
Algorithm Analysis and Mapping
Environment for Adaptive Computing

Systems

Cory Myers, Eric Pauer, Ken Smith and Paul Fiore
Sanders, A Lockheed Martin Company

Algorithm Analysis and Mapping Environment for Adaptive Computing Systems

HPEC ‘98

PUBS-98-M21_001-P
10/21/98 2

Reconfigurable computing technology offers leap ahead
performance, e.g. 10X ops per watt and/or ops per cubic inch,

over general purpose programmable solutions without the
need to develop custom hardware. However, today

generation of a working implementation requires hardware
design expertise and generation of a good implementation

requires many slow iterations between an algorithm designer
and a hardware developer.

Reconfigurable computing technology offers leap ahead
performance, e.g. 10X ops per watt and/or ops per cubic inch,

over general purpose programmable solutions without the
need to develop custom hardware. However, today

generation of a working implementation requires hardware
design expertise and generation of a good implementation

requires many slow iterations between an algorithm designer
and a hardware developer.

Statement of the Problem

Algorithm Analysis and Mapping Environment for Adaptive Computing Systems

HPEC ‘98

PUBS-98-M21_001-P
10/21/98 3

EXCEED(1)
1330

Thresh
Calc

Filter
Bank

Mean
Calc

Thresh
Delay
Ram

Exceed
CalcFilter

Select
Y Calc Sigma

Calc

FBIN
Delay
RAM

MNIN
Delay
Ram

THRES(19)
1304

FBOUT(20)
1328

MEAN(19)
1323

FSDLY(2)
1323

1296

FLSEL(2)

1298

THDL(19)
1329

L = 8s, 6f
C = 355

L = 545fb, 30fs
C = 3880

L = 1037
C = 993

L = 25
C = 0

L = 7m, 7fs, 2fo, 1t
C = 288MNINO(12)

286

L = 286
C = 0

L = 1037
C = 1002

L = 783
C = 0

SIGMA(20)

FBINO(12)
783

IN(12)

L = 259
C = 287

Y(13)
259

Greater than 10X performance
Design time measured in weeks
Greater than 10X performance

Design time measured in weeks

Analysis:
Bit Widths
Latency (L)
Cells Used (C)

Analysis:
Bit Widths
Latency (L)
Cells Used (C)

Adaptive Computing Performance Gain
C H AMP TM S 320 C80

Image Size 256 x 256 256 x 256
Implementation Time 44 Days 28 Days
Frame R ate 305 frames/sec 12 frames/sec
Latency 68 µsec 82,00 0 µsec
Processing Load 4.7 Bop s 0.2 Bops
Utilization 73% Unknown
Gate s 510k N/A

 (Operation count increase by 70% if memory loads and stores are counted)

Reconfigurable Architectures

CHAMP

CHAMP 2 MCMRCP

Algorithm Analysis and Mapping Environment for Adaptive Computing Systems

HPEC ‘98

PUBS-98-M21_001-P
10/21/98 4

Impact
•Demonstrate an order of magnitude reduction

in development time for mapping military
signal processing algorithms to adaptive
computing systems

•Bit-level analysis and implementation of
algorithms reduces space and power of
computing by a factor of from two to ten

•Algorithm analysis and mapping capabilities
enable adaptive computing systems to be
accessible directly to algorithm developers

New Ideas
•Support algorithm analysis at the bit level

– Combine analytical, symbolic, and simulation methods
– Provide feedback on implementation implications

•Leverage structure of signal processing domain
– Coarse-grain dataflow enhances partitioning
– Scheduling tools used for implementation of sequencers

•Integrate optimized generators for low level
functions, high level functions, and interfaces

Schedule

Direct mapping of algorithm
to adaptive computing system

implementation.

Oct 97

Oct 98 Oct 99

Bit-width propagation,
performance modeling,
and parameterized
libraries.

Comms
Demo

Statistical simulation,
temporal analysis, and
interface generation.

ATR
Demo

Interim
Release

Final
Release

Noise propagation,
partitioning assistance,
and hierarchical
generation.

Initial Release
into Ptolemy

Automatic rearrangement
and scheduling. General
synthesis.

Detection
Demo

Interim
Release

Testbed
Demo

Algorithm Analysis and Mapping Environment for Adaptive Computing Systems

Algorithm Analysis and Mapping Environment for Adaptive Computing Systems

HPEC ‘98

PUBS-98-M21_001-P
10/21/98 5

State of the Art
Too ls for Mapp ing Sig nal P rocessin g Alg orithms to F PGAs

Category Examples Algorithm Trades
Fixed Point

Analysis
Performance

Analysis Logic Generation Summary
Algorithm

Design
Environments

• Matlab
• Khoros

+ Low le vel a nd high
lev e l building blocks

+ Rapid s imulation
− Alternativ e

rep rese ntatio ns n ot
ex plici tly s upporte d

− Little built-in
s uppo rt

− Re quires
algo rithm re-
e ntry

+ Opera tio n
c ounts c an be
meas ured

− No predic tio n
o f hardware
implications

− No t su pported + Stron g algo rithm
devel o pmen t su pport

− Mapping to FPGAs
not directl y su pported

Syn thes is
Tool s

• Synops is
• Synplici ty

− No built-in s uppo rt for
si gnal proce s sin g

− No built-in
s uppo rt

+ Hardwa re
implications
are d irectly
cal culated

+ Excell ent su pport for
RTL lev e l de s ign

− Expl icit c lock and
contro l sig nals
req uired

− Be havio ral s yn thes is
not gen erally
ac cep ted

+ Stren gth in logic
gene ration

− Weak algorithm
devel o pmen t su pport

D SP Too ls f or
Hardwa re

Desi gn

• H P ADS
• SPW
• D SP Canvas
• Syst emView

+ Rapid s imulation
− Low le vel b uilding

block s
− Alternativ e

rep rese ntatio ns n ot
ex plici tly s upporte d

+ Built-in s upport + So me
predicti on of
hardware
implications

+ “ RTL-is h ” building
block s direc tly
sy nthesi ze d

− Expl icit c ontrol
si gnals o fte n require d

+ Stron g at ma pping
low leve l alg orithms

− Mode rate al go rithm
devel o pmen t su pport

C to FPGA
Compilers

• Act ive Area
o f Rese arch

− No built-in s uppo rt for
si gnal proce s sin g

− No built-in
s uppo rt

Area o f resea rch + Direct mapping of
s oftware to hardwa re

− Logic ge ne ration
o riente d at the
ex pressi on le vel

+ Ge neral-purpose
approac h

− No t targete d to sig nal
pro cessi ng

Our A pproac h + Suppo rt bo th low
lev e l and high leve l
si gnal proce s sin g
block s

+ Suppo rt alte rnative
rep rese ntatio ns

+ Built-in s upport + Predict
hardware
implications

+ Suppo rt s yn the s is
direc tly fro m high
lev e l algorithm
rep rese ntatio n

+ Co mbine best of
exi s ting too ls wit h
direc t sy nthesis from
algo rithm
rep rese ntatio n

Algorithm Analysis and Mapping Environment for Adaptive Computing Systems

HPEC ‘98

PUBS-98-M21_001-P
10/21/98 6

Floating Point
Simulation

Fixed Point
Simulation

Bit Width Analysis
Noise Distribution Analysis

Algorithm
Rearrangement

Dataflow Graph

Algorithm Analysis

Performance
Modeling

Automatic
Scheduling

Algorithm Mapping

Smart Generators

Partitioning and
Mapping

Adaptive
Computing
Resource

Precision Analysis Alternative Implementations

Dataflow Graph

Performance Metrics

Device Programming

Allocated Functions

•SNR analysis
•Alternative

implementations
•Functional

approximations

•Timing and sizing
estimation

•Scheduling – FSM and
contexts

•Partitioning within a
resource node

•Device program
•Interface program

Common
Database

in
Ptolemy

Generator
Selection

VHDL Interface Libraries

Analysis and Mapping in ACS Environment

Algorithm Analysis and Mapping Environment for Adaptive Computing Systems

HPEC ‘98

PUBS-98-M21_001-P
10/21/98 7

Optimize
Wordlengths

Floating Point
Simulation

Fixed Point
Realization

Bit Widths for each flow
Cost estimates (area/complexity)
Quantization Noise (SNR)

Yields

a

b1 b3

b6
b

b2 b4

x

x2

x2
b5

y

F1 F3 F4F2

F6 F7F5

F’1 F’3 F’4F’2

F’6 F’7F’5

Automated Float to Fixed Point Translation

SNR
Cost

Maximize SNR(b),
subject to Cost(b) " C0 and b " bmin " 0

or
Minimize Cost(b),

subject to SNR(b) " SNR0 and b " bmin " 0

Algorithm Analysis and Mapping Environment for Adaptive Computing Systems

HPEC ‘98

PUBS-98-M21_001-P
10/21/98 8

0
1
2
3
4
5
6
7
8

Fixed Portion

b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8 b 9

Bits

Time 1

Fixed Portion

Increase

Decrease

Time 2

b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8 b 9

Fixed Portion

Time 3

b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8 b 9

Desired increases
make cost > C

Fixed Portion

Time 3

b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8 b 9

Reduce fixed portion
to make cost < C

0
1
2
3
4
5
6
7
8

Bits

Input LMS Filter – Desired
Signal

Error

SNR
Maximization

Taps Bit Allocation

Dynamic Wordlength Adaptation
Maximize SNR(b[t]),

subject to Cost(b[t]) " C0 and b[t] " bmin " 0

Fixed plus time-varying solution

Algorithm Analysis and Mapping Environment for Adaptive Computing Systems

HPEC ‘98

PUBS-98-M21_001-P
10/21/98 9

•
•
•

Inputs

Global
Clock

•
•
•

Outputs

Latch
Signals

Start

End‡Automatically
Generated

•••

Today
•Uni-Rate Synchronous Dataflow
•Single Reprogrammable Device
•Fully Pipelined Processing
•Automatic Pipeline Alignment
•Automatic Controller Generation
•Memory-Based I/O
•Data Stream Multiplexing
•One-to-One Mapping of Functions to

Blocks

Today
•Uni-Rate Synchronous Dataflow
•Single Reprogrammable Device
•Fully Pipelined Processing
•Automatic Pipeline Alignment
•Automatic Controller Generation
•Memory-Based I/O
•Data Stream Multiplexing
•One-to-One Mapping of Functions to

Blocks

Future Additions
•Multi-Rate Dataflow
• Interconnected Devices
•Dynamic Reconfiguration
•Asynchronous Processing
•FIFO and Sensor Interfaces
•Many-to-One Mapping of Functions to

Blocks

Future Additions
•Multi-Rate Dataflow
• Interconnected Devices
•Dynamic Reconfiguration
•Asynchronous Processing
•FIFO and Sensor Interfaces
•Many-to-One Mapping of Functions to

Blocks

Block
Defined By:

•Parameters
•Requested Style

Provides
•Pipeline Delay Information
•Area and Timing Estimate

Delay_1‡

Delay_N‡

Latch_1

Latch_M

Finite State Machine‡

Target Architectures

Algorithm Analysis and Mapping Environment for Adaptive Computing Systems

HPEC ‘98

PUBS-98-M21_001-P
10/21/98 10

N8

PORT1 PORT2

I2
P=2

I3
P=1

I4
P=1

I5
P=1

I6
P=1

N1

N2

N3

N4

N5

N6

N7

A

B

C

D

E

THE ALGORITHM DATAFLOW GRAPH

I = Instance
N=Node
P=Pipeline Delays

DATAPATH AND VARIABLE LOCATIONS

ADDED TO NETLIST BY SEQUENCER GENERATOR

MODIFIED ALGORITHM DATAFLOW GRAPH

FINAL ALGORITHM SCHEDULE

Input Output
Pipeline alignment and schedule determination

required for logic synthesis

Node
 N1
 N2
 N3
 N4
 N5
 N6
 N7
 N8
 N9
 SEL
 LD1
 LD2
 LD3
 PORT1
 PORT2

Activation Sequence

N8

I2

I3
P=1

I4
P=1

I5
P=1

I6
P=1

N1

N2

N3

N4

N5

N6

N7

I7
P=1

N9

LDEN1

LDEN2

LDEN2

MEM1
MEM2

2-1MUX

DELAY

SEL

P=2

FPGA

RAM
BANK 1

A

B

C

RAM
BANK 2

D

E

Automatic Scheduling

Algorithm Analysis and Mapping Environment for Adaptive Computing Systems

HPEC ‘98

PUBS-98-M21_001-P
10/21/98 11

• Implemented in existing Ptolemy CGC domain.
•Parameterizable scheduling blocks support algorithm testing

Input Output

Input Parameters

Output
Schedule

Scheduler Implementation

Algorithm Analysis and Mapping Environment for Adaptive Computing Systems

HPEC ‘98

PUBS-98-M21_001-P
10/21/98 12

From General-Purpose to
Function-Specific

Before

Floor Plan Floor Plan

After

• Algorithm-specific address
generator

• Algorithm-specific sequence
generator

• Reduced overhead from 50%
of Xilinx 4025 to 10%

• Final design is 1/3 the area
of original design

• Supports multiple memories
rather than a single memory

• Support arbitrary number of
logical ports rather than
previous limit of three ports

• Algorithm-specific address
generator

• Algorithm-specific sequence
generator

• Reduced overhead from 50%
of Xilinx 4025 to 10%

• Final design is 1/3 the area
of original design

• Supports multiple memories
rather than a single memory

• Support arbitrary number of
logical ports rather than
previous limit of three ports

Improvements

Benefits of Function-Specific Implementations

Algorithm Analysis and Mapping Environment for Adaptive Computing Systems

HPEC ‘98

PUBS-98-M21_001-P
10/21/98 13

•Ptolemy - simulation/design environment from the University of
California, Berkeley (http://ptolemy.eecs.berkeley.edu)

•New ACS domain developed to facilitate movement among
simulation and code/design generation (released in 0.7.1, 6/98)

•ACS Stars (basic building block) are composed of a Corona
(interface) and multiple cores (implementations)

•Core (implementation) selection is via targeting mechanism

Fixed_Point
Simulation

Core

C Code
Generation

Core

FPGA Design
Generation

Core

FPGA Java
Generation

Core

Floating_Point
Simulation

Core

Corona

Retargetable Implementations

Common Interface

UCB BRASS Project

Ptolemy and the ACS Domain

Algorithm Analysis and Mapping Environment for Adaptive Computing Systems

HPEC ‘98

PUBS-98-M21_001-P
10/21/98 14

Top Level Example
• FIR filter to be implemented in both floating point and fixed point simulation

Algorithm Analysis and Mapping Environment for Adaptive Computing Systems

HPEC ‘98

PUBS-98-M21_001-P
10/21/98 15

• Alternative implementations are represented as “targets”
• Targets can have parameters
• Floating point simulation, fixed point simulation, and C code

generation are integrated today. FPGA generation being worked.

Selecting Among Alternative Implementations

Algorithm Analysis and Mapping Environment for Adaptive Computing Systems

HPEC ‘98

PUBS-98-M21_001-P
10/21/98 16

•Comparison of floating point and fixed point implementations

Comparing Implementations

Algorithm Analysis and Mapping Environment for Adaptive Computing Systems

HPEC ‘98

PUBS-98-M21_001-P
10/21/98 17

Context Switching
Reconfigurable

Computing

Adaptive Computing
Smart Modules

Algorithm Analysis and
Mapping Environment

for Adaptive
Computing Systems

Reconfigurable
Algorithms for Adaptive

Computing

Efficient Mathematical
Algorithms for Image

Processing Applications

Advanced Sensors
Federated Laboratory

Technology
Applications

JSF

ACP

HHSAR

MAV

Reconfigurable and
Adaptive Computing

IRADs

ASFL

OSA

REE

ISAC

Adaptive
Computing
Adaptive

Computing

System
Insertions

Related Work at Sanders

