
Native Signal Processing on the UltraSparc in the Ptolemy Environment

William Chen, H. John Reekie, Sunil Bhave, and Edward A. Lee

{williamc,johnr,sunil,eal}@eecs.berkeley.edu

Dept. of Electrical Engineering and Computer Sciences, University of California, Berkeley

Abstract

We have implemented a number of real-time signal
processing kernels and applications within the Ptolemy
simulation and code generation environment. Our goal is
to make it easy to generate real-time programs with
configurable interactive user interfaces. As part of this
project, we have developed and benchmarked some key
signal processing kernels for the new UltraSparc Visual
Instruction Set. We present some performance results and
compare the VIS with plain integer and floating-point C
code running on the same processor.

1 Motivation

The term “native signal processing” (NSP) has been
receiving an increasing degree of attention [4]. The
performance of high-performance general-purpose CPUs
can exceed that of first- and second-generation digital
signal processors (DSPs), and is it now feasible to perform
a substantial amount of signal processing on the main CPU
of a workstation. Manufacturers have accelerated this trend
by including DSP-like instructions on their general-
purpose CPUs, including the Intel Pentium MMX [3] and
the Sun UltraSparc [10].

We don’t expect that embedded DSPs will ever become
obsolete: applications with high cost-performance
requirements or stringent real-time response requirements
will always be more effectively served by dedicated and
application-specific processors. Nonetheless, the ability to
perform real-time signal processing on the main CPU is
increasingly important: the world-wide web and much
higher reliance on audio and video capabilities demand
much higher performance levels from general-purpose
computers.

Sun’s new UltraSparc CPU includes a a new set of
instructions called the Visual Instruction Set (VIS),
specifically geared towards video and image processing
[9,10]. In essence, the VIS treats a single 64-bit register as

several—two, four, or eight—data words and performs
operations on all of these words in a single instruction.
Combined with the UltraSparc’s ability to issue four
instructions per cycle, the architecture allows real-time
MPEG decompression to be performed on the work-
station’s CPU.

Although not specifically designed to support 1-D
signal processing, the VIS and UltraSparc appear to be
attractive targets for work in this field. The high degree of
instruction-level parallelism should allow substantial
performance increases on algorithms that can be
implemented using fixed-point arithmetic.

We set out to enhance the real-time signal processing
capabilities of the Ptolemy enviroment [1], and to evaluate
the suitability of the VIS for this purpose. To do so, we
incorporated new code generation features into the
Ptolemy environment, including a new mechanism for
building interactive user interfaces, and added code
generation support for the VIS [2].

2 The Visual Instruction Set

The goal of the VIS is to speed up the performance of
signal processing (mainly image processing) kernels. It has
over 50 new instructions and four partitioned data types
(figure 1). The data formats treat a 32-bit floating-point
register (type “vis_f32”) as four eight-bit or two 16-bit
words, and a 64-bit floating-point register (type “vis_d64”)
as eight eight-bit or four 16-bit words. As the data format
for all our VIS work, we chose a 4×16-bit word, which we
call a “quad-word.” This, we felt, was most suited to 1-D
work, providing reasonable dynamic range for non-critical
audio applications, and minimizing main memory
accesses.

Apart from basic arithmetic instructions, the VIS has
instructions to pack and unpack data into and out of the
partitioned data formats. We will illustrate the instruction
set with a parallel 16×16-bit multiply example. The VIS
does not have a parallel 16×16-bit multiply instruction, but

Presented at the Thirtieth Annual Asilomar Conference on Signals, Systems, and Computers - November 1996

two 8×16-bit multiplies. Figure 2 illustrates how a parallel
16×16-bit multiply is achieved; the code is written:

vis_d64 op1, op2, upper;
vis_d64 lower, product;
upper = vis_fpmul8sux16(op1,op2);
lower = vis_fpmul8ulx16(op1,op2);
product = vis_fpadd16(lower,upper);

An “instruction” such as vis_fpadd16 is actually a C
function call: the compiler expands these calls to a short
sequence of in-line assembler instructions that includes
load and store instructions and the actual VIS assembler
instruction. Subsequent compiler optimization phases
remove redundant loads and stores between VIS
instructions.

There is, unfortunately, no instruction in the VIS that
can shift each word in a quad-word left by one bit, so
fixed-point algorithms that use this instruction sequence
must take account of the scaling implied by this operation.
(It is also possible to perform two, 16×16-bit multiplies to
produce two 32-bit results, in which case scaling is
available.)

The VIS includes instructions to align a 64-bit word
that is not aligned on a 64-bit address boundary in
memory. We do not use these instructions, requiring

instead that data arrays be allocated on a 64-bit boundary.

3 Implementing Signal Processing
Kernels in the VIS

We have found that taking full advantage of the parallel
instructions of the VIS requires reformulating each
algorithm as a vector-matrix multiplication [6].

We wrote and benchmarked three key kernels for the
VIS: the finite-impulse response (FIR) filter, a second-
order infinite-impulse-response (IIR) filter, and the Fast
Fourier transform (FFT). We will illustrate VIS coding
with the FIR filter. The definition of the filter is

Each output value from a requires n multiplications and
n-1 addit ions. By unroll ing the convolution and
reformulating as a matrix-vector multiplication on quad-
words, the filter is as shown in figure 3; potentially, there is
a four-times speedup. Because the matrix is essentially a
re-ordered (and zero-padded) version of the coefficient
array, we create the matrix during initialization of the
program. The matrix containing current and past input
data (x) is allocated on a 64-bit boundary to minimize

Figure 1: VIS data formats

s

s s s s

s

u8 u8 u8 u8

u8 u8u8 u8 u8 u8u8 u8

s16s16

s16s16s16s16

vis_f32

vis_d64

vis_f32

vis_d64

Pixel data

Audio data

Figure 2: Parallel VIS 16-bit multiply

×
op1

op2
=

lower

×
op1

op2
=

+
product

upper

63 0 63 0

y n[] h k[] x n k–[]×
k 0=

n

∑=

Figure 3: Matrix-vector form of the FIR

h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 0 0 0 0 0 0
0 h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 0 0 0 0 0
0 0 h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 0 0 0 0
0 0 0 h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 0 0 0

x[11]
x[10]
x[9]
x[8]
x[7]
x[6]
x[5]
x[4]
x[3]
x[2]
x[1]
x[0]
0
0
0
0

y[8]
y[9]
y[10]
y[11]

=

memory accesses.
A portion of the inner loop of the VIS filter code is

shown below. This code performs multiplies one row of the
matrix by one input quad-word to produce a an output
value split into four 16-bit components—to get the value
y[8], we will have to sum each of these components:

for (outerloop = 0; outerloop < n;
outerloop++) {

data = src[nminusk];
tapvalue = *tapptr0++;
/* take inner products */
pairhi = vis_fmul8sux16(data,

tapvalue);
pairlo = vis_fmul8ulx16(data,

tapvalue);
/* accumulate results */
pair = vis_fpadd16(pairhi,pairlo);
accum0 = vis_fpadd16(accum0,pair);
...

}

In order to produce the output quad-word, the four
components of each accumulated value must be split into
separate words and summed together. During this process,
the data needs to be transferred into integer registers (the
cast to type vis_u32) so that bit-shifting can be
performed. This code is:

/* sum accumulators */
splithi = vis_read_hi(accum0);
splitlo = vis_read_lo(accum0);
split = vis_fpadd16s(splithi,

splitlo);
accum0u = *((vis_u32*) &split);
splithihi = (short)((accum0u>>16));
splitlolo = (short)(accum0u&0xffff);
y8 = splithihi + splitlolo;
...

Finally, we combine the four results into a single quad-
word. This requires shifting data from the integer register
back to the 64-bit floating-point registers:

dlo =(vis_u32)(y9<<16 | y8&0xffff);
dhi =(vis_u32)(y11<<16 | r10&0xffff);
dlofloat = vis_to_float(dlo);
dhifloat = vis_to_float(dhi);
dst1[i] = vis_freg_pair(dhifloat,

dlofloat);

To measure the performance of the algorithms, we used
the UNIX gethrtime() high-resolution timer to
instrument a loop containing each kernel. Table 1
summarizes the performance we obtained for the VIS,
relative to equivalent implementations written in C using
both floating-point data and integer data. Speedups over the
floating-point implementations range from none for the IIR
filter, to over three for the FIR filter.

TABLE 1. Performance results

Note that the C floating-point algorithms are significantly
faster than the C integer algorithms: because the
UltraSparc has two integer units and independent floating-
point adder, multiplier, and divider, and can issue four
instructions per cycle, the floating-point algorithms allow
much better utilization of the on-chip resources. Realistic
performance comparisons must therefore be performed
against the equivalent C floating-point implementation, not
aga in s t an equ iva l en t i n t ege r o r fi xed -po in t
implementation. For example, some of the performance
increases claimed by Sun for the VIS are misleading
because they compare with C integer implementations.

The FIR filter exhibits good speedup because of the
high parallelism inherent in the matrix-vector formulation
of the algorithm, and because the regularity of the
algorithm made it relatively easy to partition into parallel
four-word instructions. However, because the FIR uses the
parallel 16-bit multiply without a left-shift, overall filter
has a gain of 0.5. (We also coded a filter with unity gain
using the parallel multiply with 32-bit result, but could
achieve only a two-times speedup over the floating-point C
program.)

The IIR filter exhibits no speedup at all. Despite
reformulating the filter into a state-space form [6] to
increase the parallelism of the algorithm, and carefully
hand-coding the VIS code, the recursive nature of the filter
prevents efficient utilization of the parallel 16-bit
instructions.

4 Real-time signal processing in Ptolemy

Ptolemy supports two key modes of execution: simulation
and code generation. In either case, a program is specified
as a block diagram—that is, as a dataflow graph. In pure
simulation mode, a “star” (block) is coded as a C++ object;
at run-time, a pre-generated schedule [5] “fires” stars by
cal l ing the fire() funct ions of those objects in a
predetermined order. Each star reads from and writes to
FIFO buffers.

In code generation mode, hand-coded blocks of code
are inserted into a generated program according to a
predetermined schedule. Real-time capability for arbitrary

Kernel VIS/float
VIS/

integer
FIR 3.43 6.33

256-point FFT 1.28 N/A
Biquad 0.99 2.76

target architectures is supported—for example, Ptolemy
includes a substantial library of code-generation stars for
the Motorola DSP56002 processor. We have extended the
star library for generation of C code that executes on the
host workstation with better support for Sun audio, filtering
stars with real-time user control, and stars for VIS code
generation.

To p rov ide a bas ic bu i ld ing-b lock fo r aud io
applications, we implemented a biquadratic filter with
closed-form expressions for its coefficients. This enables
filter parameters to be updated in real-time without
excessive overhead. For the band-pass filters, we used the
equations given by Shpak [8]; for the high-pass and low-
pass filters, we used a modified version of Shpak’s
equations (see Chen [2] for the derivation).

Figure 5 shows a simple real-time audio application
implemented with these filters: a stereo parametric
equalizer. Each filter is a resonant section that can generate
a low-pass, band-pass, or high-pass filter. In this example,
we have a single band-pass filter on each channel, and
provide the user with real-time control over the center
frequency, bandwidth (in octaves), and gain (in dB).

To be t te r suppor t rea l - t ime user cont ro l , we
implemented a new interface mechanism in code-generated
systems linked in with the Tcl/Tk [7] libraries. Each star
and each of its parameters is named; the user can write a
Tcl script to build a custom run control panel, either
choosing from a library of pre-defined components (such
as the banks of sliders and buttons in the example), or

coding new ones. Each “control” in the user interface is
connected by name to one or more parameters of the stars.
At run-time, moving the control changes the star
parameters with the appropriate effect.

For example, the example system has stars named left
and right. The slider labeleed “Gain” is connected to the
gain parameters of the two filter stars, and so on. The user
script to create this control panel is about twelve lines of
Tcl code.

The example program runs at 44.1kHz with ease on a
modern Sun workstation. Using the program “top” on our
140 MHz UltraSparc I gives a CPU utilization of
approximately 17%. A more ambitious program, a full ten-
band s t e reo g raph ic equa l i ze r (figure 5) , u ses
approximately 90% of the CPU on the same processor.

The examples given will run using either the C-coded
floating-point filter stars or the VIS versions, with
approximately the same CPU utilization. The fixed-point
VIS versions do exhibit some instability at high filter Q’s,
however.

5 Conclusions

The performance result for the VIS on the kernels we
tested are a little disappointing. Although exhibiting good
speedups with the FIR filter, the IIR and FFT kernels
exhibited little or none, despite some intensive hand-
coding and optimization effort. Nonetheless, for certain
applications, there are “free” performance gains available

Figure 4: Parametric equalizer block diagram and user interface

on a Ptolemy user’s workstation, and we believe we should
support these gains where possible.

A drawback of the VIS is the difficulty of coding.
Although the function-call syntax means the programmer
does not have to manipulate registers directly, the need to
manipulate multiple data words in parallel takes some
effort on the programmer’s part. We venture to suggest that
VIS coding is as hard as, if not harder than, typical DSP
coding.

We were, however, impressed with the real-time
performance we could achieve with the UltraSparc
processor—with or without the VIS. Although the ten-
band equalizer exhibits audio dropouts as soon as any other
work is performed on the workstation, less intensive real-
time programs have no such problems. We are currently
extending the library of audio stars and user interface
components to include a range of common audio
processing functions, such as ambience simulation and
dynamic range control.

Acknowledgments

This research is part of the Ptolemy project, which is
supported by the Advanced Research Projects Agency and
the U.S. Air Force (under the RASSP program, contract
F33615-93-C-1317), Semiconductor Research Corporation
(project 94-DC-016), National Science Foundation (MIP-
9201605), Office of Naval Technology (via Naval Research
Laboratories), the State of California MICRO program,
and the following companies: Bell Northern Research,

Cadence, Dolby, Hitachi, Mentor Graphics, Mitsubishi,
NEC, Pacific Bell, Philips, Rockwell, Sony, and Synopsys.

References

[1] J. Buck, S. Ha, E.A. Lee, and D.G. Messerschmitt,
“Ptolemy: A framework for simulating and prototyping
heterogeneous systems,” International Journal of Computer
Simulation, special issue on Simulation Software
Development, vol. 4, 1994.
http://ptolemy.eecs.berkeley.edu/papers/JEurSim

[2] W. Chen, Real-time Signal Processing on the Ultrasparc,
Master’s Report, Dept. of Electical Engineering and
Computer Sciences, University of California, Berkeley,
November 1996 (in preparation).

[3] L. Gwennap, “Intel’s MMX Speeds Mult imedia,”
MicroProcessor Report, vol. 10, issue 3, 1996.

[4] P. Lapsley, “NSP Shows Promise on Pentium, PowerPC,”
MicroProcessor Report, 1995

[5] E.A. Lee and D.G. Messerschmitt, “Synchronous data flow,”
Proceedings of the IEEE, vol. 75, no. 9, 1987.

[6] D. Mitra and J. F. Kaiser, eds. Handbook for Digital Signal
Processing, John Wiley and Sons., 1993

[7] J.K. Ousterhout, Tcl and the Tk Toolkit, Addison-
Wesley 1994.

[8] D.J. Shpak, “Analytical Design of Biquadratic Filter
Sections for Parametric Filters,” Journal of the Audio
Engineering Society, vol. 40, no. 11, November 1992.

[9] UltraSparc-I User’s Manual, Sun Microsystems, 1996.
[10] Visual Instruction Set User’s Guide, Sun Microsystems,

1995.
[11] D.L. Weaver and T. Germond, eds, The Sparc Architecture

Manual, Version 9, Prentice-Hall,Inc., 1994.

Figure 5: Ten-band equalizer interface

