

Algorithm Analysis and Mapping Environment for Adaptive Computing Systems

Cory Myers, Eric Pauer, Ken Smith and Paul Fiore Sanders, A Lockheed Martin Company

Statement of the Problem

Reconfigurable computing technology offers leap ahead performance, e.g. 10X ops per watt and/or ops per cubic inch, over general purpose programmable solutions without the need to develop custom hardware. However, today generation of a working implementation requires hardware design expertise and generation of a good implementation requires many slow iterations between an algorithm designer and a hardware developer.

Adaptive Computing Performance Gain

State of the Art

Tools for Mapping Signal Piccessing Agorithms to FPGAs								
Category	Examples	Algorithm Trades	Fixed Point Analysis	Performance Analysis	Logic Generation	Summary		
Algorithm Design Environments	• Matlab • Khoros	 + Low le vel a nd high lev el building blocks + Rapid s imulation - Alternative rep rese ntations n ot ex plicitly s upporte d 	 Little built-in s upport Re quires algorithm re- entry 	 + Operation counts c an be meas ured - No prediction of hardware implications 	– Not su pported	 + S tron g algorithm development support - Mapping to FPGAs not directly supported 		
Syn thes is Tools	 Synops is Synplicity 	– No built-in s upport for si gnal proce s sin g	– No built-in s upport	+ Hardwa re implications are d irectly cal cula ted	 + Excell ent su pport for RTL lev el de sign - Explicit c lock and control sig nals req uired - Be havio ral s yn thes is not gen erally ac cep ted 	 + Strength in logic generation - Weak algorithm development support 		
D SP Tools for Hardwa re Desi gn	 H PADS SPW D SP Canvas Syst em View 	 + Rapid s imulation – Low le vel b uilding block s – Alternative rep rese ntations n ot ex plicitly s upported 	+ Built-in support	+ Some prediction of hardware implications	 + " RTL-is h " uliding block s direc tly sy nthesi zed - Explicit c ontrol si gnals o ften required 	 + S tron g at mapping low leve 1 algorithms – Mode rate al gorithm devel opment su pport 		
C to FPGA Compilers	• Active Area of Rese arch	– No built-in s upport for signal proce s sin g	– No built-in s upport	Area of resea rch	 Direct mapping of software to hardware Logic generation oriented at the ex pressi on le vel 	 + General-purpose approac h – Not targeted to sig nal processi ng 		
Our A pproac h		 + Support both low level and high level signal processing blocks + Support alternative representations 	+ Built-in support	+ Predict hardware implications	+ Support s yn the s is direc tly from high lev el algorithm rep rese ntation	+ Combine best of exi s ting too ls wit h direc t sy nthesis from algorithm rep rese ntation		

Analysis and Mapping in ACS Environment

Automated Float to Fixed Point Translation

Algorithm Analysis and Mapping Environment for Adaptive Computing Systems

PUBS-98-M21_001-P 10/21/98 7

Dynamic Wordlength Adaptation

Target Architectures

Automatic Scheduling

Scheduler Implementation

- Implemented in existing Ptolemy CGC domain.
- Parameterizable scheduling blocks support algorithm testing

Benefits of Function-Specific Implementations

Before

Floor Plan

Improvements

- Algorithm-specific address generator
- Algorithm-specific sequence generator
- Reduced overhead from 50% of Xilinx 4025 to 10%
- Final design is 1/3 the area of original design
- Supports multiple memories rather than a single memory
- Support arbitrary number of logical ports rather than previous limit of three ports

<u>After</u>

Floor Plan

From General-Purpose to Function-Specific

Ptolemy and the ACS Domain

- Ptolemy simulation/design environment from the University of California, Berkeley (http://ptolemy.eecs.berkeley.edu)
- New ACS domain developed to facilitate movement among simulation and code/design generation (released in 0.7.1, 6/98)
- ACS Stars (basic building block) are composed of a Corona (interface) and multiple cores (implementations)
- Core (implementation) selection is via targeting mechanism

Top Level Example

• FIR filter to be implemented in both floating point and fixed point simulation

X VEM cell /common/projects/ptolemy/acs/ptolemy/src/domains/acs/demo/fir/filt.pal/schema [4800, –700]	atic /firfilt.pal:schematic	_□X (3050, 675)
	Retargetable 16-tap FIR Filter	Image: Contract of the second seco
Image: Control of the second secon		
HOTS - 550) Aftril palschematic	(1300.8251) Fold: Add.input=2 Parameters procld: -1 OverflowHandler: saturate ReportOverflow: NO RoundFix: YES OutputPrecision: prec ArrivingPrecision: yES InputPrecision: prec OK Apply	CS) ngle impulse or an impulse train. By default, the re unity amputude. If "period" (default 0) is equal to mly a single impulse is generated; otherwise, it period of the impulse train. The impulse or induse of dotter the impulse train. The period of the impulse train, 0 = aperiodic:. default = -1 : The period of the impulse train, 0 = aperiodic:. default = 0 Output will be delayed by this amount (delay must be gaive); default = 0 indiverse indiverse in the overflow staken care of by the enthod the impulse train. The seriod of the impulse train, 0 = aperiodic:. default = -1 : The period of the impulse train, 0 = aperiodic:. default = 0 Output will be delayed by this amount (delay must be gaive); default = 0 indiver (STRING): Overflow characteristic for the output, the sum cannot be fit into the orthow is taken care of by the method his parameter. To roverflow whardling message whenever overflow occurs: default = for overflow whardling message whenever overflow occurs: default = option will report the number of overflow errors if any occurred during the simulation. default = NO. RoundFix (NT); If VES or TRUE, then all fixed-point computations, assignments, and data type corversions will be rounded. Otherwise, truncation will be used: :default = 10. Output/Precision (PRECISION): Output a fixed-point constant value with specified precision: default = 0.0

Selecting Among Alternative Implementations

- Alternative implementations are represented as "targets"
- Targets can have parameters
- Floating point simulation, fixed point simulation, and C code generation are integrated today. FPGA generation being worked.

					🔀 /usr/home/	'dsp/epauer	PTOLEMY	_SYSTEMS/ACS/butterfly.c		_ 🗆
Choose one:					<u>File</u> dit	<u>W</u> indow	F <u>o</u> rmat	Special		Hel
🔶 default-ACS					/* User: Date: Target: Universe:	epauer Wed May ACS-CGC : butterf	20 10:21 1y */	l:45 1998		
🔷 ACS-Fix					/* Define ma #ifndef ARGS #if defined #define ARGS #else	<mark>acro for p</mark> 5 (STDC) 5(args) ar	rototypir defir gs	ng functions on ANSI & non-ANS ned(cplusplus)	I compilers */	
🔷 ACS-CGC 🛛 💌	dit Target "ACS-CGC"			_ 🗆 ×	#define ARGS #endif #endif	5(args) ()				
ho	st:				#include <ma< th=""><th>ath.h></th><th></th><th></th><th></th><th></th></ma<>	ath.h>				
dir	rectory:	\$HOME/PTOLEMY_SY	STEMS/ACS		#include <st< th=""><th>tdio.h≻</th><th></th><th></th><th></th><th></th></st<>	tdio.h≻				
	ə:				/* Define co #ifndef IRUE	onstants T	RUE and F	ALSE for portability */		
	oping Level:	DEF #choices are: DEF	, CLUST, SJS, ACYLOOP		#define TRUE	1				
dis	splay?:	YES			#ifndef FALS	BE .				
со	mpile?:	YES			#define FALS #endif	SE O				
rui	n?:	YES			/* Define a	complex c	lata tuna	if one has not been defined *		
wr	ite schedule?:	NO			#if !defined	COMPLEX_	DATA)	in one has not been derined .	1	
log	gFile:				typedef stru	-LEX_DHIH uct comple	ı x_data {	double real; double imag; 3 c	omplex;	
sc	- hedulePeriod:	0.0			#endif					
sta	aticBuffering:	VES			#define ACS_	_MOD(a,b)	((a)>=(b)) ? (a-b) : (a))		
fur	ncName	main			extern main	ARGS((int	argo, ch	har *argv[]));		
	mpileCommand	lace			/* main fund	otion */	-			
	mpilcOntions:	1900			int main(int FILE* fr	t argc, ch o_23;	∣ar *argv[.]) €		
	Kontiene:				double value	∋_25;				
	KOptions:	j= im							C	lose
res	sources:]								
	ок	Apply	Close	Cancel						
1										

Comparing Implementations

Comparison of floating point and fixed point implementations

Related Work at Sanders

