
LATENCY-CONSTRAINED RESYNCHRONIZATION FOR
MULTIPROCESSOR DSP IMPLEMENTATION

Shuvra S. Bhattacharyya, Sundararajan Sriram, and Edward A. Lee

February 1, 1996

ABSTRACT

Resynchronization is a post-optimization for static multiprocessor schedules in which
extraneous synchronization operations are introduced in such a way that the number of original
synchronizations that consequently becomeredundantsignificant exceeds the number of addi-
tional synchronizations. Redundant synchronizations are synchronization operations whose corre-
sponding sequencing requirements are enforced completely by other synchronizations in the
system. The amount of run-time overhead required for synchronization can be reduced signifi-
cantly by eliminating redundant synchronizations [3, 19]. Thus, effective resynchronization
reduces the net synchronization overhead in the implementation of a multiprocessor schedule, and
thus improves the overall throughput.

However, since additional serialization is imposed by the new synchronizations, resyn-
chronization can produce significant increase in latency. This paper addresses the problem of
computing an optimal resynchronization (one that results in the lowest average rate at which syn-
chronization operations have to be performed) among all resynchronizations that do not increase
the latency beyond a prespecified upper bound . Our study is based in the context of self-

timed execution of iterative dataflow programs, which is an implementation model that has been
applied extensively for digital signal processing systems.

Lmax

This research was partially funded as part of the Ptolemy project, which is supported by the
Advanced Research Projects Agency and the U.S. Air Force (under the RASSP program, contract F33615-
93-C-1317), the Semiconductor Research Corporation (project 94-DC-008), the National Science Founda-
tion (MIP-9201605), the State of California MICRO program, and the following companies: Bellcore, Bell
Northern Research, Dolby Laboratories, Hitachi, LG Electronics, Mentor Graphics, Mitsubishi, Motorola,
NEC, Pacific Bell, Philips, and Rockwell.

S. S. Bhattacharyya is with the Semiconductor Research Laboratory, Hitachi America, Ltd., 201
East Tasman Drive, San Jose, CA 95134, USA, shuvra@halsrl.com, fax: (408)954-8907.

S. Sriram was with the Department of Electrical Engineering and Computer Sciences, University
of California at Berkeley. He is now with the DSP R&D Centre, Texas Instruments.

E. A. Lee is with the Department of Electrical Engineering and Computer Sciences, University of
California at Berkeley.

Submitted to Intl.Conf. on Application-specific Systems, Architectures & Processors

2

1. Introduction

In a shared-memory multiprocessor system, it is possible that certain synchronization

operations areredundant,which means that their sequencing requirements are enforced entirely

by other synchronizations in the system. It has been demonstrated that the amount of run-time

overhead required for synchronization can be reduced significantly by detecting and eliminating

redundant synchronizations [3, 19].

The objective of resynchronization is to introduce new synchronizations in such a way that

the number of original synchronizations that consequently become redundant is significantly

greater that the number of new synchronizations. Thus, effective resynchronization improves the

overall throughput of a multiprocessor implementation by decreasing the average rate at which

synchronization operations are performed. Since additional serialization is imposed by the new

synchronizations, resynchronization can produce significant increase in latency. This paper

addresses the problem of computing an optimal resynchronization among all resynchronizations

that do not increase the latency beyond a prespecified upper bound . We address this prob-

lem in the context of self-timed execution of iterative synchronous dataflow (SDF) [13] programs.

An iterative dataflow program consists of a dataflow representation of the body of a loop that is to

be iterated infinitely. Iterative SDF programming is used extensively for the implementation of

digital signal processing systems. Examples of commercial tools that use this model are the Sig-

nal Processing Worksystem (SPW) [18], and COSSAP [21], and examples of tools developed at

various universities are Ptolemy [17], the Warp compiler [20], DESCARTES [21], and GRAPE

[12].

In SDF, a program is represented as a directed graph in which vertices (actors) represent

Lmax

3

computational tasks, edges specify data dependences, and the number of data values (tokens) pro-

duced and consumed by each actor is fixed.Delays on SDF edges represent initial tokens, and

specify dependencies between iterations of the actors in iterative execution. For example, if

tokens produced by the th invocation of actor are consumed by the th invocation of

actor , then the edge contains two delays. Tasks can be of arbitrary complexity. In DSP

design environments, they typically range in complexity from basic operations such as addition or

subtraction to signal processing subsystems such as FFT units and adaptive filters.

We assume that the input SDF graph ishomogeneous, which means that the numbers of

tokens produced and consumed are identically unity. However, since efficient techniques have

been developed to convert general SDF graphs into homogeneous graphs [13], our techniques can

easily be adapted to general SDF graphs. We refer to a homogeneous SDF graph as aDFG. The

techniques developed in this paper can be used as a post-processing step to improve the perfor-

mance of any static multiprocessor scheduling technique for iterative DFGs, such as those

described in [1, 6, 9, 17, 20].

Our implementation model involves aself-timedscheduling strategy [14]. Each processor

executes the tasks assigned to it in a fixed order that is specified at compile time. Before firing an

actor, a processor waits for the data needed by that actor to become available. Thus, processors are

required to perform run-time synchronization when they communicate data. This provides robust-

ness when the execution times of tasks are not known precisely or when then they may exhibit

occasional deviations from their estimates.

Interprocessor communication (IPC) is assumed to take place through shared memory,

which could be global memory between all processors, or it could be distributed between pairs of

k A k 2+()

B A B,()

4

processors. Sender-receiver synchronization is also assumed to take place by setting and checking

flags in shared memory (see [2] for details on the assumed synchronization protocols). Thus,

resynchronization achieves its benefit by reducing the rate of accesses to shared memory for the

purpose of synchronization.

2. Background on synchronization optimization

A strongly connected component (SCC) of a directed graph is a maximal subgraph in

which there is a path from each vertex to every other vertex. Afeedforward edge is an edge that is

not contained in an SCC. The source and sink actors of an SDF edge are denoted and

, and the delay on is denoted . An edge is aself loop edgeif

. We define to represent an SDF edge whose source and sink vertices

are and , respectively, and whose delay is (assumed non-negative).

An SDF representation of an application is called anapplication DFG. For each task in

a given application DFG , we assume that an estimate (a positive integer) of the execution

time is available. Given a multiprocessor schedule for , we derive a data structure called the

IPC graph, denoted , by instantiating a vertex for each task, connecting an edge from each

task to the task that succeeds it on the same processor, and adding an edge that has unit delay from

the last task on each processor to the first task on the same processor. Also, for each edge in

 that connects tasks that execute on different processors, anIPC edgeis instantiated in

from to . Figure 1(c) shows the IPC graph that corresponds to the application DFG of Figure

1(a) and the processor assignment / actor ordering of Figure 1(b).

Each edge in represents thesynchronization constraint

e e()src

e()snk e e()delay e

e()src e()snk= dn x y,()

x y n

v

G t v()

G

Gipc

x y,()

G Gipc

x y

vj vi,() Gipc

5

, (1)

where and respectively represent the time at which invocation of actor

begins execution and completes execution.

Initially, an IPC edge in represents two functions: reading and writing of tokens into

the corresponding buffer, and synchronization between the sender and the receiver. To differenti-

ate these functions, we define another graph called thesynchronization graph, in which edges

between tasks assigned to different processors, calledsynchronization edges, representsynchro-

nization constraints only. An execution sourceof a synchronization graph is any actor that has

nonzero delay on each input edge.

Initially, the synchronization graph is identical to . However, resynchronization mod-

ifies the synchronization graph by adding and deleting synchronization edges. After resynchroni-

zation, the IPC edges in represent buffer activity, and must be implemented as buffers in

shared memory, whereas the synchronization edges represent synchronization constraints, and are

implemented by updating and testing flags in shared memory. If there is an IPC edge as well as a

synchronization edge between the same pair of actors, then the synchronization protocol is exe-

cuted before the buffer corresponding to the IPC edge is accessed so as to ensure sender-receiver

synchronization. On the other hand, if there is an IPC edge between two actors in the IPC graph,

but there is no synchronization edge between the two, then no synchronization needs to be done

before accessing the shared buffer. If there is a synchronization edge between two actors but no

IPC edge, then no shared buffer is allocated between the two actors; only the corresponding syn-

chronization protocol is invoked.

If the execution time of each actor is a fixed constant for all invocations of , and

start vi k,() end vj k vj vi,()()delay–,()≥

start v k,() end v k,() k v

Gipc

Gipc

Gipc

v t∗ v() v

6

the time required for IPC is ignored (assumed to be zero), then as a consequence of Reiter’s anal-

ysis in [22], the throughput (number of DFG iterations per unit time) of a synchronization graph

 is given by

, (2)

where is the sum of the delays of all edges that are traversed by the cycle .

Since in our problem context, we only have execution time estimates available instead of

exact values, we replace with the corresponding estimate in (2) to obtain theesti-

mated throughput. The objective of resynchronization is to increase theactual throughput by

reducing the rate at which synchronization operations must be performed, while making sure that

the estimated throughput is not degraded.

Any transformation that we perform on the synchronization graph must respect the syn-

chronization constraints implied by . If we ensure this, then we only need to implement the

synchronization edges of the optimized synchronization graph. If and

 are synchronization graphs with the same vertex-set and the same set of intrapro-

cessor edges (edges that are not synchronization edges), we say that preserves if for all

 such that , we have , where if there

is no path from to in the synchronization graph , and if there is a path from to , then

 is the minimum over all paths directed from to of the sum of the edge delays on

. The following theorem, which is developed in [2], underlies the validity of resynchronization.

G

τ
min

cycle C in G
∆ C()

t∗ v()
v C∈
∑

 
 
 
 
 

=

∆ C() C

t∗ v() t v()

Gipc

G1 V E1,()=

G2 V E2,()=

G1 G2

e E2∈ e E1∉ ρG1
e()src e()snk,() e()delay≤ ρG x y,() ∞≡

x y G x y

ρG x y,() p x y

p

7

Theorem 1: The synchronization constraints (as specified by (1)) of imply the constraints

of if preserves .

Intuitively, Theorem 1 is true because, if preserves , then for every synchronization

edge in , there is a path in that enforces the synchronization constraint specified by .

A synchronization edge is redundant in a synchronization graph if its removal yields a

graph that preserves . For example, in Figure 1(c), the synchronization edge is redun-

dant due to the path . In [2], it is shown that if all redundant edges in a

synchronization graph are removed, then the resulting graph preserves the original synchroniza-

tion graph.

Given a synchronization graph , a synchronization edge in , and an ordered

pair of actors in , we say that subsumes in if

.

Thus, subsumes if and only if a zero-delay synchronization edge directed from

 to makes redundant. If is the set of synchronization edges in , and is an

ordered pair of actors in , then .

If is a synchronization graph and is the set of feedforward edges in ,

G1

G2 G1 G2

G1 G2

e G2 G1 e

G

G C F,()

C E,() E D,() D F,(), ,()

B

D

F

A

C

E

DDB

D F

A

C

E

Processor Actor ordering
Proc. 1 B, D, F
Proc. 2 A, C, E

Figure 1. Part (c) shows the IPC graph that corresponds to the DFG of part (a) and the proces-
sor assignment / actor ordering of part (b). A “D” on top of an edge represents a unit delay.

(a) (b) (c)

G x1 x2,() G

y1 y2,() G y1 y2,() x1 x2,() G

ρG x1 y1,() ρG y2 x2,()+ x1 x2,()()delay≤

y1 y2,() x1 x2,()

y1 y2 x1 x2,() S G p

G χ p() s S∈ p subsumess{ }=

G V E,()= F G

8

then aresynchronization of is a set of edges that are not necessarily

contained in , but whose source and sink vertices are in , such that are feed-

forward edges in the DFG , and preserves . Each member of that

is not in is aresynchronization edge, is called theresynchronized graph associated with

, and this graph is denoted by .

For example is a resynchronization of the synchronization graph shown in

Figure 1(c).

Our concept of resynchronization considers the rearrangement of synchronizations only

“across” feedforward edges. We impose this restriction so that the serialization imposed by resyn-

chronization does not degrade the estimated throughput. Feedforward edges do not reduce the

estimated throughput because they do not affect the value derived from (2).

3. Latency-constrained resynchronization

By thelatency of a multiprocessor implementation, we mean the time required for the first

invocation of a specific execution source, called thelatency input, to influence a specific output

actor, called thelatency output. We denote the latency of a synchronization graph by .

As discussed earlier, resynchronization cannot decrease the estimated throughput since it

manipulates only the feedforward edges of the synchronization graph. Frequently in real-time sig-

nal processing systems, latency is also an important issue. Since resynchronization introduces

serialization of tasks in a DFG, it can in general produce a significant increase in latency. The

latency-constrained resynchronization (LCR) problem is the problem of computing a minimal

resynchronization among all resynchronizations that do not increase the latency beyond a pre-

G R e1′ e2′ … em′, , ,{ }≡

E V e1′ e2′ … em′, , ,

G∗ V E F–() R+,()≡ G∗ G R

E G∗

R R G()

R E B,(){ }=

G LG

9

specified upper bound .

In our study of LCR, we restrict our attention to a class of synchronization graphs, called

transparent graphs, for which the latency can be computed efficiently. This is the class of syn-

chronization graphs in which the first invocation of the latency output is influenced by the first

invocation of the latency input; equivalently, it is the class of graphs that have at least one delay-

less path in the corresponding application DFG directed from the latency input to the latency out-

put [4]. Since the first invocation of any execution source starts execution at time 0, the latency of

a transparent synchronization graph is given by (the completion time of the first invo-

cation of), where is the associated latency output.

Note that our measure of latency is explicitly concerned only with the time that it takes for

thefirst input to propagate to the output, and does not in general give an upper bound on the time

for subsequent inputs to influence subsequent outputs. Extending our latency measure to maxi-

mize over all pairs of “related” input and output invocations would yield the alternative measure

 defined by

, (3)

where is the associated application DFG.

Currently, there are no known tight upper bounds on that can be computed efficiently

from the synchronization graph for any useful subclass of graphs, and thus, we use the lower

bound approximation , which corresponds to the critical path, when attempting to analyze and

optimize the input-output propagation delay of a self-timed system. The heuristic that we present

in Section 7 for latency-constrained resynchronization can easily be adapted to handle arbitrary

Lmax

end vo 1,()

vo vo

LG′

LG′ x y,() end y k ρG0
x y,()+,() start x k,()– k 1 2 …, ,=(){ }()max=

G0

LG′

LG

10

latency measures; however, the efficiency of the heuristic depends on the existence of an algo-

rithm to efficiently compute the change in latency that arises from inserting a single new synchro-

nization edge. The exploration of incorporating alternative measures — or estimates — of latency

in this heuristic framework, possibly with adaptations to the basic framework, would be a useful

area for further study.

If a synchronization graph is transparent, then the latency can be computed efficiently

using longest path calculations on anacyclicgraph that is derived from the input synchronization

graph . This acyclic graph, denoted , is constructed by removing all edges from that

have nonzero-delay, adding a vertex , setting , and adding delayless edges from to

each execution source of .

In [4], it is shown that if is a transparent synchronization graph with latency output ,

then , where if there is no path from to in , and if

there is a path from to , then is defined to be the maximum cumulative execution

time (sum of the execution times over all vertices in a given path) over all paths directed from to

. Furthermore, the latency of the synchronization graph that results from inserting a new

synchronization edge (a resynchronization edge) into can be computed from

. (4)

The values for all pairs can be computed in time, where is the number

of actors in , by using a simple adaptation of the Floyd-Warshall algorithm specified in [7].

Such an efficient means for computing latency permits the development of systematic resynchro-

nization techniques to trade off synchronization overhead and latency.

G

G fi G() G

υ t υ() 0= υ

G

G y

LG Tfi G() υ y,()= Tfi G() a b,() ∞–≡ a b fi G()

a b Tfi G() a b,()

a

b G′

v1 v2,() G

LG′ Tfi G() υ v1,() Tfi G() v2 y,()+() LG,{ }()max=

Tfi G() a b,() a b, O n
3() n

G

11

4. Related work

In [5], the problem of finding a resynchronization that has minimal cardinality (theresyn-

chronization problem) is shown to be NP-hard, and an efficient family of heuristics is presented.

Also, a class of synchronization graphs is identified for which optimal resynchronizations can be

computed using an efficient polynomial-time algorithm. The developments of [5] assume that

arbitrary increases in latency can be tolerated (“unbounded-latency resynchronization”); such a

scenario may arise, for example, in simulation applications. In contrast this paper addresses the

problem of resynchronizationunder fixed latency constraints.

In [19], Shaffer presents an algorithm that removes redundant synchronizations in the self-

timed execution of a non-iterative DFG. This technique was subsequently extended to handle iter-

ative execution and DFG edges that have delay [3]. These approaches differ from the techniques

of this paper in that they only consider the redundancy induced by theoriginal synchronizations;

they do not consider the addition of new synchronizations.

In [3], an efficient algorithm, calledConvert-to-SC-graph, is described for introducing

new synchronization edges so that the synchronization graph becomes strongly connected, which

allows all synchronization edges to be implemented with a more efficient synchronization proto-

col. It is shown that the net overhead required to implement the new edges that are added byCon-

vert-to-SC-graphcan be significantly less than the synchronization overhead that is eliminated by

using the more efficient synchronization protocol. However, this technique may increase the

latency.

Generally, resynchronization can be viewed as complementary to theConvert-to-SC-

graph optimization: resynchronization is performed first, followed byConvert-to-SC-graph.

12

Under severe latency constraints, it may not be possible to accept the solution computed byCon-

vert-to-SC-graph. In such a situation,Convert-to-SC-graphcan be attempted on the original

(before resynchronization) graph to see if it achieves a better result than resynchronization with-

outConvert-to-SC-graph. However, for a significant class of synchronization graphs, the latency

is not affected byConvert-to-SC-graph, and thus, for such systems resynchronization andCon-

vert-to-SC-graph are fully complementary [4].

Resynchronization has been studied earlier in the context of hardware synthesis [8]. How-

ever in this work, the scheduling model and implementation model are significantly different from

the structure of self-timed multiprocessor implementations, and as a consequence, the analysis

techniques and algorithmic solutions do not apply to our context, and vice-versa [4].

5. Intractability

We have established that latency-constrained resynchronization is NP-hard even for the

very restricted subclass of transparent synchronization graphs in which each SCC corresponds to

a single actor, and all synchronization edges have zero delay. In this section, we outline the intu-

ition behind this result; a detailed proof can be found in [4].

The intractability of latency-constrained resynchronization can be established by a reduc-

tion from theset covering problem, which is a well-known NP-hard problem [7]. In the set cover-

ing problem, one is given a finite set and a family of subsets of , and asked to find a

minimal (fewest number of members) subfamily such that . A subfamily of

is said tocover if each member of is contained in some member of the subfamily. Thus, the

set covering problem is the problem of finding a minimal cover.

X T X

Ts T⊆ t
t Ts∈
∪ X= T

X X

13

To illustrate our reduction of set covering to latency-constrained resynchronization, we

suppose that we are given the set , and the family of subsets

, where , , and . Figure 2 illustrates

the instance of latency-constrained resynchronization that we derive from the instance of set cov-

ering specified by . This is a synchronization graph in which each actor corresponds to a

single processor and the self loop edges for each actor are not shown. The numbers beside the

actors specify the actor execution times, and the latency constraint is . In the graph of

Figure 2, which we denote by , the edges labeled correspond respectively to

the members of the set in the set covering instance, and the vertex pairs (resyn-

chronization candidates) correspond to the members of . For each

X x1 x2 x3 x4, , ,{ }=

T t1 t2 t3, ,{ }= t1 x1 x3,{ }= t2 x1 x2,{ }= t3 x2 x4,{ }=

Figure 2. An instance of latency-constrained resynchronization that is derived from an
instance of the set covering problem.

v

st1 st2 st3

sx1 sx2 sx3 sx4

ex2ex1 ex3

ex4

W

z

out

1

1

100

40 40 40

60 60 60 60

1

Lmax = 103

in

1

X T,()

Lmax 103=

G ex1 ex2 ex3 ex4, , ,

x1 x2 x3 x4, , , X

v st1,() v st2,() v st3,(), , T

14

relation , an edge exists that is directed from to . The latency input and latency out-

put are defined to be and respectively, and it is assumed that is transparent.

Our general procedure for reducing an arbitrary instance of set covering to an

instance of latency-constrained resynchronization is in specified Figure 3. The time complexity of

this transformation is .

Now let denote an arbitrary instance of set covering, and let be the synchroniza-

tion graph that results when the construction of Figure 3 is applied to . In [4] it is shown

that from any optimal LCR for , an optimal LCR for can be derived in polynomial time

such that

for each resynchronization edge in , , and , and (5)

in out G

• Instantiate actors , with execution times , , , , and , respectively,
and instantiate all of the edges in Figure 2 that are contained in the subgraph associated
with these five actors.
• For each , instantiate an actor labeled that has execution time .

• For each

Instantiate an actor labeled that has execution time .

Instantiate the edge .

Instantiate the edge .

�•For each

Instantiate the edge .

For each , instantiate the edge .

• Set .

v w z in out, , , , 1 1 100 1 1

t T′∈ st 40

x X′∈
sx 60

ex d0 v sx,()≡

d0 sx out,()

t T′∈
d0 w st,()

x t∈ d0 st sx,()

Lmax 103=

Figure 3. A procedure for constructing an instance of latency-constrained resynchroniza-
tion from an instance of set covering such that a solution to yields a solution to .

I lr

I sc I lr I sc

X′ T′,()

O X′ T′()

X̃ T̃,() G̃

X̃ T̃,()

R̃ G̃ G̃

e R̃ e()src v= e()snk Ψ∈

15

the set is a minimum cover for , (6)

where .1

Since the construction of Figure 3 can be performed in polynomial time, we have from (6)

and the NP-hardness of set covering that the latency-constrained resynchronization problem is

NP-hard.

The synchronization graph that results from an optimal resynchronization of Figure 2,

with redundant synchronization edges removed is shown in Figure 2. Since the resynchronization

candidates were chosen to obtain the solution shown in Figure 2, this solution

corresponds to the solution of that consists of the subfamily .

6. Two processor problem

The problem of latency constrained synchronization for the case where there are only two

processors in the system (the2LCR problem) is an interesting special case. Although the general

LCR problem is NP-hard, the 2LCR problem can be solved in polynomial time (cubic in the num-

ber of nodes in the synchronization graph). This reveals a pattern of complexity that is analogous

to the classic nonpreemptive processor scheduling problem with deterministic execution times, in

which the problem is also intractable for general systems, but an efficient greedy algorithm suf-

fices to yield optimal solutions for two-processor systems in which the execution times of all tasks

are identical [10]. However, for latency-constrained resynchronization, the tractability for two-

processor systems does not depend on any constraints on the task (actor) execution times.

1. The actors {st} are those that were constructed in the second step of Figure 3.

t v st,() R̃∈(){ } X̃

Ψ st t T̃∈(){ }=

v st1,() v st3,(),

X T,() t1 t3,{ }

16

In an instance of thetwo-processor latency-constrained resynchronization (2LCR)

problem, we are given two processors, called the “source processor” and “sink processor”; a set

of source processor actors , with associated execution times , such that each

 is the th actor scheduled on the source processor; a set ofsink processor actors ,

with associated execution times , such that each is the th actor scheduled on the sink

processor; a set of irredundant synchronization edges such that for each ,

 and ; and a latency constraint , which

Figure 4. The synchronization graph that results from a solution to the instance of
latency-constrained resynchronization shown in Figure 2.

v

st1 st2 st3

sx1 sx2 sx3 sx4

W

z

out

1

1

100

40 40 40

60 60 60 60
Lmax = 103

in

1

1

x1 x2 … xp, , , t xi(){ }

xi i y1 y2 … yq, , ,

t yi(){ } yi i

s1 s2 … sn, , , si

si()src x1 x2 … xp, , ,{ }∈ si()snk y1 y2 … yq, , ,{ }∈ Lmax

17

is a positive integer. It is assumed that is the latency input and is the latency output. A solu-

tion to such an instance is a minimal resynchronization that satisfies , where is

the resynchronized graph. In the remainder of this section, we denote the synchronization graph

corresponding to our generic instance of 2LCR by .

An example of an instance of 2LCR is shown in Figure 5(a). Here, ; and we

assume that for each actor , and .

As in the previous section, we assume that is transparent. In this discussion, we also

assume that for all , and we refer to the subproblem that results from this restric-

x1 yq

R LG∗ Lmax≤ G∗

G̃

x2

x3

x4

x5

x6

x7

x8

x1

y2

y3

y4

y5

y6

y7

y8

y1

DD

Lmax = 10 (a) (b)

x2

x3

x4

x5

x6

x7

x8

x1

y2

y3

y4

y5

y6

y7

y8

y1

DD

Figure 5. An instance of two-processor latency-constrained resynchronization. In this
example, the execution times of all actors are identically equal to unity.

p q 8= =

t z() 1= z Lmax 10=

G̃

si()delay 0= si

18

tion asdelayless 2LCR. In this section, we illustrate how delayless 2LCR can be solved in time

quadratic in the number of vertices in the synchronization graph. We have extended this approach

to solve the general (not necessarily delayless) 2LCR problem in cubic time; we refer the reader

to [4] for details on this extension, and for formal proofs of the optimality of our techniques for

delayless 2LCR and general 2LCR.

The delayless 2LCR problem can be reduced to a special case of set covering calledinter-

val covering, in which we are given an ordering of the members of (the set that

must be covered) such that the collection of subsets consists entirely of subsets of the form

. Thus, while general set covering involves covering a set from

a collection of subsets, interval covering amounts to covering an interval from a collection of sub-

intervals. The interval covering problem can be solved in time using a straightforward

approach [4].

Our algorithm for the 2LCR problem is based on the following lemma, which is estab-

lished in [4].

Lemma 1: If is a resynchronization of , then

, where

 for , and for .

The set in the interval covering instance that we derive from is the set

 of synchronization edges in . To derive the interval covering instance, we start

by ordering the synchronization edges according to the order in which the source actors execute

on the source processor. This ordering, denoted , is specified by

w1 w2 … wN, , , X

T

wa wa 1+ … wb, , ,{ } 1 a b N≤ ≤ ≤,

O X T()

R G̃

L
R G̃() t pred s′()src() tsucc s′()snk()+ s′ R∈()max=

t pred xi() t xj()
j i≤
∑≡ i 1 2 … p, , ,= tsucc yi() t yj()

j i≥
∑≡ i 1 2 … q, , ,=

X G̃

s1 s2 … sn, , ,{ } G̃

s1′ s2′ … sn′, , ,()

19

.1 (7)

Next, we define to be the set of the source processor actors that satisfy

, and for each such that , we define an ordered pair of actors (a

“resynchronization candidate”) by

, where . (8)

Consider the example shown in Figure 5(a) (recall that for this example we assume that

 for each actor , and). Here, , and from (8), we have

,

. (9)

The set of “interval” subsets of to be covered is then computed as

. (10)

In [4] we show that the family of subsets defined by (10) together with the ordering speci-

fied by (7) always forms an instance of interval covering, and that given a solution (minimal

cover) to this instance of interval covering, is

an optimal latency-constrained resynchronization of .

For Figure 5(a), the ordering specified by (7) is

, (11)

and thus from (9), we have

1. Note that the source actors of the members of are all distinct. This follows from the as-
sumption that the members of are not redundant.

xa si ′()src= xb sj ′()src= a b<, ,() i j<()⇒

s1 s2 … sn, , ,{ }
s1 s2 … sn, , ,{ }

X0 xi

t pred xi() t yq()+ Lmax≤ i xi X0∈

vi xi yj,()≡ j k t pred xi() tsucc yk()+ Lmax≤(){ }()min=

t z() 1= z Lmax 10= X0 x1 x2 … x8, , ,{ }=

v1 x1 y1,()= v2 x2 y1,()= v3 x3 y2,()= v4 x4 y3,()=, , ,

v5 x5 y4,()= v6 x6 y5,()= v7 x7 y6,()= v8 x8 y7,()=, , ,

T s1 s2 … sn, , ,{ }

T χ vi() xi X0∈{ }=

χ vr 1
() χ vr 2

() … χ vr z
(), , ,{ } R vr 1

vr 2
… vr z

, , ,{ }=

G̃

s1′ x1 y2,()= s2′ x2 y4,()= s3′ x3 y6,()= s4′ x5 y7,()= s5′ x7 y8,()=, , , ,

20

. (12)

It is easily verified that is a minimal cover for from

the family of subsets specified by (12). Thus we are guaranteed that the resynchronization

 is an optimal latency-constrained resynchronization of Figure 5(a). The synchroni-

zation graph that results from this resynchronization is shown in Figure 5(b).

7. A heuristic for LCR

We have developed a heuristic for LCR in general, transparent synchronization graphs.

Our heuristic is based on an approximation algorithm for set covering that repeatedly selects a

subset that covers the largest number ofremaining elements, where a remaining element is an ele-

ment that is not contained in any of the subsets that have already been selected [11, 15].

To adapt this set covering technique to LCR, we construct an instance of set covering by

choosing the set of elements to be covered to be the set of synchronization edges, and by choosing

the family of subsets to be the collection of subsets of the form , where is an

ordered pair of vertices such that there is no path from to , and adding the resynchronization

edge does not increase the latency beyond .

From this family of subsets, our heuristic chooses a member that has maximum cardinal-

ity, inserts the corresponding resynchronization edge, removes all synchronization edges that

become redundant, and updates the values and , for all , for the new

synchronization graph. This process is repeated until no more resynchronization edges can be

χ v1() s1′{ }= χ v2() s1′ s2′,{ }= χ v3() s1′ s2′ s3′, ,{ }= χ v4() s2′ s3′,{ }=, , ,

χ v5() s2′ s3′ s4′, ,{ }= χ, v6() s3′ s4′,{ }= χ v7() s3′ s4′ s5′, ,{ }= χ v8() s4′ s5′,{ }=, ,

C χ v3() χ v7(),{ }= s1 s2 … sn, , ,{ }

R v3 v7,{ }=

χ v w,()() v w,()

w v

v w,() Lmax

Tfi G() x y,() ρG x y,() x y,

21

added without increasing the latency beyond .

A complete pseudocode specification of the approach is shown in Figure 6. The running

time is , where is the number of graph vertices.

Figure 7 shows the synchronization graph that results from a six-processor schedule of a

synthesizer for plucked-string musical instruments in 11 voices. Hereexc represents the excitation

input, each actor labeled with a positive integer represents the th voice, and the vertices labeled

with “+” signs represent adders. The latency input and output are, respectively,exc andout, and

the latency is 170.

The table on the right side of Figure 7 shows how the synchronization cost in the result

computed by our heuristic changes as the latency constraint varies. If just over 50 units of latency

can be tolerated beyond the original latency of 170, then the heuristic is able to eliminate a single

Lmax

O v
4() v

synch edgesLmax
170 Lmax 220≤ ≤ 10
221 Lmax 267≤ ≤ 9
268 Lmax 275≤ ≤ 8
276 Lmax 381≤ ≤ 7
382 Lmax 644≤ ≤ 6
645 Lmax ∞≤ ≤ 5

exc

+

+

+

+

+

out

D

D

4

5

+

D

6

7

+

D

8

9

+

D

10

11

+

D

task exec. time
exc 32
1-11 51
out 16
+ 04

Figure 7. A music synthesis example.

2

3

1

i i

22

function latency-constrained-resynchronization
input : a synchronization graph

output : an alternative synchronization graph that preserves .

compute for all actor pairs

compute for all actor pairs

 = FALSE

while not

,

for
if

if

end if
end if

end for
if

else

for /* update */

end for
for /* update */

end for
,

end if
end while
return
end function

G V E,()=

G

ρG x y,() x y, V∈

Tfi G() x y,() x y, V υ{ }∪()∈

complete

complete()
best NULL= M 0=

x y, V∈
ρG y x,() ∞=() L′ x y,() Lmax≤()and()

χ* χ x y,()()=

χ* M>()
M χ*=

best x y,()=

best NULL=()
complete TRUE=

E E χ best()– d0 best(){ }+=

G V E,()=

x y, V υ{ }∪()∈ Tfi G()

Tnew x y,() Tfi G() x y,() Tfi G() x best()src,() Tfi G() best()snk y,()+,{ }()max=

x y, V∈ ρG

ρnew x y,() ρG x y,() ρG x best()src,() ρG best()snk y,()+,{ }()min=

ρG ρnew= Tfi G() Tnew=

G

Figure 6. A heuristic for latency-constrained resynchronization.

23

synchronization edge. No further improvement can be obtained unless roughly another 50 units

are allowed, at which point the synchronization cost drops to 8, and then down to 7 for an addi-

tional 8 time units of allowable latency. If the latency constraint is weakened to 382, then the heu-

ristic is able to reduce the synchronization cost to 6. No further improvement is obtained over the

range 383-644. When , a synchronization cost of 5 is achieved.

8. Conclusions

This paper has addressed the problem of latency-constrained resynchronization for self-

timed implementation of iterative dataflow programs. Given an upper bound on the allow-

able latency, the objective of latency-constrained resynchronization is to insert extraneous syn-

chronization operations in such a way that a) the number of original synchronizations that

consequently become redundant significant exceeds the number of new synchronizations, and b)

the serialization imposed by the new synchronizations does not increase the latency beyond .

To ensure that the serialization imposed by resynchronization does not degrade the throughput,

the new synchronizations are restricted to lie outside of all cycles in the final synchronization

graph. We have established that latency-constrained resynchronization is NP-hard; we have

derived an optimal, polynomial-time algorithm for two-processor systems; and we have devel-

oped and implemented a heuristic for generaln-processor systems. Through a practical example,

we have illustrated the ability of this heuristic to systematically trade off between synchronization

overhead and latency.

Lmax 645≥

Lmax

Lmax

24

References 1

[1] S. Banerjee, D. Picker, D. Fellman, and P. M. Chau, “Improved Scheduling of Signal Flow

Graphs onto Multiprocessor Systems Through an Accurate Network Modeling Technique,”VLSI

Signal Processing VII, IEEE Press, 1994.

[2] S. S. Bhattacharyya, S. Sriram, and E. A. Lee,Optimizing Synchronization in Multiprocessor

Implementations of Iterative Dataflow Programs, Electronics Research Laboratory, University of

California at Berkeley, January, 1995.

[3] S. S. Bhattacharyya, S. Sriram, and E. A. Lee, “Minimizing Synchronization Overhead in

Statically Scheduled Multiprocessor Systems,”Proc. Intl. Conf. on Application Specific Array

Processors, July, 1995.

[4] S. S. Bhattacharyya, S. Sriram, and E. A. Lee,Resynchronization for Embedded Multiproces-

sors, Electronics Research Laboratory, University of California at Berkeley, September, 1995.

[5] S. S. Bhattacharyya, S. Sriram, and E. A. Lee, “Self-Timed Resynchronization: a Post-optimi-

zation for Static Multiprocessor Schedules,” to appear inProc. Intl. Parallel Processing Sympo-

sium,April, 1996.

[6] L. F. Chao and E. Sha, “Unfolding and Retiming Data-Flow DSP Programs for RISC Multi-

processor Scheduling,”Proc. Intl. Conf. on Acoustics, Speech, and Signal Processing, April 1992.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,Introduction to Algorithms, McGraw-Hill,

1990.

1. References 2, 3, and 4 are available by anonymous ftp fromptolemy.eecs.berkeley.edu in the directory
pub/ptolemy/papers/synchOpt.

25

[8] D. Filo, D. C. Ku, and G. De Micheli, “Optimizing the Control-unit through the Resynchroni-

zation of Operations,”INTEGRATION, the VLSI Journal, Vol. 13, 1992.

[9] R. Govindarajan, G. R. Gao, and P. Desai, “Minimizing Memory Requirements in Rate-Opti-

mal Schedules,”Proc. Intl. Conf. on Application Specific Array Processors, August, 1994.

[10] T. C. Hu, “Parallel Sequencing and Assembly Line Problems,”Operations Research, Vol. 9,

1961.

[11] D. S. Johnson, “Approximation Algorithms for Combinatorial Problems,”Journal of Com-

puter and System Sciences, Vol. 9, 1974.

[12] R. Lauwereins, M. Engels, J.A. Peperstraete, E. Steegmans, and J. Van Ginderdeuren,

“GRAPE: A CASE Tool for Digital Signal Parallel Processing,”IEEE ASSP Magazine, Vol. 7,

No. 2, April, 1990.

[13] E. A. Lee and D. G. Messerschmitt, “Synchronous Dataflow”,Proceedings of the IEEE, Sep-

tember, 1987.

[14] E. A. Lee and S. Ha, “Scheduling Strategies for Multiprocessor Real-Time DSP,”Globecom,

November 1989.

[15] L. Lovasz, “On the Ratio of Optimal Integral and Fractional Covers,”Discrete Mathematics,

Vol. 13, 1975.

[16] K. Parhi and D. G. Messerschmitt, “Static Rate-optimal Scheduling of Iterative Data-flow

Programs via Optimum Unfolding,”IEEE Transactions on Computers, February 1991.

[17] J. Pino, S. Ha, E. A. Lee, and J. T. Buck, “Software Synthesis for DSP Using Ptolemy,”Jour-

nal of VLSI Signal Processing, January, 1995.

26

[18] D. B. Powell, E. A. Lee, and W. C. Newman, “Direct Synthesis of Optimized DSP Assembly

Code from Signal Flow Block Diagrams,”Proc. Intl. Conf. on Acoustics, Speech, and Signal Pro-

cessing, March, 1992.

[19] P. L. Shaffer, “Minimization of Interprocessor Synchronization in Multiprocessors with

Shared and Private Memory,”Proc. Intl. Conf. on Parallel Processing, 1989.

[20] H. Printz, “Compilation of Narrowband Spectral Detection Systems for Linear MIMD

Machines,”Proc. Intl. Conf. on Application Specific Array Processors, August, 1992.

[21] S. Ritz, M. Pankert, and H. Meyr, “High Level Software Synthesis for Signal Processing Sys-

tems,”Proc. Intl. Conf. on Application Specific Array Processors, August, 1992.

[22] R. Reiter, Scheduling Parallel Computations,Journal of the ACM, October 1968.

