometimes be omitted.

Polar (rad) The complex number is displayed with polar coordinates (magnitude and
phase), with the phase in radians. The number will be su�xed by rad.

Polar (deg) As above, but the phase is in degrees and the su�x is deg.

2.5. DESIGN ALGORITHMS 31

The accelerator keys shown on the menu are active over both the label and the complex
number itself.

2.4.4 Complex Entry

You will occasionally need to provide XPole with a complex number: this is performed using
a Complex Entry widget. This behaves much like the Complex Label widget (see section
2.4.3 [Tk Complex Label], page 30); in addition, you can also edit the complex value using
methods described for the Entry widget (see section 2.4.2 [Tk Entry Widget], page 30).

2.5 Design Algorithms

This chapter describes design algorithms available in XPole. Note that many algorithms
that transform views are implemented as pipes, and are described elsewhere (see section
2.2.2 [Pipes], page 19).

2.5.1 Standard Filter Design

XPole currently supports standard IIR �lter designs for both continuous-time and discrete-
time. To use the �lter design algorithms, select `Standard Design' from a Pole-Zero Win-
dow's main menu (see section 2.3.1 [Polezero Win], page 21). XPole will design a continuous-
time or discrete-time �lter based on the domain of the pole zero window.

In designing a �lter, there are typically three frequencies involved: the passband edge, the
stopband edge, and the center frequency. In some cases you may explicitly chooses the
passband edge, and in other cases the stopband edge according to what is natural for that
�lter. In the discussion below, all frequencies are in radians/sec. The `w' used in parameter
names should be interpreted as omega.

The implementation in XPole is based on [Jac89, chap. 8] Also see [PB87, chap. 7].

Design Type

The following design types are supported:

Butterworth Designs a Butterworth �lter. This is smooth everywhere (no ripples).

32 CHAPTER 2. XPOLE USER'S GUIDE

Chebyschev-I Designs a Chebyschev type 1 (or direct) �lter, which has ripples in the
passband and is smooth in the stopband The parameter delta speci�es the passband
ripple.

Chebyschev-II Designs a Chebyschev type 2 (or inverse) �lter, which is smooth in the
passband and has ripples in the stopband. The parameter delta speci�es the stopband
ripple. Also, the w_pass parameter actually speci�es the stopband edge, not the
passband edge.

Elliptical Designs an elliptical �lter, which has ripples everywhere, but features the sharp-
est possible transition region between stop and pass band.

Mapping Type

Discrete time �lters are implemented by �rst calculating an s-domain �lter, and then map-
ping that to a z-domain �lter. The mappings available are described below. Note that not
all mappings are always meaningful.

Bilinear Uses a bilinear transform (fractional linear transform). This is a robust, algebraic,
one-to-one transform: z=(2+Ts)/(2-Ts), where T is the sample period.

Matched Z Uses a \matched z" transform. This is a robust, algebraic transform:
z=exp(sT). There is little theoretical rational for this transform, but it sometimes
produces good �lters.

Impulse Invariant The resulting z-domain �lter will have an impulse response which is
scaled samples of the s-domain impulse response: h_d(n)=T*h_c(nT). This is an ex-
tremely non-robust mapping. The implementation involves a partial fraction expan-
sion and polynomial factoring; both algorithms introduce signi�cant numerical noise.
This mapping will often fail, yielding a nonsense �lter. In particular, the algorithm
sometimes believes that there are more zeros than there really are. This typically
results in an extremely small gain and extra zeros. The parameter n_zeros can be
used to help XPole when the algorithm fails.

Band Type

The band type of the �lter may be chosen as listed below. Filters other than low-pass
�lters are implemented by �rst calculating a low-pass �lter, and then applying a spectral
transformation.

2.5. DESIGN ALGORITHMS 33

low-pass The pass band of the �lter will extend from -w_pass to +w_pass rad/sec.

high-pass The pass band of the �lter will range from w_pass to in�nity (or PI/T). The
stop band will be interior to the range from -w_pass to +w_pass rad/sec.

band-pass The pass band of the �lter will extend from w_ctr-w_pass to w_ctr+w_pass
rad/sec.

band-stop The pass band of the �lter will range from 0 to w_ctr-w_pass and from
w_ctr+w_pass to in�nity (or PI/T). The stop band will be interior to the range
from w_ctr-w_pass to w_ctr+w_pass rad/sec.

Band Domain

When designing a discrete time, bandpass, bandstop or highpass �lter, the spectral trans-
formation may be performed in either s-domain or z-domain. This is a complicated and
subtle decision: the novice user should select z-domain and ignore this issue. The more
advanced user may wish to explore this design choice in order to better understand the
impact of the resulting �lter. The spectral transformation may occur in:

z-domain A low-pass s-domain �lter is designed, mapped into a low-pass z-domain �lter,
and then spectrally transformed in the z-domain. Any domain mapping may be used
since it operates on a low-pass �lter. Frequency warping occurs as baseband, which
is relatively easy to compensate for (prewarping). However, the z-domain spectral
transformation uses an approximation based on fractional linear transforms, and may
cause unacceptable frequency warping.

s-domain A low-pass s-domain �lter is designed, spectrally transformed in the s-domain,
and then mapped to the z-domain. This means that the mapping will be operating
on a non-low-pass �lter, and thus the impulse invariant mapping will not work. Also,
frequency warping induced by the mapping occurs at passband which is much more
complicated than at baseband.

Parameters

The following parameters control the design of the �lter. Note that not all parameters are
always active, and the exact meaning of a parameter depends on context as described above.

N The order of the �lter (the number of poles).

34 CHAPTER 2. XPOLE USER'S GUIDE

w_pass Roughly speaking, this speci�es the width of the passband or stopband in rad/sec.

w_tr The width of the transition region (passband edge to stopband edge) in rad/sec.

w_ctr For band-pass and band-stop �lters, this is the center frequency of the passband or
stopband in rad/sec.

delta Speci�es the amount of ripple in passband or stopband. For passband ripple, the
frequency response will range from 1.0-delta to 1.0. For stopband ripple, the frequency
response will range from 0.0 to delta.

n_zeros When using an impulse invariant mapping, this speci�es the number of zeros in
the resulting transfer function. By default this is -1, indicating that XPole should
attempt to determine the appropriate number of zeros itself. This parameter allows
manual override when XPole fails.

Dialog Window

The standard �lter design dialog consists of a set of radio buttons to select designs, sliders
to control parameters, and some buttons. The parameters may be changed by both moving
the slider using the mouse, or by entering a number (see section 2.4.2 [Tk Entry Widget],
page 30).

The following buttons are available:

Ok The �lter is designed as currently speci�ed, and the dialog will disappear.

Update The �lter is redesigned with the current set of parameters.

Auto Update When enabled, any change to the radio buttons or parameters causes the
�lter to be redesigned. When disabled, the �lter is no modi�ed until `Ok' or `Update'
is pressed.

Show All Windows will appear that display all intermediate �lters, and their frequency
and impulse response.

Cancel The dialog will disappear without having designed a window.

2.6. COMMANDS AND SCRIPTS 35

2.6 Commands and Scripts

This chapter describes XPole's command and script language. This language is Tcl/Tk (see
section 2.4 [Tcl/Tk], page 28) with many extensions.

2.6.1 Command Line Options

The following options may be given on the command line when starting XPole.

-s Sets the default �lter domain to be continuous-time (i.e., Laplace-transform, s-domain).

-z Sets the default �lter domain to be discrete-time (i.e., Z-transform, z-domain).

-white XPole's graphs will be drawn with a white background and black foreground. Cur-
rently, dialog windows' colors will be una�ected.

-black Like the `-white' option, except with a black background and a white foreground.

-send Enable XPole to respond to Tk's send command. This will allow XPole to interact
with other Tk-based tools, but creates a potential security threat.

-command cmd Execute the Tcl command `cmd' after completing all other initialization.
Any number of pairs may be given.

2.6.2 Variables

This section describes the variables that can be used to control XPole.

xpole(xfdomain) This must be single character, either "s" or "z". It indicates the default
transform domain for �lters that don't have an explicit domain.

2.6.3 Commands

This section describes the XPole commands. They are implemented as commands within a
Tcl interpreter. Most of these commands are documented elsewhere as man pages; however,
some of the more common commands are described here.

36 CHAPTER 2. XPOLE USER'S GUIDE

xpole version Returns the version number of the program. This version number is �xed
at compile time.

Chapter 3

XPole Programmer's Guide

3.1 Introduction

This guide overviews of the key concepts in XPole and its overall structure, emphasizing
knowledge required to modify or extend XPole. In particular, the XPole framework is
described. It also discusses the development path of XPole, and explains approaches that
were attempted and discarded.

3.2 Framework

The core of XPole is the framework used to describe �lters and views, and how they relate.
This framework has gone through considerable evolution. First the current framework is
described, and then the evolutionary path is discussed. This later discussion is presented
both to enumerate approaches that do not work, and to explain artifacts in the current
implementation. Finally, ideas for future evolution are presented.

3.2.1 Current Framework

The XPole framework is properly viewed as a dynamic database: this includes both the data
itself and the mechanisms used to access and modify the data. The data is organized into
�lters and views, while agents provide an access mechanism. In addition, pipes describe
how di�erent views in the database relate to each other. Each of these are described in

37

38 CHAPTER 3. XPOLE PROGRAMMER'S GUIDE

more detail below.

Filters and Views

A �lter is described by an XPFilter structure (below)1. A �lter is primarily just a collection
of views (the Views �eld) with little other substance.

struct _XPFilter {

XPLabel Lbl; /* my name */

char* Desc; /* dynamic, unfmt'd text desc */

TOPPtrVector Views; /* my views */

};

Each view is described by an XPView structure. The view is the central object in the
framework.

struct _XPView {

XPLabel Lbl; /* my name */

XPFilter* PntFltr; /* parent filter */

XPXformDomain XfDomain; /* my domain, S or Z */

double SampleTime; /* sampletime for Z domain */

char* Desc; /* dynamic, unfmt'd text desc */

XPAgent* MasterAgent; /* my master, if slave view */

DLListHandle PartList; /* of XPViewPart */

};

Each view contains a set of view parts (the PartList �eld), described by an XPViewPart

structure. Conceptually, each view part corresponds to a portion of the entire view; this
will be made more precise in the next section.

struct _XPViewPart {

XPView* PntView; /* the View which we belong to */

char* Name; /* a name assoc. with part */

TOPMask Events; /* pending events */

XPViewSnap* DfltVS; /* default ViewSnap */

1The structures shown contain only the essential �elds. Note that the discussion of most �elds is deferred

to later sections where the context is more appropriate.

3.2. FRAMEWORK 39

DLPtrListHandle AgentList; /* attached agents */

XPAgent* RangeOwner; /* who controls my range */

};

Each view part contains a view snap (XPViewSnap structure): it is the view snap that
contains the actual data (e.g., pole-zero locations or sequence samples). Currently there is
only one view snap per view part; however, future versions may allow multiple view snaps.
A speci�c view class (e.g., polezero or fourier) is derived from these structures as described
below:

Polezero View This describes a �lter H(s) or H(z) by its poles and zeros. It is imple-
mented by an XPSilarView structure (derived from XPView), and an XPSilarSnap

structure (derived from XPViewSnap). Each silar snap contains a list of EEMSilar
structures, each describing a single pole or zero.

Fourier View This describes a �lter H(s) or H(z) by samples of its Fourier transform.
It is implemented by an XPCplxSeqView structure (derived from XPView) and an
XPCplxSeqSnap (derived from XPViewSnap). The later contains dynamic vectors to
store the actual samples. Several vectors are supported; the most important are the
Index vector which indicates the frequency of each sample, and the valRI vector
which contains the samples themselves.

Impulse View This describes a �lter H(s) or H(z) by samples of its impulse response. It
is implemented exactly like the Fourier view, except that the Index vector indicates
the time of each sample.

Agents

The �lter, view, view part, and view snap structures provide a static database; this data
must be displayed to and manipulated by the user. Agents (described by XPAgent struc-
tures) allow this. An agent is associated with exactly one view: the agent is noti�ed
whenever a change occurs to its view; speci�cally, a function associated with the agent is
invoked. For example, each frequency window has an agent for each view that it is dis-
playing. When one of these views changes, the agent is noti�ed and the window draws an
updated graph.

Pipes

A pipe (described by XPPipe structure) is used to relate several views together.

40 CHAPTER 3. XPOLE PROGRAMMER'S GUIDE

Unranged Pipes The simplest class of pipes consumes (reads) one view and produces
(writes) another view. The consumed view is often called the source and the produced
view is the target. For example, the PolezeroMap pipe reads the pole-zero view of an s-
domain �lter and produces a pole-zero view for an equivalent z-domain �lter. The pipe has
parameters: one such is the maptype that indicates which mathematical method should be
used to convert from s-domain to z-domain: bilinear transform, matched-z transform, or
impulse-invariant transform.

Another simple example is the SpectralXform pipe which reads the pole-zero view of a low
pass �lter and generates a pole-zero view of the corresponding high pass �lter. The pipe has
a variety of parameters including the cuto� frequency of the low pass �lter and the desired
cuto� frequency of the high pass �lter. The parameters are required in order to de�ne the
mapping between the two views.

Within the XPole framework, whenever the source view of a pipe is modi�ed, the target
view is recalculated and updated based on the modi�ed source view. The mechanism used
to implement this is described later.

Note that some pipes implement invertible transformations and thus may be bi-directional;
for example, the bilinear PolezeroMap is such a pipe. In this case, both the s-domain and
z-domain views are both sources and targets: whenever either view is modi�ed, the other
view must be updated. Of course, care must be taken to prevent in�nite recursion.

Ranged Pipes More complicated pipes map between di�erent types of views; for ex-
ample, the PolezeroFourier pipe consumes a pole-zero view and produces a Fourier view.
The pole-zero view provides H(s) orH(z), and thus samples of the �lter's Fourier transform
may be computed by direct evaluation with s = jw or z = ejwT . However, the complete
Fourier transform is an in�nite amount of data and thus cannot be calculated nor stored.
Instead, the pipe can only generate a �nite number of samples of the Fourier transform.
Thus the pipe must be told which samples to calculate.

Furthermore, there might be more than one consumer of the Fourier view: for example,
a frequency window to display the data and an inverse FFT algorithm2. The frequency
window requires samples at pixel-resolution over the range where the user is current zoomed,
and the FFT algorithm requires equally spaced samples from 0 Hz to 1=T Hz. Thus each
consumer may require a di�erent set of samples, and the pipe must calculate each set of
samples. This is the role of the view part. Each view part is owned by a consumer: the

2Note that an inverse FFT algorithm will generally be used as part of a larger �lter synthesis process

and not to display samples of the time-domain signal. For graphical display, an inverse DTFT will typically

be used to allow for zooming and easy alignment to pixel resolution.

3.2. FRAMEWORK 41

view part owner stores into the view part a speci�cation of which samples are required, and
the pipe calculates these samples and stores them into the view part. The pipe must do
this for each view part associated with the target view.

Most Fourier and impulse views allow the required set of samples (in general, the range) to
be speci�ed. Such views allow multiple view parts and are considered ranged. In contrast,
the pole-zero views described above can be completely expressed by a small amount of
data: such a view requires only one view part (called the primary part) and is considered
unranged. However, not all Fourier and impulse views are ranged; for example, an impulse
response drawn by the user or a frequency response calculated by a �xed-order FFT will be
unranged.

This leads to the following classi�cation of views:

Master A master view is not the target of any pipe. Thus it is modi�ed only due to explicit
action by the user: it is not automatically updated from any other view. Such a view
will have its MasterAgent �eld set NULL. Also, a master view is always unranged, and
thus can have only one view part (its primary part).

Slave A slave view is the target of exactly one pipe (a view may not be the target of more
than one pipe). The MasterAgent �eld references the pipe for which the view is a
target. A slave view may be ranged or unranged.

Note that slave views may be directly modi�ed by the user through an agent even though
they are the target of a pipe. Typically any such user changes will be lost (over-written)
next time the pipe updates the view. However, allowing the user to make changes is still
useful. Also, if the pipe is bi-directional, the changes will be reected elsewhere and won't
be lost.

The �lter `data' of a view is stored in the view part (actually, in the view snap associated
with the view part). Thus an agent is actually associated with a view part, not a view. In
general, there may be multiple agents per view part. In the case of slave views, this means
all associated agents are interested in the same range.

Cascading Pipes The true power of the framework is in cascading several pipes together:
a pipe may produce a view that is consumed by another view which produces yet another
view, and so on. Such a system forms a bipartite graph. Shown in Figure 3.1 is a complicated
example of a such a graph. Views are shown as circles while pipes and agents are diamonds.

The `origin' of the graph is the master view polezero-lp. This view is manipulated directly
by the user via a pole-zero window. A SpectalXform pipe consumes this view and produces

42 CHAPTER 3. XPOLE PROGRAMMER'S GUIDE

SpectralXformpolezero−lp

WinWin

ViewView

polezero−hp

Pipe

Pole−Zero Pole−Zero

Pipe View

fourier−hp

PolezeroImpulse

Pipe View Win

Pipe View Win

ImpulseFourier

impulse−hp

fsamps Frequency

PolezeroFourier

Time

Figure 3.1: View-Agent Graph

a high-pass slave view, polezero-hp. This view is graphically displayed by another pole-
zero window. The view is consumed by two pipes: the PolezeroFourier pipe calculates
samples of the Fourier transform (view fourier-hp) while the PolezeroImpulse pipe cal-
culates samples of the impulse response (view impulse-hp). These two views are displayed
graphically in windows. The dashed lines going backwards indicate range information: note
that pole-zero views do not require any range information. Finally, the ImpulseFourier

pipe uses samples of the impulse response to compute samples of the Fourier transform
(view fsamps), which is displayed in the same frequency window. Note that the two fre-
quency views (fourier-hp and fsamps) will generally not be the same since the later uses
a windowing function.

Observe that the view-agent graph may be rather complicated. It is in general a graph,
not a tree. Some pipes are bi-directional, and thus the graph may have cycles that must be
dynamically broken. Also, while not currently implemented, the framework design allows for
pipes that interact with more than two views; for example, a minimum-phase/all-pass �lter
decomposition pipe would consume one view and produce two (and would be bi-directional).

Implementation Pipes are implemented using an agent for each view associated with
the pipe. For example, the PolezeroMap pipe has two agents: one for its source view and
one for its target view. Whenever the source view is modi�ed the source agent (consumer
agent) is noti�ed. The pipe can then recalculate the target view and inform the framework
that it has been modi�ed using the target agents.

3.2. FRAMEWORK 43

Updates

One of the key tasks of the framework is to notify interested agents whenever a view is
changed. Due to the need to support unranged pipes e�ciently, the mechanism used to
perform updates is somewhat more complicated than implied above. The \update process"
is broken into notify events and update actions. A notify event simply noti�es an agent (or
pipe) of a change, and recalculating a view is an update action. There are three types of
notify events:

XPVE Param A parameter on a pipe has changed. This requires recalculating all targets of
the pipe. This event is issued to all source agents associated with the pipe.

XPVE Modify A view has been modi�ed in some way. For some views, the details as to what
speci�cally changed is recorded within the view itself. This more detail information
may be used to perform partial updates (e.g., if only one pole or zero has moved, then
the pole-zero window need only redraw that one pole, not all of them).

XPVE Switch A view has been signi�cantly modi�ed, and no detailed information as to
what speci�cally changed is recorded within the view. This event is used instead of
XPVE Modify whenever the view has been su�ciently changed so that there would be
no savings by using a partial recalculation.

An event is issued using the xpViewNotify() function (to notify every agent associated
with a view), or the xpAgentNotify() function (to notify a speci�c agent). The event may
be tagged as XPNW Now or XPNW Idle. In the later case, the event will not be dispatched
until the program is idle. This allows multiple notify events to be collapsed into a single
event.

When a pipe receives a notify event from one of its source agents, it issues a notify event
as appropriate for all of its target agents; however, the target views are not recalculated
at this time. In some cases the pipe will estimate some parameters of the target view; for
example, the PolezeroImpulse will estimate the length of the \interesting" portion of the
impulse response. Note that it can be e�ciently estimated without computing the impulse
response itself. Such estimates are stored into the target view (not the view parts).

Thus the notify events ripple \down" the view-agent graph through pipes until they reach a
terminal agent (typically an agent associated with a window). That agent uses the estimated
information (above) to update the range information in the view part that it owns. It will
then call the xpAgentGetSnap() function. For master views no calculation is required; for
slave views this function calls the MasterAgent's UpdateFunc function (the master agent

44 CHAPTER 3. XPOLE PROGRAMMER'S GUIDE

is part of a pipe). This function performs the update action, typically recalculating the
view using the range information previously stored in the view part. Once this is complete,
the terminal agent has an updated view, and can process the view (typically displaying the
data graphically).

In the case of cascaded views, the notify events will ripple down as before. When the
master agent's update function is called, it must invoke the update on its source agents
using the xpAgentGetSnap() function. This occurs recursively, moving \up" the graph,
until master views are encountered. In this fashion notify events ripple \down" the graph
via xpViewNotify(), and update requests ripple \up" the graph via xpAgentGetSnap().

3.2.2 Evolution

The current XPole framework has evolved from a very simplistic system. As discussed above
the framework really consists of two components: the data structures used to represent
views, and the mechanisms used to interrelate those views. As described below, the initial
versions did not distinguish between these two components; as the system evolved the views
(data) became strongly isolated from the update calculations (code). This is perhaps the
most important characteristic of the current system.

Agents

The �rst version of the framework supported �lter structures that had single, �xed entries
for the singularity view and Fourier view. (Impulse views were not supported). There was
no support for trajectories nor view parts: only one singularity view and one Fourier view
per �lter, and only one view part per view. The dependency relationship between the two
views was hard-coded, and thus required no agents nor pipes.

While this was adequate for the relatively simple task of allowing the user to manipulate the
singularity view and to display the Fourier view, more sophisticated tasks were impossible
(e.g., maintaining low-pass and high-pass forms of the same �lter, or exporting a �lter
realization to another application). Thus in the next version, each �lter supported a list of
arbitrary views (at the time, views were called data modules). All views were dependent
on the singularity view, and needed to be updated whenever it changed. This update was
invoked through callback function pointer in each view.

This allowed any number of views to be derived from the primary singularity view, but
it did not allow for chaining of views (e.g., low-pass singularity to high-pass singularity to
fourier). To allow for chaining, each source view maintained a dependency list of target

3.2. FRAMEWORK 45

views that required updating whenever the source view changed. This allowed for arbitrary
acyclic digraphs of views.

At this point the view itself and the mechanism used to update it were identical. This did
not allow for updating a view in an arbitrary way. Eliminating this limitation led to agents
and pipes much as they are used currently: an agent registers with a view to be noti�ed
whenever there is a change. A pipe uses an agent to know when its source changes, and
updates its target view accordingly. This provides a desirable isolation between views and
pipes: any view may notify any agent of a change, and any agent may operate on any view
of the appropriate class.

View Hierarchy

As described above, early versions of the framework supported multiple views within each
�lter. This evolved in two directions: support of time-series through trajectories, and
support for multiple view parts through view parts.

View Parts As discussed before, slave views may have multiple parts. The need for slave
views was not originally envisioned. Originally there was e�ectively only one view part
per view. Problems were discovered whenever two agents attempted to control the range
parameters of a slave view (e.g., when two windows are attempting to display di�erent
portions of the same Fourier view). One of the two agents would `win' and the view would
have the winning agent's parameters. The solution to this problem was to create multiple
view parts within each view, and allow each agent to control the range parameters its own
view part.

Trajectory Trajectories are a failed concept that has been completely removed from the
current version.

A trajectory is a set of views that change together over some index set, typically time. For
example, a trajectory might consists of the impulse response (taps) of an adaptive �lter as it
converges over time. The trajectory might also include the corresponding singularity view
and Fourier view for each set of taps. Another example would be a trajectory of root-locus
pole-zero locations for various loop-gain values. The trajectory might also include Fourier
and impulse views for each loop-gain value.

Each �lter maintains a set of trajectories, and each trajectory consists of a set of traj snaps,
one for each index value. Each traj snap contains a set of views. The goal of the trajectory

46 CHAPTER 3. XPOLE PROGRAMMER'S GUIDE

concept is to extract maintenance and manipulation of the index value into a higher level so
that each individual view does not need to deal with the trajectory index. This also allows
a set of windows displaying views of the same trajectory to advance along the trajectory
index together by simply changing the `current' index of the trajectory.

While the purpose of trajectories is desirable, the concept and implementation failed for a
variety of reasons:

� Considering the �rst example above, it would be appropriate to compute and store
the singularity view corresponding to each set of taps since it is static and a function
of only the taps. In contrast, it is not sensible to store the Fourier view for each set
of taps since it depends on what portion(s) the user is currently viewing.

� Most algorithms for computing a root-locus calculate di�erent branches at di�erent
loop-gain values. Thus a single trajectory index value cannot adequately describe an
entire singularity view. That is, the root locus must be described as a set of branches
with the loop-gain ranging within each branch, and not as a set of singularity views
with each singularity view describing a single loop-gain value.

� Most modes of use for XPole do not involve time-series. Thus the large e�ort required
to maintain the sophisticated trajectory system was not worth the gain.

Thus while support for time-series is useful and appropriate within XPole, it must be
implemented inside each view, in a view-speci�c way, and not outside each view. As a
result, most of the C- and Tcl- code support for trajectories has been removed.

3.2.3 Future Directions

The framework is not yet complete. Some de�ciencies and potential solutions are discussed
below. More minor improvements and technically complicated details are discussed in the
code itself or in the `ToDo' �le.

Currently the sample time T and the transform domain (s or z) is de�ned by the �lter and
not the view. Both of these should be de�ned by the view instead, with the filter only
providing the initial, default values. Much of the C code already supports this, but the Tcl
commands require modi�cation.

The framework needs to support time-sequences of views, but using an approach other than
trajectories. Watching the evolution of an adaptive �lter, or calculating a root-locus would
be useful applications of time-sequences.

3.3. LIBRARIES 47

The framework current provides for delayed recalculation, so that multiple updates to the
same view may be collapsed into a single update and consequent recalculation of associated
views. The model for when and where notify and update delay occurs needs to be examined.

Other items too simple or too complicated to discuss here are listed in the �le `ToDo' in the
XPole source code directory.

3.3 Libraries

The XPole application is organized into a set of libraries. These are described below,
followed by a discussion of how these are combined together to form the �nal application.

The top library provides low-level programming support that is common to any large ap-
plication. This includes memory management, error handling, linked lists, dynamic arrays,
porting support, and event loops. It also provides some specialized support for Tcl/Tk.

The eem library implements mathematical and signal processing algorithms. This includes
complex-valued arithmetic, polynomial and rational polynomial arithmetic, partial fraction
expansion, Jacobian elliptical functions, and pole-zero representation support.

The tkgraph library provides Tk-based graphics widgets. Widgets includes the pole-zero
window and sequence window. These widgets are independent of the framework and are
intended to be general purpose.3 The core of the widgets are implemented in C code, with
much of the overall structure and behavior implemented in Tcl code.

The xpole library implements the XPole framework. This includes �lters, views, view parts,
agents, and pipes. The implementation builds upon the types de�ned by the eem library,
and pipes use eem algorithms in their operation.

These libraries are combined together with associated `glue' code to yield the XPole ap-
plication. Speci�cally, views in the framework must be bound to widgets in the tkgraph

library. In addition, a user interface is required to allow the user to control the application:
this is implemented entirely in Tcl code.

3Indeed, the qdm application uses the sequence widget.

48 CHAPTER 3. XPOLE PROGRAMMER'S GUIDE

3.4 Event Loop

XPole uses an event loop. While common in many large systems and most graphical pro-
gramming, the event loop concept may be unfamiliar to the casual programmer. The basic
concept is that after initialization, the program spins forever in the event loop (e.g., an in�-
nite for or while loop). Inside the loop, the program looks for events including keyboard or
mouse activity. When an event occurs, an callback function is invoked. This function will
typically performs some computation, updates internal state, and outputs a result (either
textually or graphically). The function the returns back to the event loop.

Most XPole programmers will never directly use the event loop nor be aware of its existence:
it is only visible to the graphics widgets and the framework core. However, it is important
to note that functions must never block (e.g., spin or sleep waiting for user input). Instead,
user input must be recorded as state, and computation must not be initiated until all user
input is available.

3.5 EEM Library

Most of the algorithms used by XPole are implemented by the eem library. These are
described below in varying degrees of detail.

3.5.1 Polynomial Arithmetic

The library supports arithmetic on complex polynomial and on complex rational polyno-
mials (a ratio of two polynomials). Common operations such as addition, subtraction,
multiplication and di�erentiation are supported. More sophisticated operations such as bi-
nomial expansion are also supported. The implementation is direct and relatively naive. A
common problem is determining the correct \order" of the polynomial: some operation may
result in a highest order term that is almost, but not quite, exactly zero. A formal solution to
this problem would require estimating error bounds for all the operations; such estimates is
current beyond the scope of this library. Ideally these functions would be replaced by a com-
mercial quality library such as the Cephes Mathematical Library (see [NET, netlib/cephes]).
However, such libraries are either not freely redistributable or not yet complete.

3.5. EEM LIBRARY 49

3.5.2 Polynomial Factoring

Several algorithms require factoring a polynomial to �nd its roots (typically yielding the
zeros or poles of a �lter). Factoring in XPole is performed by the Jenkins and Traub method
(CPOLY, ACM Algorithm 419). A Fortran version of this algorithm appears in [JT72] and is
available on-line from netlib [NET, netlib/toms/419]. This code was translated to C using
f2c [NET, netlib/f2c] and slightly modi�ed.

Polynomial factoring is a hard problem without simple solutions. The above algorithm
was chosen because of its reputation as a robust and accurate algorithm for high order
polynomials. Many other algorithms exist [Mad73] [Moo76]; it would be worthwhile to
explore their relative accuracy and speed. In particular, companion matrix based algorithms
might work well. Also, the chosen algorithm factors a complex polynomial. For cases where
the polynomial is known to be real, there could be signi�cant speed and accuracy gains by
using a real polynomial factoring algorithm such as [Jen75].

3.5.3 Partial Fraction Expansion

Several algorithms require expanding a �lter described by its poles and zeros into a sum
of partial fractions (PFE form). XPole uses a simplistic method based on Heaviside's
Expansion Theorem [ZTF83, pp. 186-195]. This method solves for the PFE coe�cients by
evaluating a modi�ed version of the transfer function H(s) or H(z). For �rst order poles
this works well, but for higher order poles it requires expanding the transfer function into
a rational polynomial and di�erentiating. This leads to large numerical errors.

Other algorithms for performing PFE should be examined, including symbolic di�erentia-
tion and state-space formulations.

3.5.4 Jacobian Elliptical Functions

The construction of elliptical �lters is rather complex and involves the use of Jacobian
Elliptical Functions (JEF). The construction process and many properties of JEFs are
explained in the source code eem/jef.c. The implementation is based on [GR69], [Com79],
[AS65, Chap. 16 and 17] and [Jon82], with the last providing an excellent formulation and
description of the construction.

50 CHAPTER 3. XPOLE PROGRAMMER'S GUIDE

Bibliography

[AS65] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Dover
Publications, New York, 1965.

[BHLM93] Joe Buck, Soonhoi Ha, Edward A. Lee, and David G. Messerschmitt. Ptolemy:
A framework for simulating and prototyping heterogeneous systems. Interna-

tional Journal of Computer Simulation, forthcoming special issue on Simulation
Software Development, 1993.

[BLL93] Je� Bier, Phil Lapsley, and Edward Lee. Design Tools and Methodologies for

DSP Systems. Forward Concepts, 1993.

[Com79] ASSP DSP Committee. Programs For Dig. Sig. Proc. IEEE Press, 1979.

[GR69] Bernard Gold and Charles M. Rader. Digital Processing Of Signals. McGraw-
Hill (Lincoln Labs), 1969.

[Jac89] Leland B. Jackson. Digital Filters and Signal Processing. Kluwer Academic
Publishers, second edition, 1989.

[Jen75] M. A. Jenkins. Algorithm 493: Zeros of a real polynomial. ACM Transactions

on Mathematical Software, 1(2):178{189, June 1975.

[Jon82] Mark T. Jong. Methods of Disc. Sig. and Sys. Anal. McGraw-Hill, 1982.

[JT72] M. A. Jenkins and J. F. Traub. Algorithm 419: Zeros of a complex polynomial.
Communications of the ACM, 15(2):97{99, February 1972.

[Lap91] Philip D. Lapsley. Host interface and debugging of dataow dsp systems. Mas-
ter's thesis, University of California at Berkeley, 1991.

[Mad73] Kaj Madsen. A root-�nding algorithm based on newton's method. BIT, 13:71{
75, 1973.

51

52 BIBLIOGRAPHY

[MH87] Jerrold E. Marsden and Michael J. Ho�man. Basic Complex Analysys. W. H.
Freeman and Company, second edition, 1987.

[Moo76] J. B. Moore. A consistently rapid algorithm for solving polynomial equations.
Journal of the Institute of Mathematics and Its Applications (IMA), 17:99{110,
1976.

[NET] Anonymous ftp to research.att.com. AT&T.

[Ous90] John K. Ousterhout. Tcl: An embeddable command language. In 1990 Winter

USENIX Conference Proceedings, 1990.

[Ous91] John K. Ousterhout. An X11 toolkit based on the tcl language. In Proceedings

of the 1991 Winter USENIX Conference, 1991.

[PB87] T. W. Parks and C. S. Burrus. Digital Filter Design. John Wiley & Sons, Inc.,
New York, 1987.

[ZTF83] Rodger E. Ziemer, William H. Tranter, and D. Ronald Fannin. Signals and

Systems: Continuous and Discrete. Macmillan Publishing Co., New York, 1983.

