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Abstract

Since the first large-scale computer network was built in the early 1960s,
the protocol design problem has become a more important issue to efficiently coor-
dinate distributed system nodes. Recently, in response to the fast growing demand
for connecting various devices with current network infrastructures, many intricate
protocols have been designed to support communications across such heterogene-
ity. However, today very few tools that we can identify allow such a system-level
simulation, including both protocols and models of system entities. Since simula-
tion is the major stage in the development cycle of a complex hardware and soft-
ware distributed system, a tool facilitates modeling and simulating protocols in a

system context is substantially valuable.

In this report, we propose a hybrid model of computation including CSP,
FSM, and DE for specifying protocols as well as to enable mixing them with other
subsystem models. Based on this proposal, a software tool, SiP (SPIN in Ptolemy),
has been implemented by integrating a protocol simulation tool, SPIN, into a sys-
tem-level design environment, Ptolemy. We demonstrate the expressive power of
SiP by using it to specify several fundamental elements of network protocols rang-
ing from the data link layer to the session layer in the OSI Reference Model. We
also leverage the reusability feature of SiP to construct a model of a complete net-
work system using those elements. From both the experience of protocol specifica-
tion and the result of system-level simulation, SiP is proved to remarkably

facilitate the design and performance evaluation of network protocols.
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Introduction

Modern communication systems are more powerful and complex than their
older counterparts. They are at the same time more compact and cheaper due to the
improvement of hardware technology. This is achieved by integrating many sub-
systems into a tiny module, e.g. a single-chip processor [1], and fabricating them

together.

The distributed and heterogeneous nature of subsystems enter the picture
when this approach is adopted. Even inside such a compact system, protocol ele-
ments are necessary to guide data interchange and handle interfaces. For example,
a general-purpose micro-controller usually contains control, signal processing and
communication elements. Those subsystems could have very different reaction
speeds and I/O rates in face of a request to interchange data [25]. Therefore, vari-
ous protocols are often embedded into that system to implement reliable interac-
tion over unreliable channels, synchronization across distributed elements and

security in transactions among system nodes.

To verify the functionality and evaluate the performance of such a system is
a difficult task. First, A framework to model and simulate heterogeneous systems
is desirable. It should be able to model each subsystem in a natural and efficient
manner and have an interface mechanism to integrate them into a whole. Ptolemy,
developed at UC/Berkeley, is a system-level design framework that allows mixing
of multiple models of computation called domains [4]. Using Ptolemy, users can

freely choose the most suitable domain to describes each subsystem and perform
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system-level simulation. Therefore, Ptolemy is a good candidate as a modeling

framework to meet our need.

Another consideration in choosing a simulation tool is the expressiveness
to represent a protocol compactly and intuitively. Possible choices are synchronous
language [11], process network (PN) [21], finite state machine (FSM) [40] and
communicating sequential processes (CSP) [18]. Ptolemy itself provides a prelim-
inary hierarchical FSM domain [3] which allows nested embedded domains in an
FSM and any built-in concurrency model. However, some implementation issues
of complex guard/action transition and repeated triggering in the current FSM
domain of Ptolemy are still envolving. We thus chose a more sophisticated CSP-
like description language, PROMELA, for protocol specification. PROMELA
(PROcess MEta LAnguage), developed by Lucent Technologies - Bell Labs, is
widely adopted in academe for protocol modeling and validation. Associated with
the language is an interpreter, called SPIN, to simulate and verify the protocol
specification. In this report, we will propose a methodology to integrate SPIN into

Ptolemy for simulating protocols in a system context.

The integration will utilize Ptolemy’s ability to support heterogeneity. For-
tunately, Ptolemy is designed with an object-oriented paradigm and supports heter-
ogeneity using the principle of polymorphism. Its kernel defines basic classes and
generic functions. The application-dependent objects are derived from these
classes and overridden with specific functions. Also, data abstraction and encapsu-
lation make the maintenance easier. The ultimate goal is to retain a compact and
generalized kernel which is extensible. As a result, any object derived from a
domain-specific class would be regarded as an specialized object in that domain,
but is still reachable from the corresponding basic class. This implies that if the
behavior of the derived object follows the loosely predefined requirements, it
works well with Ptolemy kernel. An intuitive idea is to encapsulate a desire opera-

tion as a regular computation unit in Ptolemy. However, two problems arise by



doing this: Does the semantics of synchrony of host domain match the parasitic

modules? Is the concurrency model still applicable to them? [13]

Many researchers have done several similar embedding or combination.
The Argos language combines FSMs with a synchronous/reactive (SR) concur-
rency model. SDL embeds FSMs in process networks. Codesign FSM (CFSM) [6]
embeds FSMs in DE. Simulink, form MathWorks, Inc., mixes continuous-time
concurrency model with FSMs. The main consideration of such a coupling is just
the questions we posed. This is because computation cannot be scheduled across
two domains without given careful definition of their synchrony and concurrency
[10][17].

To integrate SPIN into Ptolemy, we intend to model and simulate protocols
with other heterogeneous systems. Therefore, we should select an appropriate
domain in Ptolemy as the host platform for SPIN. Leveraging on Ptolemy’s ability
to support heterogeneous design, SPIN imitates a regular Ptolemy computation
unit to interact with units in other domains. In this report, we will show that it is
appropriate to embed protocol modules in a discrete-event (DE) concurrency

model with careful definition of its semantics.

The rest of this report is organied as follows. In Chapter 2, we propose a
hybrid architecture of the domains to model protocols. Based on that proposal, we
have developed a software tool by integrating SPIN into Ptolemy. Chapter 3 gives
a detailed roadmap of the implementation. In Chapter 4, we specify several funda-
mental buidling blocks of network protocols using our tool to demonstrate its
expressive power. By reusing these blocks, in Chapter 5 we construct an applica-
tion example involving all protocols we discussed in Chapter 4. Finally, in Chapter

6, we summarize our ideas and draw conclusions.



2

Computational Model of Protocols

In [3], B. Lee et al. characterize a concurrent system as "modules consist-
ing of relatively autonomous agents that interact through messaging of some sort",
and gives the definition of its computation model as "the rules of interaction of the
agents and the semantics of the composition". This description is general enough
to include most popular models in the literature such as a process network, discrete

event, synchronous reactive, multi-thread, dataflow,racalculus.

Among these models of computation, the discrete-event (DE) model is
especially useful and commonly adopted in modeling distributed or parallel enti-
ties together with their communication infrastructure. Its system states evolve at
the granularity of the time spans of consecutive events and is assumed static
between them. In addition, the transition of states is regarded as instantaneous. It
hence well coincides with our perception of protocols, which usually neglect the
details of message propagation and respond to occurring events with a negligible

latency as compared with the duration between events..

However, an appropriate model to govern the concurrency and synchrony
of distributed modules of a protocol is not necessarily a good model to specify the
modules themselves. In fact, the behavior of a protocol module is best character-
ized by a set of control sequences and I/O actions [8] rather than a series of pre-
defined discrete events. Therefore, a control-dominated computation model with
the expressiveness of /O commands would be a good candidate. In this chapter, by

distilling protocols, we conclude Communicating Sequential Process (CSP) [15] is
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a suitable model to specify protocol modules. And, a Finite State Machine (FSM)
enables CSP to operate in a modal execution fashion. Our resulting computational
model suggests that embedding CSP and FSM in DE will be convenient and ade-
guate in expressing communication protocols. In Section 2.1, we provide a
detailed view of protocols and identify their key features. Then in Section 2.2 and
2.3 we give brief introduction to CSP, FSM, and DE. Finally, a proposed hybrid

architecture for modeling protocols is illustrated in Section 2.4.

2.1 Protocol Specification

Conceptually, a communication protocol is a distributed algorithm that
coordinates two or more entities to accomplish a shared or collective task. It uses
messages passed back and forth among entities, defining both message format and
interpretation and conditional sequences of messages. If one would try to give
more specific definition, the terms coordinate, entity, task, conditional sequence,
and message all have to be carefully defined [51]. This turns out to be non-trivial
because it is equivalent to elaborating the details of the combinational structures
and computational models of the algorithm [24]. In next section we will see that
the issues of selecting an appropriate structure or model does not have a definite
answer. Instead, most of time we compromise on the trade-off between mathemat-

ical elegance and intuitive perception [14].

To show the importance of this point, let us look at the internal process of a
network interface card where the data-link layer protocol has been built in. While
analyzing its performance, we treat the full-duplex link as two separate channels
and neglect the interference. In addition, upon receiving a packet we assume the
process is able to examine its correctness and then take actions in an instant. Such
an "idealization" greatly reduces hassles while formulating the metrics of the com-
munication system [52]. However, we know in fact there is only one single coaxial
cable connected to the card and the respondence to an incoming packet does take

processing time.



A tool to model protocols must compromise on the issue of abstraction
level eventually. Therefore, the expressiveness of the tool has been carefully cho-
sen to considerably match our perception of nature but still retain the simplicity
and effectiveness for implementation. Before introducing the adopted description
language for protocols, let us return to our conceptual definition of protocols and

re-explain those fundamental features in detail as follows.

"entity": Usually a hardware device or software code. However, while
describing a protocol, it is always useful to isolate the embedded control logic
from the actuators to identify the imaginary actors of the protocol. An actor here
means an agent process that provides communication services to a physical entity.
It could be a single reactive module as well as a combinational aggregation of

modules. .

"conditional sequences!' A series of logical control statements that guard
respondent actions. Typical guards are packet arrival, signal triggering, and expira-
tion of timers. A simple form is similar to the IF-THEN-ELSE construct if a spe-
cific condition is expected to happen. The CASE-THEN-ELSE is used to switch
the execution flow into a certain branch if a corresponding condition in a guard list
is satisfied. The switching may be nondeterministic if more than one condition in
that guard list are evaluated to be true. In that case, one branch will be chosen from

all qualified ones with equal probability.

"coordinate": The actions taken by the distributed autonomous processes.
There is no overall supervisor directing the interaction among distributed nodes.
Instead, each process has a predefined script to decide its response to an event and
then enter an appropriate state to keep the system healthy (e.g., no deadlock). By
sending out or waiting for a notification event, the physically distant nodes hence

coordinate themselves to accomplish data communications.

"task": Most of time means to exchange information, i.e., sending and

receiving actions plus the data propagation over channels of two communicating



processes. Here these actions are described in a high-level sense and we neglect all
dependencies of devices and protocols. Specifically, the sending and receiving are
just insertion and removal operation respectively to a queue. However, note that
the queue is not necessarily a substantial data structure dedicated to representing
the channel. Depending on the synchrony model, it could be a FIFO queue or a
collection of separated events on a chronological queue. This flexible definition
enables various characterizations of channels such as random order, propagation

delay, and packet corruption.

"messagé The information passing from node to node over a channel.
The usual forms of message are packets and signals. A packet usually contains
many fields such as control header, data payload, and error detection code. A sig-
nal could be a pure triggering or a valued event to notify its counterpart that some-

thing is happening.

These explanations characterize the basic requirements of a description
language to specify distributed processes. A simple but adequate protocol model-
ing language, PROMELA, caught our attention because its expressiveness was
designed to specify precisely these protocol features. Figure 2.1 gives a
PROMELA example specifying a semaphore mechanism that functions as the

basis of many asynchronous transmission protocols.

ch
A » B

@ ack @ req
PAQ) { PB() {
loop: loop:
(req==1)->ch!HEADER,DATA; req=1;
ack=1; (ack==1)->ch?h,x;
(req==0)->ack=0; req=0;
goto loop; (ack==0)->goto loop;
J }

Figure 2.1 Asynchronous transmission using a semaphore mechainsm.



In this example A andB are two distributed nodes connected by a data
channekh. PA and PB are two processes builtArandB respectively which coor-
dinate the transmission. Signaéx) andack are accessible to both PA and PB and
are used to inform the other node that system status has changed. [Bafidix
are the temporary spaces where header and data are stored. A typical scenario
starts from settingeq to 1 by PB. As soon as perceiving the changeeaf, PA
sends HEADER and DATA onto channgh and setsack to 1. Seeingack turned
on, PB stores HEADER and DATA in buffer and resets g signal. This reset-
ting results in the releasing of sigratk by PA, and then allows both PA and PB to
return to their original states. At this point, PA and PB are ready for the next itera-

tion.

This example shows how effective PROMELA can express the protocol
features discussed. It uses independent processes to represent distributed "entities".
The "conditional sequences" guarding the evolution of system state are given by
Boolean expressions. The actions updating the system state to "coordinate" pro-
cesses are done by assignments. The I/O actions to "exchange" data through chan-
nels are succinctly abbreviated as ? and !. "Messages" passing over channels are
easily formatted by explicitly enumerating all fields in order. Moreover, the
sequential specification fits well the convention of designing protocols by examin-

ing intended scenarios. We will return to PROMELA in the next chapter.

2.2 CSP and FSM

One way to understand PROMELA is to look at its original computational
model, CSP. As its name suggests, CSP allows us to describe a concurrent system
by a group of sequential processes which take part in sequences of events. Those
processes operate independently and communicate with one another over well-
defined channels. To justify the appropriateness of specifying protocols using CSP,
the rest of this section we will examine a simple polling protocol to highlight the

notation and semantics of CSP.



Figure 2.2 shows the CSP specification of a simple polling protocol. The
three defined processes are running concurrently and each executes sequentially.
Notationc?x:M stands for a guard which waits for a messagef type M from
channek. If that message has not arrived, this statement blocks the execution flow
of the process. The symbd]™is followed by an alternative to the uppermost con-
dition. Note these collateral conditions are not necessarily mutually exclusive.
Notationc!x denotes sending a messagento channet. The "->" symbol simply

means "then do".

Sender = (ch?y:{POLL}->dataln?x:msgOK
[Jch?y:{NACK})->ch!x->Sender

Requester = (ch!POLL->Receiver)

Receiver = (ch?x:msgOK->dataOut!x->Requester
[Jlch?y:msgOK'->chINACK->Receiver)

Figure 2.2 CSP specification of a simple polling protocol.

The protocol works in the way that the Requester first sends a POLL mes-
sage to the Sender. After the Sender have seen the POLL message, it retrieves a
protocol data unit (PDU) from the locdkataln channel and sends the PDU to the
designated channel. Once the Receiver gets the PDU correctly, it delivers the data
to localdataOut channel and revisits Requester to send another POLL message. If
the Receiver receive a corrupted PDU, a NACK message will be sent and the

Sender will resend another copy of the PDU on receiving the NACK.

Though the CSP specification is organized and self-explanatory, it lacks
hierarchy. Suppose now the Sender has two superstates, running and suspended.
Everything works normally in the running state and stops totally in the suspended
state. In addition, the transition between these two states can happen at any time
[23]. It would be cumbersome to add a Boolean conditite==running) in front
of every single statement in Sender to implement the high-level behavior. This
shows a drawback of CSP for its inconvenience in specifying behaviors hierarchi-

cally because basically all processes are flattened out [43].
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CSP is not the only control-dominated computation model. FSM has long
been used to specify intricate control sequences [16]. Some elaborated FSM such
as Statecharts [7] allows FSM to be hierarchically and concurrently combined. To
examine its expressive power, we redo the modeling by using hierarchical FSM
(HFSM) and show it in Figure 2.3. The resulting state diagram models the proto-
col, but is not as clear as the textual representation in CSP. This impression comes
from two side-by-side observations. First, scattered guard/action pairs mess up
their relativity as compared with the aligned ones in textual form. Second, unim-
portant states complicate the diagram as all states at the same level have to be
explicitly shown. Such complexity is aggravated when the specification is further
elaborated. Though applying more hierarchy helps to simplify the diagram at each

level, we lose the sequential continuity of logical statements.

/ch!POLL

ataln?x/;
. (xin msgOK)/
7 dataOut!x

Figure 2.3 An HFSM representation of a simple polling protocol.

Fortunately, W.-T. Chang et al. advocate a new family of models of compu-
tation called *charts, which decouples the concurrency model from the hierarchi-
cal FSM semantics [12]. Therefore, using *charts allows embedding a CSP model
in a hierarchical FSM to solve our dilemma of choosing CSP or FSM in represent-
ing a protocol. Specifically, automata which implement the fundamental elements
of a protocol are specified in CSP to retain the logical clarity, but they all unavoid-

ably appear as the leaf cells of the hierarchy. HFSMs are then applied to group
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those automata in consideration of their functionality, geographical location, inter-
face encapsulation, or behavior at higher levels. Since we treat CSP modules as
automata, such a heterogeneous hierarchy is straightforward. Figure 2.4 shows an
example of embedding a CSP module inside FSM. Simply mapping each Boolean
expression and event waiting as a state plus a guard, assignment and event emis-
sion as an action, and symbjplas a new transition, we can always transform a
simple CSP module into an FSM. Figure 2.5 shows the resulting hierarchical dia-

gram.

Running

Sorter

ch?x,y->
((x>y)->chix,y
[I(x<=y)->chly, x)->Sorter

Suspendeg

Figure 2.4 Embedding a CSP specification in an HFSM diagram.

Running

ch?x,y/

| (

x>y)/chlx,y
(x<=y)/chly,x

Figure 2.5 A direct transform of a simple CSP specification into an HFSM.

By using this embedding methodology, Figure 2.6 gives our ultimate speci-

fication of the simple polling protocol with a succinct and intelligible diagram.
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Running

Requester
Sender
ch!POLL->Receiver
Suspended (ch?y:{POLL}->dataln?x:msgOK
[Jch?y:{NACK})->ch!x->Sender
Receiver

ch?x:msgOK->dataOut!x->Requester
[Ich?y:msgOK’->ch!NACK->Receiver

Figure 2.6 A hybrid representation of a simple polling protocol.

2.3 Discrete-event Model

The discrete-event model of computation is the most popularly adopted
semantics for modeling distributed or parallel systems in computer-aided simula-
tions [5]. This fact results from the trade-off between our perception of nature and
the ability of computers. While conducting a simulation using digital computers,
computation is inevitably discrete. This limitation leads to the discreteness of state
evolution and that contradicts our recognition of temporal continuity. One compro-
mised choice could be simulating the system with condensed source events. We
then obtain a discrete version of system state evolution, which is similar to a sam-
pled version from the continuous one [38]. In order to sort those discrete events
chronically as well as to synchronize parallel subsystems, the DE model carries a
notion of global time to indicate the occurrence of events [26]. These time stamps
help to pinpoint system states on the time axis and form a discrete version [53]. As
long as the time span between each two consecutive events remain short, the dis-

crete version gives a good approximation to the real world [39].

Since a protocol is a collection of rules guiding the interaction among dis-
tributed and parallel processes, the DE concurrency model [20] also applies to the
simulation of protocols and their underlying communication infrastructures. How-
ever, the semantic subtleties while combining DE, FSM and CSP have to be care-
fully examined and defined before we can do so. For example, how should a
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process interact with its counterpart when both the synchronization mechanisms of
DE and CSP are acting? How should a signal be converted while it is running

through the interface between DE and CSP models?

In order to embed CSP inside DE, we examine how a CSP module refines a
DE computation unit (actor). When a DE actor fires [19], which occurs when there
is an event at one of its inputs carrying the earliest time stamp, the CSP module
imitates the DE actor and responds to the environment. Several data associated
with the event are used to update the state of the CSP module:

1. The time stamp of the event is used to adjust the timers declared in the CSP
module.

2. The "present"” indicator corresponding to the input port where the event
arrives is set.

3. A valued event uses its accompanied value to update the internal CSP vari-
able designated to the input port.

4. A message event forwards the message to the internal CSP channel desig-
nated to the input port.

After updating, the CSP module examines its currently blocked condition
and executes statements as many as the encountering conditions are non-blocking.
The execution is regarded as an instantaneous action that takes zero time. Upon
reaching the first unexecutable statement, the CSP module outputs new events, if
any, and surrenders control to the DE environment to finish one iteration. Each of
these outputting new events could be a pure event, a value, or a message generated
by an assignment or sending command during the iteration. However, in DE, they
must be assigned a time stamp to denote their birth times. Recall our assumption of
zero-delay execution, these events are assigned the same time stamp as the input

that triggered the reaction.

Consider the example shown in Figure 2.7. Suppose that an pweith a
earliest time stamparrives at porta of processA, and both proces& andB are in

their initial states. The DE system reacts as follows:
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1. Fire A: The waiting for evenp is satisfied after forwarding the pure
eventp from input porta to internal channeé. A then sends a pure evegtto
channek and that is immediately wrapped with time statrgmd put onto the out-
put portc. After thatA still tries to execute more statements, but there isaset
event shown on channbl This blocking forcesA to surrender control to the DE

environment.

2. FireB: B takes event from channeld and sends out eventwith time
stampt to channek. After thatB returns to its initial state, i.e., waiting for another
eventg from channel. Since there is no more event in chandglhe statement is

unexecutable anB hence surrenders the control.

DE

- a?x:{p}->clg-> q
. b2x:{reset}->A

[— b - N K

A B

Figure 2.7 Two CSP modules that refine DE actors.

DE
p A A g B
— a: R | : ;
. fo. ->Cc!g-> - . :
: ?a;(O{-g} “ . C - > d: d?y{a}->elr->B 3e—>r

— »lp: (b2x{reset} 3 "
- fj  ta==5))->A o | ’

Figure 2.8 Timed-CSP and untimed-CSP modules refine DE actors.
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Now, suppose thah has a timetta which synchronized with the environ-
ment to measure the tim& has waited for theesetevent. A timeout event hap-
pens whera reaches 5 time units and thesetevent has not arrived at chanitel
In this caseA resets itself anyway as having received taset event. The new
specification of procesA is given in Figure 2.8. Note that we have to eql@a
pair of feedback ports andfo for self-triggering. A detailed explanation of imple-

menting such timing features in CSP [41][55] is discussed in the next chapter.

2.4 A Hybrid Architecture

Summarizing the proposed structure of domains in above sections, we
depict an ultimate modeling architecture in Figure 2.9 using the same simple poll-
ing protocol example. The DE model serves as the host environment where CSP
modules and hierarchical FSMs containing CSP leaf cells sit in. Three features

make this hybrid architecture a compelling model for protocol modeling and simu-

lation:
DE
req ch‘»-J
""" Requester
req?REQUEST->
ch!POLL->Requester :
[Requestdr

J chin

—»{dataln

Running™~"“"1— ~ - 2=
OO Receiver

Sender
i (chin?y:{POLL}->
| datain?x:msgOK
. [lchin?y:{NACK})->
. chOut!x->Sender

chin?x:msgOK->
dataOut!x-> red
req!REQUEST
[Ichin?y:msgOK’->
. chOut!NACK->Receiver

Receiveﬁ dataOut——-=>

Sendef

Figure 2.9 Proposed hybrid architecture for modeling protocols.

First, specifying protocol elements in CSP matches our intuitive perception
in distributed communication and parallel tasking. Its textual representation also

retains a clear and intelligible form in notation.
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Second, hierarchical FSMs enable a modal execution of CSP modules.
Similar to the command "watch" in some synchronous languages [11], embedding
CSP in FSM allows activating and suspending CSP modules at any state. It also

helps to represent a protocol at different levels of abstraction.

Third, DE model provides a global system time which facilitates the adjust-
ment of the timers in timed-CSP modules. It therefore proliferates the timing state-
ments in timed-CSP that remarkably reduce the burden in specifying timing

behaviors.
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3

Software Implementation

In this chapter, we present the details of the software tool that realizes our
proposed hybrid architecture for protocol modeling and simulation. To leverage on
existing tools, we integrate SPIN, the interpreter of PROMELA, into Ptolemy, a
framework providing many domains including FSM and DE. The integration faces
many challenges such as coordination of two simulation kernels, event conversion
and forwarding, implementation of timed-CSP statements, and scheduling of CSP
and DE.

We give a brief overview of Ptolemy in Section 3.1 and point out a possible
niche in its structure to accommodate an external tool. Then we explain the simula-
tion kernel of SPIN and discuss the extension of its input language PROMELA to
include temporal expression in Section 3.2. Section 3.3 describes the implementa-
tion considerations while embedding SPIN in Ptolemy. Finally, we introduce our
tool SiP (SPIN in Ptolemy) in Section 3.4.

3.1 An Overview of Ptolemy

Ptolemy is a modeling and simulation framework for heterogeneous sys-
tems. It covers many aspects of designing signal processing and communication
systems, ranging from algorithms, system modeling, simulation, through parallel
computing, software/hardware synthesis, and real-time applications. The non-dog-
matic kernel of Ptolemy allows users to freely choose a best matched domain to

specify each of the subsystems from many built-in domains including synchro-
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nous/Boolean/dynamic dataflow, discrete-event, process network, etc. Ptolemy
also functions as a coordination framework that deals with the scheduling of simu-

lation across all mixing domains.

The basic computation unit of modularity in Ptolemy is the Block. A sys-
tem modeled by Ptolemy can thus be viewed as an interconnected block diagram.
Blocks communicate one another by propagating streams of messages/data
through links among them. Derived from Block, a Star is the lowest level object in
Ptolemy which contains a module of code that is invoked at run-time. Also derived
from Block, a Galaxy may hierarchically contain both Galaxies and Stars to form a
computation unit at a higher level. As expected, Universe is the name of the object

that contains a complete system.

Every Star in Ptolemy contains a "go()" method which will be executed
every time the Star is triggered. Typical scenario of the "go()" method is first
examining Particles present at the input ports of the Star, getting Particles and per-
forming computation, and then generating new Particles on the output ports. We
found the "go()" method is actually a great niche to store the code for communicat-
ing with an external tool. Such a bridging "go()" method contains 3 parts in our
design:

1. Get data from input ports and convert them into the format used by the exter-
nal tool.

2. Call an external procedure to perform an iteration of computation.
3. Wrap up the computation results and put them on output ports.

This is our main idea of the agent star described in Section 3.3. By wrap-
ping up a SPIN process to imitate a Star, we enable Ptolemy kernel to execute

external computation without modifying the kernel..

3.2 SPIN and PROMELA

SPIN is a tool allows simulating and validating distributed modules of

concurrent systems. Actually, it was originally designed to perform simulation and
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verification of communication protocols. In this report, we only focus on its ability

of simulation and try to modify and integrate it into Ptolemy.

The input language to SPIN is called PROMELA, which is a description
language for extended FSMs. Its syntax loosely bases on Dijkstra's guarded com-
mand language notation and C.A.R. Hoare's language CSP [30]. PROMELA sup-
ports only three types of objects: processes, variables, and channels. Processes are
like C functions in design, and like UNIX processes in behavior. The body of a
process is a sequence of CSP-like statements that specify the behavior of a distrib-
uted entity. Variables can be global or local, and can be given values by assignment
or receiving statements within proper scopes. Supported types are Boolean, bit,
byte, integer, and user-defined structures. Channels are essentially queues that
shared among processes. A channel is declared to pass a certain type of message,

and is given a fixed finite length.

One obvious shortage of PROMELA, similar to most reactive model
description language, is the lacking of temporal statements. However, the correct
functioning of a distributed real-time system depends on the timely coordination of
its interacting components [22]. The protocol elements thus inevitably have to
react according to those timing requirements. In Section 3.2.1 we propose several

temporal statements and their reacting semantics.

3.2.1 Extending PROMELA'’s Expressiveness

The original PROMELA grammar has neither timer data type nor timing
commands. The SPIN simulation kernel regards the execution time of each atomic
PROMELA statement, a single command or an atomic block of commands, as one
iteration. Therefore, every time span between two consecutive atomic statements is
considered as a universally equal and indivisible duration. This assumption looks
awkward while coupling SPIN and DE domain because DE model requires each
operation having been assigned an execution duration. For regular DE computation

units, the duration could be either constant or variable, and is assigned as the total
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consuming time of the executed commands in one iteration. This is acceptable if
the operation is similar in each iteration such as parity bit checking or extracting
header from a packet. However, during each iteration a protocol module could exe-
cute a very different set of commands and hence a fluctuating execution time. One
usual way to work around it is to define the duration of each executed atomic state-
ment as one time unit. But, this assumption seems too coarse since it may regard a
long arithmetic computation and a simple register shifting taking same operation

time.

We adopt a more flexible approach to specify the execution time of

PROMELA code. A Programmer could placedalay(duration command after

each atomic statement whose execution time is not negligible and assume those
ahead it are zero-delay. For example, suppose during some state a protocol module
needs to perform two register shifting and one shortest path searching, we could
placedelay(10) after that searching procedure to indicate the aggregate duration of
these three statements is 10 time units. Besidesjdéls/( ) command can also be

used to assure the correctness of received data if signal settle time and bus skew

time are taken into consideration while modeling a bus I/O protocol.

Another temporal event in protocol specification is time-out. A typical case
is to start a timer after sending a packet and retransmit the packet if an acknowl-
edgment has not been received after a predefined duration. To specify this timing
mechanism in PROMELA, we need to create the timer data type. A timer can be
reset to any starting time at any place of codes by assigning a value. Programmers
are allowed to use as many timers as necessary and have them running simulta-
neously. Theexpire(timer, target-timg command is used to check if a specific
timer has expired as well as to register a likely time-out event in the future. Note
the registered time-out event is not deterministic to happen since other events
could abort the waiting state or a timer reset command could change the target-

time.
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Routine state checking is also useful while specifying a protocol. A proto-
col module may enter an idle state for a long time and be unaware of something
going wrong. In this case, programmers could use a timer and set a target-time to
inspect states again. Or, implicitly, using commaidirn (duration) will register a

promissory return time to invoke the module again.

To enhance PROMELA with these temporal features, we have to modify
the parsing rules of PROMELA and give corresponding execution codes in SPIN.
Our current implementation already includes all the features mentioned above. In
addition, we allow timers to be mixed with or assigned by other arithmetic expres-
sion. This requirement comes from that fact that timing is usually a parameter to
other functions and target-times are often calculated by some formulas. Moreover,
It is also permitted to apply timers to comparison operations such as >, <, ==, etc.
This facilitate programmers verifying the timing at any moment before the timer

has reached its target-time.

3.2.2 The Simulation kernel of SPIN

The simulation kernel of SPIN is implemented as an interpreter of
PROMELA. It relies on yacc to build a parse tree before the simulation can be
started. Also, many symbol tables will be established to facilitate the evaluation of
variables, operation of queues, and control of program flow at run-time. Figure 3.1
gives a high-level view of the parse tree where two processes and their variables

and statements are shown.

The scheduler of SPIN randomly picks one sequential statement from one
of all non-blocking processes and calls the evaluator to execute that statement. The
evaluator then updates variables if the statement contains assignments, or decides
next statement to be executed if the statement is a control flow command. Assume
the initial value of PC (next process to choose) in Figure 3.1 points to process A,

and the internal PC of A and B point to statement P and Z respectively. Possible
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execution scenarios are PZQR, PQZR, and PQRZ if the control flows in A and B

remain sequential and the execution blocked after R or Z.

PC

variable list

a@

PCsB

statement li Sj_/

variable list

Figure 3.1 The parse tree of processes built by SPIN simulation kernel.

Most of our modification is made to the scheduler and evaluator of the
SPIN simulation kernel. We disabled the nodeterministic scheduler of SPIN and let
the Ptolemy DE scheduler take over the scheduling. We also rewrote the core sub-
routines of the evaluator so that timing statements, floating-point operations, and

external C function calls could be understood by SPIN.

3.3 Integrating SPIN into Ptolemy

The way we integrate SPIN into Ptolemy is to have both their simulator
kernel running at the same time. This approach requires an interface to interchange
data, events, timings and other more subtle information such as pointers of func-
tions between SPIN and Ptolemy. Our idea is to create an agent star for each proto-
col module written in PROMELA. An agent star is regarded as a regular DE star
by Ptolemy and is in charge of passing all information back and forth between
SPIN and Ptolemy such as propagating data through the input and output channels,

so-called ports, of a star and a protocol module.

To choose a suitable class from DE stars, we at first enumerate the features
of a PROMELA protocol module, so-called process, and select the star class which
guite describes those attributes. A process has I/O channels, parameterizable states

and it is able to re-invoke itself after a specific duration. In addition, it always con-
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sumes all simultaneous incoming events before reacts to the environment like out-
putting data or emitting new events. Also, it is possible that many processes trigger
one another simultaneously without a deterministic order. We soon found the
DERepeatStar class with Phase mode and Delay type fits these requirements very
well. Therefore, we let all agent stars be derived from the DERepeatStar class and

tuned to Phase mode and Delay type immediately after construction.

3.3.1 Communication Ports

In order to bind ports and states, we need to understand the data structure
of local variables of a process in SPIN. They could be single-space variables,
arrays, FIFO (first-in-first-out) queues, or arrays of FIFO queues and they are all
allowed to be ports or states. To improve execution efficiency, we create a pointer
for each port and state variables and make the links at the first visit to the agent
star. Also, at first visit, state variables are assigned the values which were parame-
terizable from Ptolemy environment as their initialization. After then, data arriving
star ports are written to the data structure of SPIN through their corresponding

pointers.

The FIFO queues are accessed by using queue functions provided by SPIN.
Specifically, an agent star repeatedly gets a data unit, so-called particle, from an
input port and forwards it to the corresponding FIFO queue in SPIN. In the other
hand, if a port variable has been updated during an iteration, its updated value will
be emitted to the output port of the agent star with an appropriate time stamp. Sim-
ilar actions apply to the FIFO queues if there are some data having been inserted
into the queue during an iteration. Figure 3.2 illustrates how a SPIN process is
bound with a Ptolemy star and Figure 3.3 shows the forwarding paths between

them.

A process not only cares the value of an incoming data, but also needs to
know if there are new events, i.e. new data, arriving a specific port. We introduce

commandpreseni(port) to test if a new particle has arrived at the given port and
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turnoff (port) to turn off that indication. The commaradmit(port) is used as
shorthand of testing and turning off immediately. An input port is also allowed
assigning the sustainment of present indication. The attributive keypensist
indicates the present indication is persistent until it has been turned off explicitly.
Without declaringpersist, an input port is considered volatile which retains the
indication only at the arrival time of a particle. As time proceeding, it will be deac-

tivated automatically.

Star A

variable list

process

Figure 3.2 Extra pointers are used to bind the I/O prots of Ptolemy with the
corresponding variables in SPIN.

Figure 3.3 Particles are forwarded between Ptolemy and SPIN.
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3.3.2 Discrete-event Agent Star

Recall that an agent star only bridges ports between SPIN and Ptolemy,
itself does not perform any operation specified in the protocol module it serves.
For any incoming event, the agent star first forwards the particle, indicates signal
present, and then calls a PROMELA interpretation procedure in SPIN to take over
execution. Given the process identification number passed by the agent star, SPIN
locates the desired process and reloads its program counter to resume interpreta-
tion. As we defined in last section, all consecutively executable PROMELA state-
ments without adelay(duration) command beneath are considered zero-delay.
Therefore, SPIN always processes PROMELA codes continuously until an unexe-
cutable statement is reached and then it returns control to Ptolemy. However, this
does not imply that statement is forever unexecutable because other processes may
change the situation. If it does never get through, it is most likely an incorrect pro-
tocol design which leads the system entering a deadlock or an abnormal termina-

tion.

There are four cases of unexecutability. Firstieday(duration) command
is always unexecutable because it will not be satisfied until global time has pro-
ceeded by that duration. Second, expire(timer, target-timg command will not
be executable until the timer reaches its target-time. The third situation is the most
usual one, a logical false condition. For example, an expresaok==1 is
regarded as an unexecutable stateme®CiK is not equal to 1 at that moment. The
event present test commapteseniport) is considered as a logical expression as
well as all Boolean-typed functions. The last case is executiaguain (duration)
command. This is obvious as the functionrefurn () is just to register a future

visit before it yields current control to Ptolemy simulation kernel.

3.3.3 Firing Mechanism

So far we have solved the semantics and implementation details related to
port binding and execution control transferring. However, they are not the main
reason we choose the DERepeatStar class as the base class of agent stars. The spe-
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cialty of a DERepeatStar is that it is equipped a pair of feedback I/O ports by
default. By placing a particle with an appropriate time stamp onto its feedback out-
put port, a DERepeatStar is able to re-invoke, so-called refire, itself at any future
time. This is because that particle will follow the feedback link back to the star’s
feedback input port and become a triggering event when the global time reaches
the moment as the time stamp of the particle. Therefore, for the cases that SPIN
yields control caused by timing commands sucld@lsy( ), expire( ) andreturn (

), the agent star is able to schedule itself a future refiring by using feedback ports.
As for the logical unexecutability, the agent needs not schedule any refiring since
that will eventually be solved by some input events sending from other processes if

the protocol was correctly designed [50].

The refiring time is assigned the earliest expected epoch when the unexe-
cutable statement may become executable. As a result, it is true that we can not
estimate the time when a logical unexecutability would be solved, and hence we do
not schedule a refiring for it. Nevertheless, we are able to schedule the refirings for
timing conditions. For example, delay(duration command definitely suspends
the process fodurationtime units. The refiring time stamp is simply current glo-
bal time +duration This also applies to the commameturn (duration). Their
semantic difference is thdelay( ) absolutely stops the evolution of process during
suspended time whileeturn () allows other triggering to awake the process prior
guaranteed reentry. Commaasglpire(timer, target-timg leads to schedule a refir-
ing at current global time target-time- current value ofimer. Note this schedul-
ing will keep updating aimer andtarget-timemay vary before timeout. Briefly,
the principle of timing refiring is to invoke the process exactly at the time it
becomes executable. Otherwise, the evolution of that process is delayed and thus
the simulation violates the definition of concurrency. Such being this case, the

modeling of current processes is distorted and the simulation result is incorrect.

In addition to regular event firing and timing refiring, the broadcasting

event firing also awakes agent stars. It is often used in specifying protocol modules
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communicating through shared media such as a topology with a shared bus and
radio broadcasting via atmosphere. Since construction, every agent star is endued a
state parametenediumwhich could be freely designated. During simulation, any
agent star could listen and/or broadcast events to all other members on the same
medium, and have them be invoked to check if any further state transition is possi-
ble. We propose two ways to specify the medium an agent star belongs to: explicit
assignment and implicit scope. The former method categorizes agent stars into dif-
ferent medium groups according to the given medium names throughout hierarchy.
The implicit scope method defines medium groups by the hierarchical levels of the
protocol structure. Based on the Ptolemy design paradigm, the level of a star is
uniquely determined by its parent compositional blocks, so-called galaxies. Spe-

cifically, the compositional architecture decides the scopes of media.

3.4 The Tool, SiP

SiP (SPIN in Ptolemy) is a preliminary software implementation of the
protocol modeling and simulation methodology proposed in this report. Its experi-
mental prototype is announced in SRC Annual Review, Austin, March 1998. The
first version SiP1.0, as a patch package supplemented with Ptolemy, was released
on June 29. SiP1.1, supporting C++ function calls in PROMELA, was released on
August 1. And SiP1.2, which allows floating-point operations in PROMELA, was
released on September 10. All packages and their installation instructions could be

downloaded from the URL of http://ptolemy.eecs.berkeley.edu/dgm/protocol/.

SiP contains four major components:

1. A Ptolemy language code generator for agent stars, ggll2pl.
2. Add-on Ptolemy source codes supporting agent stars.

3. A Ptolemy-supported SPIN package.

4. A protocol element library.

A typical scenario of protocol modeling and simulation using SiP is

described as follows.
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1. Specify each newly defined protocol module by PROMELA (enhanced with
new features).

2. Useppl2pl to generate the Ptolemy language codes of the agent star for each
new protocol module.

3. Make the agent stars of new protocol modules under Ptolemy environment.
After doing this, a reusable icon for each new protocol module is created as
the modules in build-in library.

4. Specify the architecture of protocols and the connections between protocol
modules and system elements. Protocol modules can be grouped to form
more abstract compositional blocks as galaxies in Ptolemy.

5. Perform system-level simulation to verify the functionalities of the testing

protocols.
1
protocol + schematic
specification
2 4
protocol PROMELA code >
module T, . Ptolemy SPIN
library generation <
3
parse PROMELA

bind Ptolemy & SPIN

Figure 3.4 Four phases of SiP’s running cycle.

Figure 3.4 gives a closer view of the running cycle of SiP, which can be cat-
egorized into four phases. Phase 1 is the Specification Phase indicating the editing
of protocol modules as well as system construction. After received a simulation
request, SiP enters Phase 2 to generate and preprocess PROMELA codes of all the
protocol modules on the system schematic. Once completing PROMELA code
generation, in Phase 3 SiP first has the SPIN parser to construct the parsing tree for
each module, and then it binds all interfaces between each pair of agent star and
PROMELA process. Figure 3.5 gives the detailed view of a pair of PROMELA
process and its corresponding parse tree in SPIN at this point. Next, SiP starts

Phase 4, the Ptolemy-SPIN Co-simulation Phase, to perform system-level simula-
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tion. Finally, the result of simulation feedbacks to Phase 1 to help the designer val-

idate the functionalities of protocols and evaluate the system-level performance.

Star name Star parameter
\ process entr_y_ E)ointer
proctype A() -
{inport int u;
u outport bit v; Vv
>_ constint s; %
bit t;
P.QR;
}
PROMELA code
generation
Auto-generated Invoke SPIN
PROMELA codes interpreter

Figure 3.5 The side-by-side comparison of a PROMELA process and its
corresponding parse tree built by SPIN.
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A

Elements of Network Protocols

To justify the effectiveness of our tool, in this chapter we examine and
specify several network protocols using SiP. Although the following cases are fun-
damental building elements of protocols, they become reusable modules after rep-
resented in SiP. Leveraging on the cumulative designs of new modules, one can
always construct more sophisticated protocol elements by exploiting the hierarchy

capability of the tool.

4.1 Connections

Data communication services in a network can be categorized into two
types, connectionless and connection-oriented. Typical examples are the Public-
Switched Telephone Network (PSTN) and the Internet Protocol (IP) switching net-
work respectively. A connectionless service allows a node sending data packets to
another node without having obtained a permission from it previously, while a
connection-oriented service needs a connection setup phase to guarantee the qual-
ity of service (QoS) [28].

Specifically, in a connectionless communication, the switching process PA
can transfer a packet to its counterpart process PB at another switch each time the
packet is ready to be sent out. Both of the two switches have no information about
whether if the conducting packet is belonged to a certain data stream. Also, they
have no knowledge of the traffic of the subsequent packet flow. Consequently, PB

may start discarding packets when it runs out of buffers.
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Unlike the connectionless communication, a connection-oriented service
requires PA to establish a connection to PB by a setup procedure before it sends
first data packet to PB. The established connection can later be disconnected by a
disconnection procedure similar to the connection procedure. We call the rules of
the procedures to establish and disconnect a connection as a connection protocol
[14].

Briefly, to establish a connection, PA first sends a connection request
(CON_REQ) to PB and waits for its response. After received the request, PB
checks the availability of its resource and replies PA with a positive acknowledg-
ment (CON_ACK) or a negative rejection (CON_REJ). Once the connection has
been established, data packets can be transferred continuously from PA to PB. To
disconnect the connection, the disconnection request (DIS_REQ) can be issued by
either PA or PB. And, to confirm that request, the one received DIS_REQ replies

CON_REJ as a confirmation.

We first use SiP to model the connection requesting side, i.e. PA, as fol-

lows.

#define IN_BUFF 32
#define OUT_BUFF 32
#define DATA_BUFF 256

mtype = { CON_REQ, CON_ACK, CON_REJ, DATA, DIS_REQ, IDLE, SETUP,
CONNECTED, TEARDOWN }

proctype PA()
{
inport chan pktin = [IN_BUFF] of {int };
inport chan dataBuf = [DATA_BUFF] of {int };
outport chan pktOut = [OUT_BUFF] of { int };
const int SETUP_TIMEOUT=64;
const int DATA_TIMEOUT=5;
int tempPkt;
int state=IDLE;
timer t1;
do

::(state==IDLE)->

if
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::(len(dataBuf)>0)->pktOut!CON_REQ; state=SETUP; t1=0;
::(len(pktin)>0)->pktin?tempPkt;
..else->return(0);
fi;
:/(state==SETUP)->
if
::pktiIn?CON_ACK->state=CONNECTED; t1=0;
::pktiIn?CON_REJ->state=IDLE;
::(len(pktin)==0)->
if
expire(tl,SETUP_TIMEOUT)->state=IDLE;
::else->return(0);
fi;
fi;
::(state==CONNECTED)->
if
::pktiIn?CON_REJ->state=IDLE;
::(len(dataBuf)>0)->dataBuf?tempPkt; pktOut!DATA; pktOut!tempPkt; t1=0;
::(len(dataBuf)==0)->
if
:.expire(tl,DATA_TIMEOUT)->pktOut!DIS REQ); state=TEARDOWN;
::else->return(0);
fi;
fi;
::(state==TEARDOWN)->pktiIn?CON_REJ->state=IDLE;
od;
}

Figure 4.1 SiP specification of the connection process at requesting side.

Process PA uses a pair of 1/0 porpktin and pktOut, to communicate
with process PB. It also provides a service access point (Sdéaln, for the
entity it servedA, to input data packets. In above specification, we adopt a timer
t1 to simplify the interface between PA ardinstead of having one explicit con-
trol port and one status feedback port. The former method lets timeout event ini-
tiate a disconnection request automatically while the later method requires an

explicit external controlling signal.

Process PA has four states, IDLE, SETUP, CONNECTED, and TEAR-
DOWN. Initially, the state is set to IDLE. Once PA gets the first data packet from

A, it enters the SETUP state and starts to establish a connection with PB by send-

32



ing CON_REQ to it. At the same time, a timer is started to prevent PA from wait-
ing for PB's reply forever. If PA does receive a correct reply, it will be either
CON_ACK or CON_REJ and that decide the next state of PA to be CONNECTED
and IDLE respectively. Or, the reply is lost and t1 expires. In this case, PA sends

CON_REQ again and reset t1 to start another trial of connection.

When a connection has been established, PA sequentially forwards data
packets fromA to PB. If there is no more data packet idataln for
DATA_TIMEOUT time units, we assume this is the case thditas already sent all
data and a disconnection request DIS_REQ should be sent immediately. By doing
that, PA enters the TEARDOWN state and wait for CON_REJ from PB to confirm
the disconnection. In fact, a CON_REJ from PB at any moment will force PA back
to the IDLE state.

Compared with PA, PB is simpler in the connection protocol as it only has
two states, IDLE and CONNECTED. Its SiP specification is listed below.

#define IN_BUFF 32
#define OUT_BUFF 32
#define DATA_BUFF 256

proctype PB()
{
inport chan pktin = [IN_BUFF] of {int };
outport chan pktOut = [OUT_BUFF] of { int };
outport chan dataBuf = [DATA_BUFF] of { int };
int tempPkt;
int state=IDLE;
do
.:(state==IDLE)->pktiIn?CON_REQ->
if
::(len(dataBuf)<DATA_BUFF/2)->pktOut!CON_ACK; state=CONNECTED;
;.else->pktOut!CON_REJ;
fi;
::(state==CONNECTED)->
if
:pktin?DIS_REQ->pktOut!CON_REJ; state=IDLE;
::pktiIn?DATA->pktIn?tempPkt->
if
::(len(dataBuf)<DATA_BUFF)->dataBufltempPkt;
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::else->pktOut! CON_REJ; state=IDLE;
fi;
fi;
od;
}

Figure 4.2 SiP specification of the connection process at receiving side.

Initially set to the IDLE state, PB acknowledges the connection request
from PA only when at least half of its local buffer is empty. Otherwise, it replies
with CON_REJ to reject the connection. Once the connection has been estab-
lished, PB is in CONNECTED state and it forwards every incoming packet to its
local buffer. If the incoming rate is much higher than the processing rate and thus
the local buffer is exhausted, PB will send PA a disconnection notification,
CON_REJ, and interrupt connection immediately. After that, PB returns to the
IDLE state.

Although we now have built the two communicating modules of the con-
nection protocol, it only models a simplex connection. Specifically, these two
modules only allow establishing a connection from PA side to PB side but not the
other direction. However, as explained in Chapter 2, more complicated protocols
can always be constructed if we have taken the reusability into account. For exam-
ple, the middle part of Figure 4.3 shows a design of half-duplex protocol where
each side consists of both PA and PB blocks. Since a half-duplex protocol at most
allows one connection from one side to the other, each side needs an extra control
input to switch between transmitting and receiving modes. The switching control
here is similar to the "push-to-talk”" button on a talk radio whose position decides
the radio to send out or receive from a channel. As shown in the figure, we imple-
mented this mechanism by using a relay and a multiplexer to direct and merge
packet streams. For each side, PA block is activated and PB is shut off when the
control is on and inversely when it is off. A galaxy icon representing the schematic
is shown on the right. It can be reused to build even higher layer schematics such

as an N-port half-duplex module.
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Figure 4.3 Construct duplex connection protocols using simplex blocks.

A full-duplex connection protocol can be similarly constructed as shown in
the bottom of Figure 4.3. Note that in this case we do not have an extra control line
because now PA and PB blocks are allowed to interact with their counterparts
simultaneously. That is, data packets now can propagate in both directions by

establishing a two-way connection.

4.2 Error Detection and Recovery

In last section, we assume the channel between two distant processes PA
and PB is perfect. That is, through that channel packets can always arrive the other

side correctly. The real world, however, is not such perfect. Three different types of
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errors could happen during the delivery: corruption, loss, and out-of-order arrival
[27]. The sender or receiver hence has to detect whether some error happened dur-
ing the transmission, and then either correct it or initiate a retransmission proce-

dure.

Due to electrical interference or thermal noise, bits may be altered at any
point of the medium thorough the connection. To recover the corrupted bits, the
error control code accompanied with the erroneous packet needs to contain enough
information for the correction. The price of this recovery ability is that more bits
are required for the error control code and thus less efficient in conveying data
[27]. The bit error rate (BER) of the medium and end-to-end latency are two major
considerations while making the trade-off between recovery ability and data effi-
ciency. Intuitively, low BER requires less protection bits and small latency afford

multiple trials of transmission so that simpler protection techniques are preferred.

Today's wired networks, especially the optical links, suffer from very low

BER and moderate latency. Instead of trying to recover corrupted bits, more effi-
cient technique such as cyclic redundancy check (CRC) is widely used in the data-
link layer to detect bit corruption. For example, an Ethernet frame carries up to
1,500 bytes of data requiring only a 4-byte CRC code. Besides, BISYNC by IBM,
DDCMP by DEC, IMP-IMP used in ARPANET, HDLC, FDDI and ATM all adopt

the CRC algorithm [2]. However, this protection code is only for detecting the
occurrence of bit corruption but not able for recovery. Once a receiver detects a bit
error, it immediately discards the frame and executes a predefined routine to

inform the sender that a retransmission of that frame is required.

The elaboration of detection techniques is more like refining an algorithm
rather than a protocol design issue. Alternatives such as two-dimension parity and
Internet checksum algorithms also try to correlate data bits with much shorter
redundant bits. These techniques manipulate the data packets themselves but do
not involve in the interaction of distributed processes, which is the core issue of

specifying protocols. In fact, while designing a reliable communication protocol,
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we often assume that an error detection technique has been chosen and concentrate
on working out the routines to recover errors. Specifically, we enumerate possible
scenarios of errors, and then define corresponding recovery rules to resend cor-

rupted and lost packets and reorder out-of-order packets.

Recall the PA and PB processes in last section, the issue now is to have the
packets sent by PA be delivered at PB without corruption, loss or reorder. The
usual approach of error recovery is having PB reply PA an acknowledgement
packet in response to the received data packets sent by PA. Then PA examines the
received acknowledgements to perceive which packets has lost or discarded by PB
due to corruption. After that PA can either resend those missing packets or on a

batch basis depending on the consideration of complexity and efficiency.

Three features are generally shared in the error recovery protocols. First,
each data packet sent by PA includes a sequence number field. Therefore by exam-
ining the numbers, PB is able to reorder those out-of-order packets. Second, data
packets received by PB is acknowledged by replying PA an acknowledgement
packet. This response could be taken with respect to each individual data packet or
a block of them. Third, a number is predefined to limit the maximal amount of data
packets PA can send without receiving acknowledgement regarding any of them.
This upper bound is usually called window size. Error recovery protocols with this

feature are hence named sliding-window protocols.

A typical sliding-window protocol works as follows. At sender's side, PA
continuously sends data packets containing increasing sequence numbers to PB as
long as allowed by the window size. Whenever PA receives acknowledgement, the
window is moved ahead of all acknowledged data packets. If the earliest sent
packet within the window has not been acknowledged for a predefined timeout
duration, PA resends that packet using its original sequence number. At receiver's
side, PB replies all correct packets and discards corrupted ones. For those correctly
received packets, PB only stores the unacknowledged ones because it recognizes

that the rest in fact have already been saved but whose past acknowledgements
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were lost. Besides, PB uses sequence numbers to store out-of-order packets in cor-

rect order.

A practical specification of the sliding-window protocol using SiP is shown

below.

#define IN_BUFF 32
#define OUT_BUFF 32
#define DATA_BUFF 256
#define SWINSIZE 17

utility {
enCRC; deCRC; Max;
}

proctype PA()
{
inport chan pktin = [IN_BUFF] of { int };
outport chan pktOut = [OUT_BUFF] of { int };
inport chan dataBuf = [DATA_BUFF] of {iint };
const int PKT_TIMEOUT=10;
int lar=-1, Ips=-1, dataBkup[SWINSIZE];
int tempPkt, tempSN, tempCRC;
timer tm[SWINSIZE];
do
((lar+SWINSIZE > Ips) && (len(dataBuf)>0))->
dataBuf?tempPkt; Ips++; pktOut!tempPkt; pktOut!lps; pktOutlenCRC(tempPkt, Ips);
dataBkup[lps%SWINSIZE]=tempPkt; tm[lps%SWINSIZE]=0;
((Ips > lar) && expire(tm[(lar+1)%SWINSIZE], PKT_TIMEOUT))->
pktOut!dataBkup[(lar+1)%SWINSIZE]; pktOut!lar;
pktOutlenCRC(dataBkup[(lar+1)%SWINSIZE], lar+1);
tm[(lar+1)%SWINSIZE]=0;
::(len(pktln)>0)->pktin?tempPkt; pktin?tempSN; pktin?tempCRC,;
if
::deCRC(ACK,tempSN,tempCRC)->lar=Max(lar, tempSN);
..else->skip;
fi;
od;
}
#define RWINSIZE 17
#define ACK 255

proctype PB()
{
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inport chan pktin = [IN_BUFF] of { int };
outport chan pktOut = [OUT_BUFF] of { int };
outport chan dataBuf = [DATA_BUFF] of { int };
bool needAck=0, rcvind[RWINSIZE];
int npe=0, dataBkup[RWINSIZE], i;
int tempPkt, tempSN, tempCRC;
i=0;
do

(I<RWINSIZE)->revInd[i]=0; i++;

iielse->break;
od;
loop:
pktin?tempPkt; pktin?tempSN; pktin?tempCRC,;
if

::deCRC(tempPkt,tempSN,tempCRC)->

if

::(tempSN < npe)->needAck=1,;

((npe <= tempSN) && (tempSN < npe+RWINSIZE))->
revind[tempSN%RWINSIZE]=1; dataBkup[tempSN%RWINSIZE]=tempPkt;
do

:revind[npe%RWINSIZE]->dataBuf!dataBkup[npe%RWINSIZE];
rcvind[npe%RWINSIZE]=0; needAck=1; npe++;
.else->break;
od;
;:else->skip;
fi;
if
::needAck->pktOut!ACK; pktOutinpe-1; pktOut!lenCRC(ACK, npe-1); needAck=0;
:-else->skip;
fi;
::else->skip;
fi;
goto loop;

}

Figure 4.4 SiP specification of a sliding-window protocol (PA for transmitting
side; PB for receiving side)..

Variables, constants and auxiliary procedures used in these two processes

are defined as follows:

lar: last acknowledgement received
Ips: last packet sent

npe: next packet expected
SWINSIZE: sending window size
RWINSIZE: receiving window size
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enCRC: encode CRC
deCRC: decode CRC

PA has three major states, sending a packet, acknowledgement timeout,
and receiving an acknowledgement packet. The prerequisite to send a packet is that
Ips has to be still within the sending window size and there must exist pending
packets to be sent. After sending a packet, PA resets and starts a timer to keep track
of the time it has been waiting for that packet. If the timer of the oldest unacknowl-
edged packet, which was sent PKT_TIMEOUT time units ago, expires, PA sends
that packet again and resets the timer. After receiving an acknowledgement packet,
PA first verifies its correctness by using CRC checking, and moves the sending

window ahead of the acknowledged packet index if the verification is positive.

PB will be triggered only when a data packet arrives. After verifying its
correctness, PB takes actions with respect to the sequence number of the packet. If
the number is smaller thawpe, PB recognizes that one earlier copy of this packet
has been successfully received but all of its acknowledgements have been lost. PB
then sends another acknowledgement for this packet again. If the number is equal
to or greater thampe and less thampet+RWINSIZE, the packet is said to be
within the receiving window. The data bytes contained in the packet will then be
stored but not yet delivered because they could be out-of-order packets. After that,
PB examines the receiving indications starting from npe and delivers the corre-
sponding data bytes sequentially until the first negative indication is reached.
Finally, an acknowledgement is sent to acknowledge all packets prior the next
expected packet. The last case of a correctly received packet is that the packet has
a sequence number larger than the upper bound of receiving window. In that case,
PB has to discard the packet because it does not have spare buffer to store the data

bytes of the packet. As for corrupted packets, PB simply discards all of them.

4.3 Flow Control

At the end of last section, we mention that the receiving process PB has to

discard packets due to running of out buffer, even though those packets have been
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correctly received. To avoid wasting transmission bandwidth like this, the sending
process PA should control the flow of its outgoing packet stream so that it will not

overwhelm PB's handling capability. However, on the other hand, PA should also
try to send PB as many packets as possible for maximizing efficiency. The require-
ment of such trade-off leads to the development of various flow control schemes
[48].

The sliding-window protocol discussed above in fact has a very primitive
design of flow control. Its sending window size, SWINSIZE, prevent PA sending
further packets if the number of unacknowledged packets already reaches the size.
This blocking remains until PA receives an acknowledgement for some packet

within the sending window.

There are three defects of the sliding-window protocol in terms of control-
ling the packet flow. First, large SWINSIZE makes the control ineffective due to
the rare blocking on PA side. This happens when the round-trip time (RTT) of PA-
>PB->PA is long and we try to "fill the pipe" to achieve higher efficiency. Second,
fixed SWINSIZE disables PA from adapting the sending window size to reflect
current situation of PB. Intuitively, one would like to shrink SWINSIZE when PB
is very busy and enlarge it when PB is close to idle. Third, in sliding-window pro-
tocol, an acknowledgement bundles both the information of confirming reception
and allowing further sending, which makes PA less perceivable to the actual status
of PB. For example, PB may want to acknowledge some packets but still keep PA
blocked because it is currently too busy to accept any new packets. The bundling,

however, is unable to differentiate this situation.

For the rest of this section, we will discuss a modified version of the slid-
ing-window protocol that allows PA to change SWINSIZE depending on the fre-
gquency of discarding packets [14]. In the modified protocol, the constant
SWINSIZE is replaced with a variablswinsize whose value ranges from
MINSWS to MAXSWS. Depending on the occurrence of packet discavihsize

has the flexibility to be adjusted within that range and which actually tunes the
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tightness of sending window. Specifically, whenever an acknowledgement timeout
happens and PA resends the corresponding paskeisizeis reduced by a factor

of 2 if the new value is not less than MINSWIN. On the other hand, every time PA
successfully sends THRSWS packets to PB without having to resend any one of

them,swinsizeis incremented by 1 if the new value is not greater than MAXSWS.

The adaptation algorithm of this scheme, though effective, turns out too
pessimistic when timeouts happen consecutively. Say the waiting for acknowl-
edgements of packet 3, 4, 5, . expires one by oneswinsizewill be decreasing
exponentially. However, we know that most timeouts are not caused by the trans-
mission error which rarely happens in today's wired media. Most of time those
missing packets are discarded by the receiver due to insufficient buffer of process-
ing ability. Therefore, it is expected that the syndrome of packet loss appears in a
burst fashion. In this case, after resending packet 3 and halving swinsize, PA may
not want to decreasgwinsizeagain when the acknowledgement of packet 4 also

expires later.

One way to work around the problem is to keep track of an "unlikely win-
dow" that specifies a continuous list of possibly discarded packets. After PA
resending a packet, it checks whether the sequence of the packet falls in the
unlikely window. If yes,swinsizeremains unchanged; otherwise it is halved. The

updating of the unlikely window is done whenevergihnsizeis reduced.

Figure 4.5 shows the PA process accomplished the flow control scheme
described above. Since the controlling is totally done by PA, in this scheme PB is
the same as the one in last section.

utility {

enCRC; deCRC; Max; Min;
}

#define SWINSIZE 17
#define MINSWS 2
#define MAXSWS 17
#define THRSWS 2
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proctype PA()
{
inport chan pktin = [IN_BUFF] of { int };
outport chan pktOut = [OUT_BUFF] of { int };
inport chan dataBuf = [DATA_BUFF] of {iint };
const int PKT_TIMEOUT=10;
int lar=-1, Ips=-1, uws=-1, uwe=-1, cap=0, swinsize=(MINSWS+MAXSWS)/2;
int tempPkt, tempSN, tempCRC, dataBkup[SWINSIZE];
timer tm[SWINSIZE];
do
:((lar+swinsize > Ips) && (len(dataBuf)>0))->dataBuf?tempPkt;
Ips++; pktOut!tempPkt; pktOut!lps; pktOut!lenCRC(tempPkt, Ips);
dataBkup[lps%SWINSIZE]=tempPkt; tm[Ips%SWINSIZE]=0;
((Ips > lar) && expire(tm[(lar+1)%SWINSIZE], PKT_TIMEOUT))->
pktOut!dataBkup[(lar+1)%SWINSIZE]; pktOut!lar;
pktOutlenCRC(dataBkup[(lar+1)%SWINSIZE], lar+1); tm[(lar+1)%SWINSIZE]=0;
if
((uws<=lar+1) && (lar+1<=uwe))->skip;
::else->swinsize=Max(swinsize/2, MINSWS); uwe=Ips;
fi;
uws=lar+2; cap=0;
::(len(pktln)>0)->pktin?tempPkt; pktin?tempSN; pktin?tempCRC,;
if
::deCRC(ACK,tempSN,tempCRC)->
cap=cap+Max(tempSN-lar, 0); lar=Max(lar, tempSN);
if
::(cap>=THRSWS)->swinsize=Min(swinsize+1, MAXSWS);
cap=cap-THRSWS;
..else->skip;
fi;
::else->skip;
fi;
od;
}

Figure 4.5 SiP specification of a modified sliding-window protocol for flow
control at transmitting side.

Variables and constants used in above specification are defined as follows.

swinsize : sending window size

cap: consecutively acknowledged packets
uws : unlikely window start

uwe : unlikely window end

MAXSWS: maximum sending window size
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MINSWS: minimum sending window size
THRSWS: threshold of consecutive acknowledgements to increase swinsize

Note that PA now has an adaptive window sgwinsize which is updated
whenever timeout happens oap>=THRSWS. These two cases in fact can be
regarded as the implicit and explicit status feedback from PB. Beside, the two
bounds of unlikely windowjyws anduwe, are updated only after processed a time-
out event. Being such caseap is reset because the earliest unacknowledged
packet has been assumed discarded and thus the acknowledgement is no longer

continuous.

4.4 Routing

Generally, networks are constructed to allow distributed end-users to con-
vey information one another. Such data interchanging would be trivial if the
intended communicating partner is always an adjacent node of the sender. In fact,
for above sections of this chapter, the protocols we mentioned will only work in
this trivial way if no effort is made to implement a forwarding mechanism between
the two communicating entities. This is where routing protocols enter the picture

to form a full circle of end-to-end connection.

The fundamental idea of routing is to attach an address tag of the destina-
tion node to the data packet and let the intermediate nodes figure out a way to for-
ward the packet. In a packet switching network, the routing process is done in a
hop-by-hop fashion, i.e., each router only decides which neighboring router con-
nected to it would probably be the best (fast and cheap) next hop in terms of for-
warding a packet to its destination. A direct question arisen from this approach is
"Which neighbor should a router choose to forward a packet?". The answer is the

prosperity of current designs of routing protocols.

A common necessity of routing processes is to establish and maintain a
routing table. The table lists the current best next hop from the router to all of its

reachable nodes. Note that information may have to be updated as the status of the
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links belonged to the network changes. A router hence has to keep gathering status
reports from other nodes and recalculating those best next hops periodically [48].

Two common problems associated with routing tables are:

1. A routing table will not be scalable if it enumerates all reachable nodes
in the table. Some simple designs use an entry for each possible destination
in the network. Doing this requires a table to be large enough to accommo-
date the number of nodes in the network and that is usually not feasible in

consideration of memory requirement.

2. A routing table needs to store up-to-date information to reflect any
changes in the network topology and in the connection status of links. The
first consideration of the changes makes a router more robust to tolerate the
failure of other nodes and to support the mobility of end nodes. The second
leads to the design of an intelligent router that avoids congested links while

routing a packet.

Various routing protocols, such as hierarchical, random, distributed, back-
ward learning, source, and mobile routing [14] have been proposed to solve above
problems. Because most of these designs have the complexity and subtlety beyond
the scope of this thesis, we will only discuss a simplified hybrid routing protocol in
this section. Nevertheless, it does partially solve the two problems and provides an

overview of the issues while designing a routing protocol.

Our hybrid routing protocol (HRP) mixes part of hierarchical, distributed,
and source routing protocols. It is hierarchical because the whole network is parti-
tioned into several subnetworks and each subnetwork contains several hosts. The
address representation therefore has 2 fields for two levels of resolution. We let the
routing process only consult the information at subnetwork layer and thus each
entry in the routing table now stands for a subnetwork instead of an individual
host. Doing this remarkably saves the memory requirement of the routing table.

Our routing protocol also allows a router to inform others about its connection sta-
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tus with adjacent nodes, which is the sole feature of the distributed routing. Finally,
the source routing assumes that all hosts have current and complete information
about the network topology, so do the routers (but not end-hosts) in our assump-
tion. In the source routing, when a packet is generated, the process calculates the
best route for the packet to reach its destination and attaches the route to the
packet. When a node in that route receives the packet, it simply looks its successor
in the route and forwards the packet. This approach would be infeasible if the route
information is too long to be included in a packet. In our protocol, the routing
works on a hop-by-hop basis at each router although the complete information is
available to computer the whole route. One advantage of the hop-by-hop routing is

that no route is attached to a packet and thus less overhead is introduced.

Figure 4.6 shows the design of our hybrid routing protocol using SiP.

utility{
netproc;

}

#define IN_BUFF 32
#define OUT_BUFF 32
#define DATA_BUFF 256

#define DATA_TYPE 10
#define RTT_TEST 11
#define RTT_REPLY 12

proctype HRP()

{

inport chan pktin = [IN_BUFF] of { int };

outport chan pktOutl = [OUT_BUFF] of { int };
outport chan pktOut2 = [OUT_BUFF] of { int };
inport chan InDataBuf = [DATA_BUFF] of { int };
outport chan OutDataBuf = [DATA_BUFF] of { int };
const byte SUBNET _ID=1;

const byte HOST_ID=1;

int LONG_ID;

int type,srcid,dstid,data;

int nbr, nextid, cost;

timer upd, rtt[2];
LONG_ID=SUBNET_ID*256+HOST_ID;
upd=0;
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loop:
do
..expire(upd, 200)->
pktOutl!RTT_TEST; pktOutl!SUBNET _ID;
pktOutl!netproc(1l, SUBNET_ID, 1); pktOut1!0;
pktOutl!RTT_TEST; pktOutl!SUBNET_ID;
pktOutl!netproc(1l, SUBNET_ID, 2); pktOut1!0;
upd=0; rtt[0]=0; rtt[1]=0;
::(len(InDataBuf) > 0)->InDataBuf?dstid; InDataBuf?data;
type=DATA_TYPE; srcid=LONG_ID; break;
::(len(pktin) > 0)->pktin?type; pktin?srcid; pktin?dstid; pktin?data; break;
:.else->return(0);
od;
if
(type==RTT_REPLY)->nbr=netproc(2, SUBNET _ID, srcid);
cost=rtt[nbr-1]/2; netproc(3, SUBNET _ID, srcid, cost);
i(type==RTT_TEST)->
if
::(netproc(2, SUBNET_ID, srcid)==1)->
pktOutl!RTT_REPLY; pktOutl!SUBNET_ID; pktOutl!srcid; pktOut1!0;
::(netproc(2, SUBNET _ID, srcid)==2)->
pktOut2!RTT_REPLY; pktOut2!SUBNET_ID; pktOut2!srcid; pktOut2!0;
fi;
::(type==DATA_TYPE)->
if
::(dstid/256==SUBNET _|D)->OutDataBuf!data;
..else->nextid=netproc(4, SUBNET _ID, dstid/256);
if
::(netproc(2, SUBNET_ID, nextid)==1)->
pktOutl!DATA_TYPE; pktOutl!srcid; pktOutl!dstid; pktOutl!data;
::(netproc(2, SUBNET_ID, nextid)==2)->
pktOut2!DATA_TYPE; pktOut2!srcid; pktOut2!dstid; pktOut2!data;
;.else->skip;
fi;
fi;
:.else->skip;
fi;
goto loop;

}

int netproc(int* args)
{
#define ROUTER_NUM 4
#define id2idx(ID) (ID-1)
static int nefROUTER_NUM][ROUTER_NUM]={{1, 2, 3, -1}, {2, 1, 4, -1},
{3,1,4,-1}, {4, 2, 3, -1}};
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static int costfROUTER_NUM][ROUTER_NUM]={{0, 90, 50, -1}, {90, 0, -1, 20},
{50, -1, 0, 30}, {-1, 20, 30, O}};
int pathcostfROUTER_NUM], tmpcost, src_sn, dst_sn, bestnext, node2, done=0, i, n;
switch (args[0]) {
case 1: return(net[id2idx(args[1])][args[2]]);
case 2: for(i=1; i<ROUTER_NUM; i++)
if (netfid2idx(args[1])][i]==args[2]) return i;
case 3: cost[id2idx(args[1])][id2idx(args[2])]=args[3];
costlid2idx(args[2])][id2idx(args[1])]=args[3]; return 1;
case 4: src_sn=args[1]-1; dst_sn=args[2]-1; bestnext=dst_sn;
for(i=0;i<ROUTER_NUM;i++)
pathcost[i]=(cost[src_sn][i]>-1)? cost[src_sn][i:MAXINT;
while ('done) {
done=1; n=1;
while((n<kROUTER_NUM)&&(net[src_sn][n]>0)) {
node2=id2idx(net[src_sn][n]);
if (cost[node2][dst_sn]>-1) {
tmpcost=pathcost[node2]+cost[node2][dst_sn];
if (tmpcost<pathcost[dst_sn]) {
pathcost[dst_sn]=tmpcost;
bestnext=node2;
done=0;

return(net[bestnext][0]);

}
}

Figure 4.6 SiP specification of the Hybrid Routing Protocol with its auxiliary

C procedure netproc().

HRP models a router having multiple input ports and 2 output ports. Nor-
mally, it takes DATA_TYPE packets and use Bellman-Ford algorithm to decide to
which neighbor it should forward the packet for minimizing the latency of the
complete route. The implementation of the Bellman-Ford algorithm [2] is shown
in the above auxiliary C procedure. Besides, in order to gather up-to-date status of
links used by the algorithm, a router generates extra packets, with type
RTT_TEST, and sends them to its neighbors to request a RTT measurement testing

every 200 time units. Whenever receives a RTT_TEST type packet, a router imme-
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diately sends a RTT_REPLY type packet back to the one initiated the testing.
Therefore, on receiving the RTT_REPLY type packet, the testing initiator is able to
obtain the RTT and update the current "cost" of a specific link with value RTT/2.
Note in HRP we assume this update is made globally and simultaneously to all
routers for simplicity. However, we know that actually this has to be done using

some broadcasting mechanism.

The auxiliary C procedure netproc implements more than one function.
The first argument serves as the index of intended function and the rest arguments

have different meanings under different functions. A detailed description is given

below.
Index Arguments Return Function Description

1 host ID, neighbor | Return the ID of a neighbor by giving
neighbor index | P its index.

2 host ID, neighbor | Return the index of a neighbor by giy-
neighbor ID index ing its ID.

3 host ID, 1 Update the cost of the link between
neighbor ID, cost two giving hosts.

4 source subnet ID, best next | Decide the best next hop and return its
destination sub- | /P ID.
net ID

4.5 Multiple Access

The protocols considered so far are designed for point-to-point communi-
cation links, which assume that on a specific medium there is only one host send-
ing signal at a time. Under such assumption, a receiver needs only consider the
transmitted signal from some peer and noise on the link, but not signals from other

peers which shared the same medium.

However, there are many widely used communication media such as radio

broadcast, satellite, and multitap bus [28], which may have two or more hosts are
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sending out signals simultaneously. In this case, different data streams will inter-
fere with one another if no measures are taken to regulate the use of the medium.
Such a collision can be avoided if only one host is permitted to use the medium for
transmission at a time. Two usually adopted approaches are used to implement this
feature: token and carrier sense. The single token in a network allows only one
host transmitting at a certain moment, and all other hosts have to wait until they
hold the token. Two popular protocols based on this approach are Token Bus and

Token Ring protocols [27].

Carrier sense, as implied by its name, requires a host listening to the
medium before it can send out signals. As long as the medium is in use, existing
carrier signal, the rest hosts refrain from transmitting and remain waiting. One dis-
advantage of this approach is that a collision may still occur when two or more
hosts start sending at almost the same time such that they all thought the medium is
cleared. The occurrence of a collision requires all receiving hosts throwing away
whatever they have received recently. In addition, all sending hosts have to stop
transmitting and, after some time, retransmit the same message. However, more
collisions may happen following the same scenario again and again [24]. A proto-
col based on this approach is called a CSMA/CD (Carrier Sense Multiple Access
with Collision Detection) protocol. In this section we will look at a simple proto-
col using the CSMA/CD technique, which is actually is simplified version of the
most popular local area network (LAN) protocol, Ethernet protocol. Two key fea-
tures of CSMA/CD are preserved in our Simple Ethernet Protocol (SEP): carrier
sense (to make sure the medium is free) and collision detection (to see if any other
host is also transmitting). Data frame and jam frame are the only two types of
frames defined in this protocol. Under normal condition, a host broadcasts data
frames onto the medium for conveying information. The jam frame will be trans-
mitted when a collision has been detected, which is meant to garble all frames on

the medium so that all hosts will be aware of the occurrence of the collision.
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The SiP specification of the transmitting and receiving processes of SEP
are shown in Figure 4.7(a) and Figure Figure 4.7(b) respectively. In the protocols,
we assume that a frame is transmitted byte by byte at a speed of one byte per time
unit. The collision detection thus can be done between the transmission of each
two consecutive data bytes. The CRC computation procedures have been modified
to operate in a byte-by-byte fashion due to the same reason. Their first argument
has value 0, 1 and 2 to differentiate the cases of starting, intermediate and end of a
frame. We also define an end-to-end propagation delay, PROP_DELAY, which
results in the possible unawareness of far-end transmission by using carrier sense.
The share medium is modeled by a broadcasting channel BUS which is declared as

a wireless port.

utility {
enCRC; deCRC; randNum; Max;
}

#define DATA_BUFF 256
#define MAX_BYTES 1024
#define PL_BYTES 64
#define JAM 127

proctype XMT()
{
inport chan dataBuf = [DATA_BUFF] of {int };
wireless chan BUS = [MAX_BYTES] of {int};
const byte HOST_ID=1,
const int PROP_DELAY=5;
const int RAND_WAIT=32;
bool rexmt=0;
int i, dstid, data, bidx, bmax=0, dataBkup[PL_BYTES];
car_sen:
do
::(rexmt || (len(dataBuf)>0))->bidx=0;
if
s:rexmt->skip;
::else->dataBuf?dstid;
fi;
do
::(len(BUS)>randNum(PROP_DELAY)+2)-> delay(1+randNum(RAND_WAIT));
s.else->break;
od;
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BUS!dstid; BUS!HOST_ID; enCRC(0,dstid); enCRC(1, HOST_ID);
do
::(bidx<PL_BYTES)->
if
(rexmt && (bidx<bmax))->data=dataBkup[bidx];
..else->dataBuf?data; dataBkup[bidx]=data;
fi;
BUS!data; enCRC(1, data); bidx++; delay(1);
if
:(len(BUS)>bidx+2)->i=0;
do
::(i<kPROP_DELAY)->BUS!JAM; delay(1);
iielse->break;
od;
delay(PROP_DELAY+randNum(RAND_WAIT));
rexmt=1; bmax=Max(bmax,bidx); goto car_sen;
::else->skip;
fi;
::else->BUS!enCRC(2, 0); rexmt=0; bmax=0; delay(1); goto car_sen;
od;
..else->return(0);
od;
}

Figure 4.7(a) SiP specification of the transmitting process of the SEP.

proctype RCV()
{
outport chan dataBuf = [DATA_BUFF] of { int };
wireless chan BUS = [MAX_BYTES] of {int};
const byte HOST_ID=1;
int i, srcid, temp, bidx, dataBkup[PL_BYTES];
wait_frm:
BUS?HOST _ID->BUS?srcid;
deCRC(0, HOST_ID); deCRC(1, srcid); bidx=0;
do
::(bidx<PL_BYTES)->(len(BUS)>0)->
if
::BUS?[JAM]->delay(PROP_DELAY);
do
::(len(BUS)>0)->BUS?temp;
i-else->break;
od;
do
::(len(BUS)==0)->return(0);
::((len(BUS)>0) && (BUS?[JAM]))->BUS?temp;
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..else->goto wait_frm;
od;
..else->BUS?temp; dataBkup[bidx]=temp;
deCRC(1, temp); bidx++;
fi;
;.else->BUS?temp;
if
::deCRC(2, temp)->i=0; dataBuf!srcid,;
do
::(i<PL_BYTES)->dataBuf!dataBkupli];
;-else->break;
od;
::else->skip;
fi;
goto wait_frm;
od;
}

Figure 4.7(b) SiP specification of the receiving process of SEP.

In the transmitting process, XMT, dataBuf is the service access point to the
higher layer protocol, Logical Link Control (LLC) sub-layer protocol, for input-
ting data frames. The buffer dataBkup has a size of PL_BYTES bytes to store the
payload of the currently conducting frame. During the carrier sense phase, if XMT
has a frame to send but the medium is in use, it waits a random duration of time
equiprobably between 1 and RAND_WAIT. XMT sends JAM signal for
PROP_DELAY time units when it is transmitting data bytes and detects that extra
bytes from other host(s) have been inserting into BUS. Indies andbmax are
used to indicate the position of next byte to be transmitted and the position of the
byte where a collision was detected in last transmitting trial. Féxgnt indicates

whether if the transmitting process is in the retransmission phase.

As for the receiving process RCV, dataBuf is the SAP to the LLC sub-layer
where the correctly received frames are delivered. Normally RCV receives and
stores data bytes in buffer dataBkup for later CRC verification. When a JAM signal
is detected, RCV discards all received bytes of the currently receiving frame and
removes all the following corrupted data bytes and JAM signal until the medium is

cleared again.
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5

Application Example

Example Network

13

(A (o)

Figure 5.1 Graph diagram of the example network used in this chapter.

In order to validate our design of protocol elements discussed in last chap-
ter, we construct an example network system by reusing those modules to model
the communication protocols running on the hosts and routers in the network. Fig-
ure 5.1 depicts a connected graph diagram showing the nodes and the links of the
network. The nodes are numbered in the format of hierarchical address, which is
represented asl.n2to denote the sub-network inde’ and the host inder2.
AliasesR1, R2, R3, andR4 are four routers located in sub-networks 1, 2, 3, and 4
respectively. Except sub-network 3, where all nodes share the same medium, all

nodes in other sub-networks are connected by point-to-point links. In the rest of
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this chapter, we will demonstrate how to build such a network system using SiP

and perform simulation of a streaming video application running on it.

Figure 5.2 shows a SiP schematic that models the network in Figure 5.1.
Recall the concept we stated in Chapter 2, that each network node in SiP represents
a single protocol module or a group of them. In other words, we perceive the activ-
ities of a network as the interactions among protocol modules. Therefore, the
blocks with names ROUTER and HOST shown in Figure 5.2 are all protocol mod-
ules instead of physical hardware entities. Starting from the left, HOST_A (@lias
in Figure 5.1) is a video encoder that generates and transmits a variable-bit-rate
packet stream to a multicast server [45], HOST_B (eipsThe server then dupli-
cates and broadcasts the stream to two designated client hosts, HOST _C1 (alias
Cl) and HOST_C2 (alia€?2). For not overwhelming serves, the transmission
from A to B can not start untiB confirms the connection request fraxrusing the
connection protocol we discussed in Section 4.1. In addi#omand B follow a
flow control protocol to regulate their traffic using the sliding-window technique
introduced in Section 4.3. Figure 5.3 gives a detailed views of the structures of pro-
tocols insideA andB. A contains a video encoder (VENC), an address attaching
process (AttAddr), a flow control and a connection protocol of transmitting side
(SWPA and PA)B has a connection and a flow control protocol of receiving side
(PB and SWPB), a multicasting process (Distrb), and an SWPA.
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Example Network

e o joss len
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pktout  ptkin streamOut pktin RToutl TER 4 tin

RToutl| RTin | RTout2

Figure 5.2 A SiP schematic modeling the example network in Figure 5.1.
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Figure 5.3 The internal structures of galaxies HOST_A and HOST_B.

RouterR1 takes the both broadcasting streams fidrand route them to
their designated destination sub-networks using the HRP routing protocol
explained in Section 4.4. Our initial parameters mRiechooseR3 to direct both
the packets foilC1 and C2. This turns out congestin3 quickly and slowing
down both streams t61 andC2. Fortunately, HRP updates the routing table peri-
odically and soon figures out that, froR1, R2 may be a better choice to deliver
packets toC2. After receiving packets fronR1l, R2 realizes the destination of
those packets is sub-network 4 and thus it redirects theR4toThe simulation
result of this feature is given in Figure 5.4. As one can see, the shooting packet

flow via R3 turns flatter afteR2 started to share the traffic at time 240.

To make the simulation more informative, we build flow control capability
in R4 but notR3 to evaluate the importance of traffic regulation in a connection-
less network. Figure 5.5 shows the internal structur®4fwhich consists of a
routing protocol (HRP), a finite-length queue (FINITE_Q), a flow control protocol

of receiving side (SWPB), and a selective acknowledgement protocol of transmit-
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ting side (SAPA, which is a slight variation of SWPA). The SWPB module here

will interact with the SWPA in ho® to adaptively adjust the size of sending
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Figure 5.4 Simulation result shows that using adaptive routing table
optimization can resolve traffic congestion at routers.
window and it hence mitigates bursting traffic between them. ARRrno effort
is made to deal with a variable-bit-rate packet flow and thus all processed packets
will be discarded when its output buffer is filled. Figure 5.6(a) shows the simula-

tion result of the output queue lengths®B (no-SW, the dots) an&4 (SW, the
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crosses). We set both their maximum queue sizes as 1B3stiscards packets
whenever its queue length exceedsR8has a zigzag shape of queue length

Router 4

E RTlutl pktjn | Qgn SWPB W}
RTin pktLoss| pktOut dataBuf
RTout2 pktout pktout dataBuf pktin

E ROUTER FNTTE Q pitin SAPA L<

Figure 5.5 The internal structure of the galaxy ROUTER_4.

around the maximum size of its queue because, once its queue gets too long,
SWPA cuts down its sending window size or even stops transmission B4let
digest its queued packets. And then, after receiving more acknowledgements from
the SWPB inR4, SWPA enlarges its sending window size gradually and that leads
to the rising of the queue length 84 again. Since we set the maximum sending
window size as 17, one can see from the figure that the queue len&h stop
growing at that number. Therefore, R4 is able to guarantee that no packet would be
discarded due to an output buffer overflow. Figure 5.6(b) shows the cumulative
number of packets discardedri® andR4. Not surprisingly, onlyR3 suffers from

buffer overflows.

Note that so far we have used the SWPA/SWPB pair many times. This is
the major advantage of using SiP to model network protocols because reusing pro-
tocol modules remarkably reduces the burden in specifying the same or similar
protocols repeatedly. Moreover, since Ptolemy follows object-oriented paradigm,
all replicated modules of a specific protocol are actually different objects derived
from the same class. They are the same protocol, but they can be given different

parameters and then evolve independently. The encapsulation property of object-
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oriented design also assures the state of these sibling modules not being garbled

one another.
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Figure 5.6 (a)Upper: Simulation result shows that using flow control protocol
can constrain the queue length within maximum size. (b)Lower: Not
using flow control protocol results in queue overflows and thus some

packets have been discarded.

Return to our discussion of packet forwarding, which has been described
all the way from the video encoder to the destination sub-network of the packet.
We now consider the scenario of delivering a packet from a router to the destined

host within the same sub-network. Sinc2 has a dedicated link directly connect-
ing it with R4, we simply build a selective acknowledgement protocol of receiving
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side (SAPB) inC2 to coordinate its counterpart SAPA R4 to accomplish the
communication. Unlike the above simple point-to-point communication, sub-net-
work 3 needs a more elaborated protocol to deal with its multi-tap bus. As shown
in Figure 5.1, routeR3 shares the same medium with other two peers, including
C1. We use the multiple access protocol SEP, a CSMA/CD protocol introduced in
Section 4.5, to implement the communication process of all peers on the bus. Fig-
ure 5.7 shows the internal view of SEP, which consists of a transmitting and a
receiving process (SEPXMT and SEPRCYV). Note that in our design, there is no
link among all the SEPXMT and SEPRCYV processes in all peers on the bus. This
because we adopt "wireless" I/O ports while specifying the SEP protocol. The
broadcasting nature of these ports appropriately imitates the topology of shared
medium and also comparatively simplifies the wiring. Following the SEP protocol,

R3 finally delivers the packets ©1 via the shared bus.
Simple Ethernet Protocol (SEP)

> | >

SEPXMT SEPRCV

Figure 5.7 The internal structure of galaxy SEP.

The last issue to consider in this simulationwd)y not using flow control
protocol everywhere so that no entity would ever discard a packiei®¥answer is,
not all application can afford long latency during transmission [44]. For direct-
immediate applications, such as videoconferencing, Internet phone, whiteboard,
talk, etc., long delay between continuous or consecutive information is not tolera-
ble. Packets that successfully arrive their destinations with old time stamps will be
useless. As a result, the flow control protocol though effectively smoothes the traf-
fic, the latency introduced by it leads to packet discard, too. Figure 5.8 gives a sim-
ulation result that serves as a good example to account for this phenomenon. Each
symbol (dot or cross) in the figure indicates an event of receiving a packet. The
vertical axis in the figure represents the sequence number of a received packet and

the horizontal axis gives the time when the packet was received. Obviously, from
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the simulation result, using flow control (cross) suffers longer latency, although it

is free from packet loss. On the other hand, without using flow control (dot), one
can receive packets earlier at the price of discarding packets. Nevertheless, one can
always adopts some error (loss) concealment algorithm to enhance the reconstruc-
tion quality of the information. This latency consideration also leads to the general
adoption of UDP (User Datagram Protocol, which does not includes flow control
mechanism) for delivering real-time and delay-sensitive information in the Internet
realm. As for applications carrying deferrable information, such as FTP (File
Transfer Protocol), Web browser, etc., the TCP (Transmission Control Protocol,
which has a built-in sliding window protocol for flow control) is widely used to

reduce the impact to the Internet while conducting busty packet streams.
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Figure 5.8 Simulation result shows that using flow control protocol could lead
to longer lantency due to buffering bursty traffic.
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6

Conclusions

To support communication protocols modeling in a system-level design, in
this report we have proposed a hybrid model of computation to allow mixing pro-
tocol modules with other subsystems. By embedding CSP in FSM and DE, we
found a protocol can be succinctly specified and effectively simulated in a system
context. The resulting architecture using such integration of domains has been

investigated to clarify and define its semantics of concurrency and synchrony.

Base on the proposal, we have prototyped a supporting software infrastruc-
ture, SiP, by leveraging on two existing tools, SPIN and Ptolemy. The consider-
ation of combining these two tools originates from the fact that SPIN is designed
for protocol specification and Ptolemy supports heterogeneity in system-level
modeling. We examine the internal data structure of SPIN and elaborate a specific
actor class in Ptolemy to accomplish data sharing and simulation scheduling. The
resulting software implementation not only enriches the expressiveness of the
input language of SPIN, PROMELA, in temporal statements, it also lightens a

niche in Ptolemy to accommodate an auxiliary co-simulation tool.

The testing of SiP starts from the attempt at specifying several fundamental
communication protocols such as connection, error detection and recovery, flow
control, routing, and multiple access. Because the supporting commands of SiP
well cover the necessary expressions in protocol specification, we efficiently built
a reusable module for each of these protocols. In addition, we also examine the

extension of these modules by mixing them with other Ptolemy actors or external
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C language subroutines. An early observation of the reusability of the tool has also
been identified, when we were building a duplex connection module using simplex
ones and coupling the modules originally designed for error recovery and flow

control respectively.

To evaluation the capability of SiP in modeling a complete network system,
we construct an example network on which a streaming video application multi-
casts a packet flow to two remote client hosts. By reusing all protocol elements we
mentioned in last paragraph, with very little extra effort we finish the modeling of
the system. For this example, it proves the reusability of SiP does remarkably
reduce the burden in specifying similar protocol modules repeatedly. As for sys-
tem-level simulation, many interesting results also have been discussed using this
example. We have observed how the fluctuation of queue length and transmission
latency affect the behavior of flow control, connection, and routing protocols. And,
how the parameters and adaptation schemes of these protocols impact the quality

of services over a network.

One open issue of SiP is, to exploit the formal verification capability of
SPIN and provide a model checking [46] tool using Ptolemy's graphical user inter-
face. In [42], a compiler that translates Statecharts into PROMELA has been pro-
posed. It is reported to facilitate the modeling and performing partial order
reduction [31][32] of a large number of reactive modules by using Statecharts plus
SPIN. Actually, we believe that by leveraging on the object-oriented kernel and the
well-developed code generation domain in Ptolemy, SiP should be able to provide

similar or even more superior features.
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Appendix A: SIP v1.2 User’'s Manual

A.1 Introduction

SiP (SPIN in Ptolemy) is a system-level protocol modeling tool developed
at University of California at Berkeley. It relies on a translap@i2pl and a SiP
kernel to cooperate with the Ptolemy environment. The translator converts the
input language to SiP, called Ptolemy-supported PROMELA Language! pinto
the description language of Ptolemy Stars, called Ptolemy Languagke ®he
automatically generatgal code can then be used to build an agent Star in Ptolemy
to make a connection with its origingdpl code. The SiP kernel is bulit into
Ptolemy environment to accomplish a Ptolemy-SPIN co-simulation involving both
agent Stars of protocol modules and built-in Ptolemy Blocks (Stars and Galaxies).

Figure A.1 illustrates the two phases of system specification while using SiP.

code ppl files

ppl2pl

design Ptolemy
schematic

edit /O ports  edit process body

Figure A.1 SiP’s two phases of system specification.

The first phase is to code protocol moduleppi, and the second phase is
to design a system schematic in Ptolemy using the agent Stars of these modules
and Ptolemy’s built-in Blocks. Since agent Stars are regualr Stars in Ptolemy DE
domain, the second phase is almost the same as the usual way to construct a
Ptolemy schematic. The detailed explanation of how to construct a schematic in
Ptolemy environment can be found in the Volume | of Almagest, the Ptolemy’s
User's Manual (ftp://ptolemy.eecs.berkeley.edu/pub/ptolemy/www/papers/almag-
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est/user.html). Also shown in the above figure, one minor difference in the second
phase is the extra step to execp@2pl if the declaration of ports in a protocol
module has been changed. This assures the consistency of an agent Star and its
corresponding protocol module. Note that if the change was the process body of
the protocol module, no addition step needs to be taken because the agent Star con-

tains no information about the process body.

This manual will focus on the first phase, the design of protocol modules.
Specifically, we will introduce the syntax and semantics of all construggloi
the Section A.2 and demonstrate an example to walk through the two design

phases in Section A.3.

A.2 The Elements of ppl

In SiP, every leaf process of a protocol is codegjh. Theppl file should
contain exact one process and have a file name as same as its process name. Gener-
ally, appl file is organized as follows.
[* This file, PP.ppl, shows the basic structure. */
utility {
funcl,;

private:
func2;

}

#define QSIZE 10

proctype PP() {
inport int IN;
outport int OUT;
const int WSIZE=5;
< statements; >

}

In the rest of this section, we will give an introduction to the usppffor
specifying protocol processes. While designing a process, one principle a user
should keep in mind is to minimize the specialness and complexity of the process.

This would facilitate the reusability of the process and reduce burden to debug it.
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A.2.1 Data Types, I/O Ports, and Constants

Six basic data typesool, bit, byte, short, int, anddouble, are supported
by ppl. Following the same order, they occupy 1, 1, 8, 16, 32, and 64 bits respec-
tively. A variable is declared similarly to the syntax of C language. The declaration
below creates a byte array and two initialized variables in Boolean type and double

type respectively.

byte frame[32];
bool done=0;
double RTT=60.514;

Variables are regarded as local to a process, so their names can be reused in
other processes. One way to make a variable accessible by another process is to

declare it as aireless port like:

wireless int votes;

In this case, all processes within the same scope can read/write value from/to the
variablevotes. The scope is a parameter of every agent Star. It can be explicitly

specified a channel name to force different processes listening to the same channel.

Thetimer data type has the same resolutiordasible but it has very dif-
ferent behavior to previous basic data types. A timer counts up automatically as the
simulation time proceeds. It can be set to any floating-point number at any moment
as if it is manually adjusted to that epoch. The declaratiiomer t1=0.0’ creates a

timertl and resets it initially.

The user-defined data type follows the C-like syntax. For example, the fol-

lowing declaration defines a new data typBU and a variablepacket in that
type.

typedef PDU {
int header;
byte data[1024];
int checksum;

}
PUD packet;
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The same as the syntax of C, the third byte indlaga field of variablepacket is
expressed bpacket.data[2].

I/O ports are the interface enables a process to communicate with another
process. They can be categorized into two types, signal channels and message
channels. A signal channel is an extension of a variable, which allows to send/

receive a value to/from a port. A typical declaration is given below.

inport byte Data;
outport double Result;

A message channel is unidirectional and first-in-first-out (FIFO). For instance,

inport chan dataln = [256] of { int };
outport chan dataOut = [1] of { double };

declares an input message channehtrtype with a buffer space of 256 slots and

an output message channetlimuble type with single buffer space.

Two adjective keywordsnulti andpersist are used to specify the proper-
ties of 1/0 portsmulti declares a multi-port that allows multiple connection to dif-
ferent processegersist declares a persistent input port that keeps the present
indicator on even if the data arrived the port at an earlier time. Two examples are

given as follows.

multi outport bit chipSelect;
persist inport double batchMeasure;

A const is used to specify a parameter of a process. It beconsésta of
the agent Star belonged to the process. It has an initial value but can be given a new

value at run-time. A typical declaration looks like:
const int mylD=123;

A.2.2 General Statements

The arithmetic operation and Boolean expressiompif are exactly the
same as C language. They include +, -, *, /, %, ++, and -- for arithmetic; >, >=, ==,

<=, <, and != for comparison; &&, ||, and ! for Boolean expression; &, |, », ~, <<,
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and >> for bitwise operation. Two consecutive statements are separated by a semi-
colon ’;’ or an arrow ’->". In ppl, Boolean expressions are simplified as regular
statements. Therefore, the conditigfa==b)&&(c>d)) can be an independent
statement. It will be either executable or blocked at run-time depending on the val-
ues of variables. An unexecutable statement will block the process until the condi-
tion becomes true later. This is the most common approach to synchronize with

another process.

By definition, an assignment '=’ is always executable. Assigning a value to

an output signal channel implicitly issues a data output event. For example,
chipSelect=1;

sends out a bit "1’ to the output parhipSelect. As for message channels, opera-

tors '?’ and ' are used to receive and send data respectively. For example,
dataln?radius; dataOut!(radius*radius*3.14);

reads the head element from chand&taln and writes it to variableadius. After
that a computation result is sent out to charshebOut. The operator '?’ can be

also used to test the head element of an input channel. The expression
dataln?[5];

is not a reading operation. Instead, it is a Boolean condition that checks if the head
element of channalataln has a value of 5. The commart&h(dataln) is another

way to check the status of a message channel, which returns the current number of
elements queued in a message channel. The condiin(dataln)>=5) is execut-

able when there are at lease 5 elements hotthtajin.

Three commands are used to check and change the present indicator of a
input port.present(dataln) is executable if there is at least one new arrival at the
input portdataln. turnoff(dataln) is always executable that turns off the indicator.
admit(dataln) functions as same gsesent(dataln), but it turns off the indicator
after the checking if there is indeed a new arrival. It is equivalent to the statements

present(dataln)->turnoff(dataln).
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To assure a process operates correctly, a user could upgritfecommand
to print out the run-time values of specific variables. Its syntax is the same as the
printf command in C. Another way to detect design faults is to place assert state-

ments at some checking points. For instance,
assert( (a>b) || (c<d) );

takes no effect when the condition is true, but a violating condition will immedi-

ately stop the simulation and respond a warning message to the user.

A.2.3 Control Flow

There are four control flow constructs in ppl: case selection, repetition,
watching guard, and unconditional jump. The general form of a case selection is
if

::(condition 1)-> statements;

::(condition 2)-> statements;

::else-> statements;
fi
Exact one branch will be selected and executed at one time. If more than one con-
dition are executable, one of them will be picked with an equal probability. On the
other hand, if no condition is satisfied, the statementelsa branch will be exe-
cuted. Furthermore, suppose under the same case aal$¢heption is absent, the
process will be blocked until at least one condition becomes executable. To avoid
the blocking, usually thelse branch is given aselse->skip;’, which means to

skip the whole selection construct if no condition is satisfied.

The second control flow ido loop. A do loop has exactly the same struc-
ture as thef construct. It will be executed repeatedly until it encounters a statement
break. A factorial function can be implemented as follows.
f=1;
do

::(n>1)-> f=f*n; n--;
;:else->break;
od
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The watching-guard construatriless’ has a structure shown below.
{ statement block 1 } unless { statement block 2}

Before each statement in block 1 is executed, the first statement in block 2 will be
checked. If the later is unexecutable, statements in block 1 are executed repeatedly.
Once the first statement in block 2 happens to be executable, the execution of state-
ments in block 1 stops immediately. Note that a staterbesdk in block 1 would

also exit the loop.

The unconditional jumpoto functions as it does in common computer
languages. For examplegdto Waiting’ forces the program counter switching to

the statement below labd@laiting. Note thatppl identifiers cannot be labels.

A.2.4 Timing Commands

The commanddelay(duration) suspends the process fduration time
units. It is always unexecutable if tliiration is positive, because the system time
will not be advanced during an iteration. After having slept furation time
units, the process wakes up again and continues executing the statements after the

delay command.

To model the time-out checking mechanism in a protocol, the command
expire(timer, target-time) is used to check if a specific timer has expired. It also
registers a likely time-out event in the future. Note the registered time-out event is
not deterministic to happen since other events could abort the waiting state or a

timer assignment could change theget-time.

Routine state checking is useful while specifying a protocol. A protocol
module may enter an idle state for a long time and be unaware of something going
wrong. A programmer could use a belatedly refiring commatwakn(duration) to
register a promissory return time to invoke the process again. Besides, to suspend
execution immediately but not to register any return time, the commetndn(0)

is usually used to yield control of execution.
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A.2.5 External Function Calls

To declare external C++ functions, thélity construct is used to specify
the function names as well as their scopes. For example,
utility {
pubFOO;

private:
prvFOO;

}

declares two external functiopaibFOO andprvFOO. The functionpubFOO is
public and could be shared with other processes, while the funptiaROO is
private and not accessible by other processes. Supposgpthile containing
aboveutility construct is nametestFOO.ppl, the templates of these functions will
be created in the names with pathes astility/pubFOO.cc’ and ./utility/test-
FOO/prvFOO.cc’ after executingopl2pl. It is user’s responsibility to fill the code
in these templates. A typical template looks like:

/I Arguments stored in args[0], args[1], args[2], ...

/I Do not erase the remark symbol ahead function name.

/I int pubFOO(int* args)
{

}

Note the declaration in thatility construct does not include the augments of func-
tions. Therefore, given all variables are miatuble type, following forms of call-

ings are all valid.
a=pubFOO(1, 2, i); b=pubFOO(2, k+2); c=prvFOO(5, 6, 7, 8); d=prvFOO();

A Ptolemy Block could be also used as an external function. The command
extoper(outport, inport) fires a Ptolemy Block and waits a reply from it. The
command sends out a triggering signabtatport and waits a new arrival, usually
the computation result from the Block, atport. This command enables using

existing Ptolemy built-in Blocks as the computation subroutinegpf parocess.
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A.3 A Simple Example

In this section, we use a simple example to walk through the design proce-
dures of SiP. The following two processes implement a redundant transmission
protocol. Upon receiving ROLL request, the Sender process sends an integer and
a redundant copy of the number to the Receiver. The Receiver checks if the two
copies have the same value to decide whether the data have been corrupted during
transmission. If the two copies are the same, the Receiver sends out the number to
dataOut channel and sends anotHeOLL request to the Sender; otherwise, the
Receiver sends HACK notification to the Sender for requesting a retransmission.

To differentiate the iterations of transmission, the Sender increases the sending

number whenever it receives a POLL request.

Sender.ppl:
#define POLL 1
#define NACK 2
proctype Sender()
{
inport chan chin =[10] of { byte } ;
outport chan chOut = [10] of { int };
int x=0;
do
:.chin?POLL->x++; chOut!x; chOut!x;
::chin?NACK->chOut!x; chOut!x;
od;
}

Receiver.ppl:
proctype Receiver()
{
inport chan chin =[10] of { int };
outport chan chOut = [10] of { byte };
outport chan dataOut = [10] of {iint };
int x1,x2;
chOut!POLL;
loop:
chin?x1->chIn?x2;
if
::(x1==x2)->dataOut!x1; chOut!POLL,;
::else->chOut!NACK;
fi;
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goto loop;

}
Applying ppl2pl to both processes, we obtain tyb files DESender.pl

andDEReceiver.pl in directory "./ptolemy/” as the source code of agent Stars. We
then create two agent Stars in the facatser.pal’ by using the 'make star’ func-

tion in Ptolemy environment. Now we are ready to open a new facet and specify
the schematic of our system. However, it is perceivable that the transmission will
be error-free if we directly connect the 1/O ports of the two agent Stars. To imple-
ment an unreliable channel, we adopt the built-in AWGN (Additive White Gauss-
ian Noise) Galaxy to add noise to data. We also include a Delay Star to model the

propagation delay. Figure A.2 shows the design of the channel model.

>+ float() N A int() »

IntToFloat AWGN Delay FloatTolnt

Figure A.2 The model of an unreliable channel with propagation delay.

The schematic of our system is shown in Figure A.3. XiMgraph Star is

used to display the received data.

dataOut

Tﬁ ﬁj i ©

Sender AWGN Receiver

Figure A.3 A communication system over an AWGN channel.

Figure A.4 gives a simulation result of the above system. Note that there
was a transmission error at time 9 and a later retransmission made it up. However,
the redundant transmission protocol cannot guarantee the correctness of received
data. Suppose the two copies of data were both corrupted during transmission and
happen to have the same value when the Receiver reads them, the Receiver will
regard them as a correctly received pair. As shown in Figure A.5, the Receiver

made a wrong decision at time 5.

73



| ReceivedData |||

Received Data
' ' Setl &

d12_ T

%yt i

M La3]
T
|

Exit| Print| HTML| &bout|

Figure A.4 A simulation result shows the error recovery ability of the
redundant transmission protocol.
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Figure A.5 A simulation result shows that the redundant transmission protocol
cannot guarantee an error-free transmission.
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Appendix B: SIP v1.2 Programmer’s Manual

B.1 Introduction

SiP (SPIN in Ptolemy) is a system-level protocol modeling tool developed
at University of California at Berkeley. Its software package includes a stand-alone
executable fileppl2pl, a Ptolemy-supported SPIN package (modified from SPIN
v3.0 by Lucent Technologies - Bell Labs), and several supplemental files to the
Ptolemy DE domain. We assume in this manual that the readers are thoroughly
familiar with the DE domain and know how to write a DE Star. Refer to the Chap-
ter 12 in Volume Il of Almagest, the Ptolemy’s Programmer’s Manual (ftp://
ptolemy.eecs.berkeley.edu/pub/ptolemy/www/papers/almagest/prog.html). Read-
ers are also encouraged to read SiP User’s Manual to have the background knowl-
edge of the Ptolemy-supported PROMELA Language, catipld In following
sections, we will focus on the implementation issuep@®pl, agent Star, and the

Ptolemy-supported SPIN kernel.

B.2 Translator ppl2pl

Each leaf cell of a protocol module is specified by process. It will nei-
ther be understood by Ptolemy nor SPIN without translation. SiP provides the
ppl2pl translator to generate@ (Ptolemy Language) file of the customized agent
Star from appl process, such that the Ptolemy kernel can access to that process

through its agent Star.

Since an agent Star only customizes the mechanism to read/write Particles
from/to the internal channels in SPIN, thpl2pl only processes the declaration of
I/O ports, parameterizable constants, and external functionsppl @rocess to
generate the code of its agent Star. The detailed actions takpplByl to deal

with these three types of declaration are listed as follows.

« 1/O ports: Theinport andoutport in appl process are converted into timput
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and output constructs in thepl file respectively. A port with data typdsool,

bit, byte, short, andint in the ppl process are all specified as an integer-typed
port in thepl file, and thedouble is mapped to thdloat. Keyword multi is
retained to indicate the port is a multiple I/O port, while keywaiiceless tells

ppl2pl to neglect the port because a wireless port is not implemented as a
regualr Ptolemy 1/O port. Usually in go() an extra statement is applied to each
input port to maintain the present indicator of the port. The keywisist
disables that maintenance to keep the incoming Particles persistent. In go(),
each input port relies on a loop to forward all arriving Particles to its corre-
sponding channel in SPIN. Each output port also has a loop to flush out all
gueued elements in its corresponding channel in SPIN. These forwarding loops
are added in go() while an 1/O port declaration is detected impthigorocess.
Because SPIN uses a special data structure to access its channgts,file a
some temporary variables in that data structure are included icothsructor

construct and are deleted in testructor construct.

parameterizable constants The const declaration in thepl process is con-
verted into thedefsate construct in thepl file. Its data type and initial value are
specified by corresponding fields in tefstate construct. Since the value of a
state could be changed at run-time, an extra statement is added in go() to set
the new value of theonst in SPIN at the beginning of the first arrival to the

agent Star.

external functions: The ppl allows includingpublic andprivate external C++
functions. Apublic function is included in theode construct in thepl file so

that it is accessible by other agent Starspivate function is included in the
method construct to add a new member function to the class of the agent Star
(each agent Star is a new class derived from DESiPStar) so that the function is
only accessible by the agent Star itself. Since a function is tracked by a pointer

to make it accessible by the SPIN evaluator, for each fungiBpl creates a

76



pointer in theprotected construct and assigns its value in g@nstructor con-

struct.

The ppl2pl also auto-documents the generapdile by filling its author
anddescriptor constructs. This will require executing some UNIX system com-

mands.

B.3 Agent Star

The best way to understand the functions of an agent Star is to do a side-
by-side comparison of its code with its originghl process. An example is given

below to be referred by the discussion in the rest of this section.

pp! process (MOD.ppl):

#define Base 100

proctype MOD()

{

wireless bool running=1;
inport int value;

outport int result;

const int modulus=10;
loop:
running->admit(value)->result=Base+(value-Base)%modulus;
goto loop;

}

generated pl file (DEMOD.pl):
defstar
{

name { MOD }

domain { DE }

derivedfrom { SiPStar }

author { Shang-Pin Chang }

descriptor { DEMOD.pl is an agent star associated with PROMELA file MOD.ppl. It was
generated by spchang@coulomb.eecs.berkeley.edu on Sun Dec 13 01:38:00 PST 1998. }

copyright { Copyright (c) 1990-1998 The Regents of the University of California. All
rights reserved. See the file $SPTOLEMY/copyright for copyright notice, limitation of liability,
and disclaimer of warranty provisions. }

output {
name { result }
type {int }

}

input {
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name { value }
type {int }
}
defstate {
name { scope }
type { string }
default { "}
desc { Scope of the wireless ports used in file MOD.ppl }
}
defstate {
name { instOp }
type {int}
default { 0}
desc { Set to 1 for an instant operation module, otherwise 0. }
}
defstate {
name { modulus }
type {int}
default { "10" }
desc { Initial value of modulus used in file MOD.ppl }
}
protected {
Symbol *sym_result;
Symbol *sym_value;
double lastP_value;
}
destructor {
unregisterPXPStar();
}
method {
name { getScope }
access { protected }
arglist { "(void)" }
type { "const char*" }
code { return (const char*)scope; }
}
code {
extern RunList* findproc3(int ID);
extern Symbol* findloc2(RunList *x, const char *s);
}
setup {
delayType = instOp? FALSE:TRUE;
}
begin {
SPINReady = FALSE;
DERepeatStar::begin();
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outputPML(((strlen(scope)>0)? 1:0),"/export/coulomb/coulombl/spchang/thesis/
examples/",fullName(),name(),className(),(const char*)scope);

registerPXPStar();
}
go {
if ('SPINReady) {
run_Proc = findproc3(sipID);
run_Proc->host = this;
sym_result = findloc2(run_Proc,"result");
sym_value = findloc2(run_Proc,"value");
lastP_value = 0.0;
((int *)(findloc2(run_Proc,"modulus™)->val))[0] = (int)(modulus);
SPINReady = TRUE;
}
if (lastP_value<arrivalTime) sym_value->present = 0O;
while (value.dataNew) {
((int *)(sym_value->val))[0] = (int)(value.get());
sym_value->present = 1;
lastP_value = arrivalTime;
}
if (arrivalTime >= completionTime) {
NxtFireDur = RunSpin(run_Proc,arrivalTime);
if (sym_result->updated) {
result.put(arrivalTime) << ((int *)(sym_result->val))[0];
}
setNextFiring();
GlobalUpdate();
}
}
}

B.3.1 PROMELA Code Generation outputPML()

To generate the PROMELA code of all agent Stars on a schematic before
the first Star is fired, we include the function calitputPML()for PROMELA
code generation in thiegin construct in theol file. Since thebegin method is
executed exactly once, all agent Stars would also output their PROMELA code
exactly once. However, there may be many cloned agent Stars on a schematic and
it results a very large PROMELA file containing repeated processes. This would
then reduce the efficiency while generating the parse tree. Benefitted from SPIN'’s

ability to support multiple instances of a process, we only let the first visited agent

79



Star generate the code and force its clones within the same scope be distinct

instances of the same process. We will discuss the scope of an agent Star later.

Opposite to the function gdpl2pl, outputPML()processes thepl process
body instead of its I/O ports, constants, and external functions. The major task of
outputPML()is to set alldefines andwireless ports in the generated PROMELA
code having a correct scope. For example, suppose the agent Star of thgplbove

process MOD has a clone in both galaxy G1 and G2, its statement
#define Base 100

will appear in the generated PROMELA code twice, which is not a desired result.

This is solved by casting tluefine with the scope of its agent Star as follows.

#define G1_Base 100
#define G2_Base 100

Such scope casting also applies to their process namesiegldss ports. There-
fore, the generated PROMELA code contains following statements:

proctype G1_MOD(int _SIP_ID)

G2_running->admit(value)->result=Base+(value-Base)%modulus;

Note that in this case thewireless ports listen to different channe@1_running

and G2_running. This is the usual case when the clones of an agent Star are
embedded in different galaxies. To force them having the same scope, explicitly
give the same name to the scogt@ate of both clones (se@efstate scope in
above DEMOD.pl). For example, let the name of scopé&bk and the generated

PROMELA code would contain only one process and two instances like:

#define ALL_Base 100
proctype ALL_MOD(int _SIP_ID)

ALL_running->admit(value)->result=Base+(value-Base)%modulus;
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}

init
{
run ALL_MOD(1);

run ALL_MOD(2);
}

B.3.2 Pointer Binding

The pointer binding of the ports/states of an agent Star and the channels/
constants in its corresponding SPIN process is accomplished during the first visit
to the go() method of the agent Star. The code within(tB®INReady) block at
the beginning of the go() method in the above DEMOD.pl is the additional code
executed during the first visit to the go() method. The agent Star uses function
findproc3()to locate the pointer of its corresponding SPIN process and locates two
signal channelsalue andresult within that process by using functidmdloc2()
These pointers will facilitate the access to the process and channels in SPIN during
subsequent visits to the go() method of the agent Star. Note that the pointer of
const modulus is also located to set its initial value using the valustate mod-
ulus of the agent Star. At this point, the agent Star 8BNReady be true to indi-

cate the pointer binding is finished.

B.3.3 The Scenario of go() Method

Except the extra code executed at the beginning of the first visit to the go()
method, a regular execution scenario of the go() method is described as follows.
Readers should refer to the code inside go() method aftét$fdNReady) block
in the above DEMOD.pl while reading this section.

ThelastP_valuds used to denote the arrival time of the previous arrival to
portvalue. If it is earlier than the current system time, the present indicator of port
value is turned off before the testing of new arrivals at the port. Then the agent
Star uses a loop to get all Particles in pesdue and writes them to the signal

channelalue in its SPIN process. At the same time the arrival time is recorded in
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lastP_valueand the present indicator is turned on if any Particle has been detected

at the port.

After forwarded all Particles, the agent Star is ready to call SPIN kernel to
execute its corresponding SPIN process for one iteration. However, the prerequi-
site is thearrivalTime must be later or equal to trmmpletionTimeThis would
not be satisfied when the process is executidglay() command and the duration
has not expired yet. Otherwise, the process will be executed for one iteration by
calling Run_Spin()After that the agent Star checks whether if theport result
has been updated during that iteration. If yes, the updated value is sent out to the

output portresult of the agent Star to form a new Particle.

The last two steps arsetNextFiring()and GlobalUpdate() The former
estimates the refiring time to the agent Star and sends out a dummy Particle with a
future time stamp to théeedbackOuport. The later checks whether if amyjre-
less outport has been updated during the iteration at SPIN kernel. If so, it will fire
all agent Stars having aireless inport listening to the same channel within the

same scope.

B.4 Ptolemy-supported SPIN Kernel Run_Spin()

Run_Spin(pllows the SPIN kernel to resume the interpretation of the pro-
cess from the last unexecutable statement at its previous iteration till the first unex-
ecutable statement at the current iteration (could be the same statement). Before
the interpretation begins, two routines have to been done. First, all update indica-
tors of outports are turned off. Thus an agent Star could check which ports have
been updated during the iteration and generate new Particles for them. Second, all
timers in the process are advanced by the elapsed time from the last iteration to the
current system time. This is essentially important to the correct functioning of tim-
ing commands in thppl specification. Besides, the interpretation greatly relies on
the SPIN evaluatoeval() defined inDESIiPrun.c¢ where all SiP command are

explicitly listed and self-explanatory to show their detailed steps of evaluation.
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