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Abstract

Since the first large-scale computer network was built in the early 1960s,

the protocol design problem has become a more important issue to efficiently coor-

dinate distributed system nodes. Recently, in response to the fast growing demand

for connecting various devices with current network infrastructures, many intricate

protocols have been designed to support communications across such heterogene-

ity. However, today very few tools that we can identify allow such a system-level

simulation, including both protocols and models of system entities. Since simula-

tion is the major stage in the development cycle of a complex hardware and soft-

ware distributed system, a tool facilitates modeling and simulating protocols in a

system context is substantially valuable.

In this report, we propose a hybrid model of computation including CSP,

FSM, and DE for specifying protocols as well as to enable mixing them with other

subsystem models. Based on this proposal, a software tool, SiP (SPIN in Ptolemy),

has been implemented by integrating a protocol simulation tool, SPIN, into a sys-

tem-level design environment, Ptolemy. We demonstrate the expressive power of

SiP by using it to specify several fundamental elements of network protocols rang-

ing from the data link layer to the session layer in the OSI Reference Model. We

also leverage the reusability feature of SiP to construct a model of a complete net-

work system using those elements. From both the experience of protocol specifica-

tion and the result of system-level simulation, SiP is proved to remarkably

facilitate the design and performance evaluation of network protocols.
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Modern communication systems are more powerful and complex than t

older counterparts. They are at the same time more compact and cheaper due

improvement of hardware technology. This is achieved by integrating many

systems into a tiny module, e.g. a single-chip processor [1], and fabricating t

together.

The distributed and heterogeneous nature of subsystems enter the p

when this approach is adopted. Even inside such a compact system, protoco

ments are necessary to guide data interchange and handle interfaces. For ex

a general-purpose micro-controller usually contains control, signal processing

communication elements. Those subsystems could have very different rea

speeds and I/O rates in face of a request to interchange data [25]. Therefore

ous protocols are often embedded into that system to implement reliable int

tion over unreliable channels, synchronization across distributed elements

security in transactions among system nodes.

To verify the functionality and evaluate the performance of such a syste

a difficult task. First, A framework to model and simulate heterogeneous syst

is desirable. It should be able to model each subsystem in a natural and effi

manner and have an interface mechanism to integrate them into a whole. Pto

developed at UC/Berkeley, is a system-level design framework that allows mi

of multiple models of computation called domains [4]. Using Ptolemy, users

freely choose the most suitable domain to describes each subsystem and pe
1
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system-level simulation. Therefore, Ptolemy is a good candidate as a mod

framework to meet our need.

Another consideration in choosing a simulation tool is the expressiven

to represent a protocol compactly and intuitively. Possible choices are synchro

language [11], process network (PN) [21], finite state machine (FSM) [40]

communicating sequential processes (CSP) [18]. Ptolemy itself provides a pr

inary hierarchical FSM domain [3] which allows nested embedded domains i

FSM and any built-in concurrency model. However, some implementation iss

of complex guard/action transition and repeated triggering in the current F

domain of Ptolemy are still envolving. We thus chose a more sophisticated C

like description language, PROMELA, for protocol specification. PROMEL

(PROcess MEta LAnguage), developed by Lucent Technologies - Bell Lab

widely adopted in academe for protocol modeling and validation. Associated

the language is an interpreter, called SPIN, to simulate and verify the prot

specification. In this report, we will propose a methodology to integrate SPIN

Ptolemy for simulating protocols in a system context.

The integration will utilize Ptolemy’s ability to support heterogeneity. Fo

tunately, Ptolemy is designed with an object-oriented paradigm and supports h

ogeneity using the principle of polymorphism. Its kernel defines basic classes

generic functions. The application-dependent objects are derived from t

classes and overridden with specific functions. Also, data abstraction and enc

lation make the maintenance easier. The ultimate goal is to retain a compac

generalized kernel which is extensible. As a result, any object derived fro

domain-specific class would be regarded as an specialized object in that do

but is still reachable from the corresponding basic class. This implies that if

behavior of the derived object follows the loosely predefined requirement

works well with Ptolemy kernel. An intuitive idea is to encapsulate a desire op

tion as a regular computation unit in Ptolemy. However, two problems arise
2
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doing this: Does the semantics of synchrony of host domain match the para

modules? Is the concurrency model still applicable to them? [13]

Many researchers have done several similar embedding or combina

The Argos language combines FSMs with a synchronous/reactive (SR) con

rency model. SDL embeds FSMs in process networks. Codesign FSM (CFSM

embeds FSMs in DE. Simulink, form MathWorks, Inc., mixes continuous-ti

concurrency model with FSMs. The main consideration of such a coupling is

the questions we posed. This is because computation cannot be scheduled

two domains without given careful definition of their synchrony and concurre

[10][17].

To integrate SPIN into Ptolemy, we intend to model and simulate protoc

with other heterogeneous systems. Therefore, we should select an appro

domain in Ptolemy as the host platform for SPIN. Leveraging on Ptolemy’s ab

to support heterogeneous design, SPIN imitates a regular Ptolemy compu

unit to interact with units in other domains. In this report, we will show that it

appropriate to embed protocol modules in a discrete-event (DE) concurr

model with careful definition of its semantics.

The rest of this report is organied as follows. In Chapter 2, we propos

hybrid architecture of the domains to model protocols. Based on that proposa

have developed a software tool by integrating SPIN into Ptolemy. Chapter 3 g

a detailed roadmap of the implementation. In Chapter 4, we specify several fu

mental buidling blocks of network protocols using our tool to demonstrate

expressive power. By reusing these blocks, in Chapter 5 we construct an ap

tion example involving all protocols we discussed in Chapter 4. Finally, in Cha

6, we summarize our ideas and draw conclusions.
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Computational Model of Protocols
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In [3], B. Lee et al. characterize a concurrent system as "modules con

ing of relatively autonomous agents that interact through messaging of some

and gives the definition of its computation model as "the rules of interaction of

agents and the semantics of the composition". This description is general en

to include most popular models in the literature such as a process network, dis

event, synchronous reactive, multi-thread, dataflow, andπ-calculus.

Among these models of computation, the discrete-event (DE) mode

especially useful and commonly adopted in modeling distributed or parallel e

ties together with their communication infrastructure. Its system states evolv

the granularity of the time spans of consecutive events and is assumed

between them. In addition, the transition of states is regarded as instantaneo

hence well coincides with our perception of protocols, which usually neglect

details of message propagation and respond to occurring events with a negl

latency as compared with the duration between events..

However, an appropriate model to govern the concurrency and synch

of distributed modules of a protocol is not necessarily a good model to specify

modules themselves. In fact, the behavior of a protocol module is best chara

ized by a set of control sequences and I/O actions [8] rather than a series o

defined discrete events. Therefore, a control-dominated computation model

the expressiveness of I/O commands would be a good candidate. In this chapt

distilling protocols, we conclude Communicating Sequential Process (CSP) [1
4
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a suitable model to specify protocol modules. And, a Finite State Machine (F

enables CSP to operate in a modal execution fashion. Our resulting computa

model suggests that embedding CSP and FSM in DE will be convenient and

quate in expressing communication protocols. In Section 2.1, we provid

detailed view of protocols and identify their key features. Then in Section 2.2

2.3 we give brief introduction to CSP, FSM, and DE. Finally, a proposed hyb

architecture for modeling protocols is illustrated in Section 2.4.

2.1 Protocol Specification

Conceptually, a communication protocol is a distributed algorithm t

coordinates two or more entities to accomplish a shared or collective task. It

messages passed back and forth among entities, defining both message form

interpretation and conditional sequences of messages. If one would try to

more specific definition, the terms coordinate, entity, task, conditional seque

and message all have to be carefully defined [51]. This turns out to be non-tr

because it is equivalent to elaborating the details of the combinational struc

and computational models of the algorithm [24]. In next section we will see

the issues of selecting an appropriate structure or model does not have a de

answer. Instead, most of time we compromise on the trade-off between mathe

ical elegance and intuitive perception [14].

To show the importance of this point, let us look at the internal process

network interface card where the data-link layer protocol has been built in. W

analyzing its performance, we treat the full-duplex link as two separate chan

and neglect the interference. In addition, upon receiving a packet we assum

process is able to examine its correctness and then take actions in an instant

an "idealization" greatly reduces hassles while formulating the metrics of the c

munication system [52]. However, we know in fact there is only one single coa

cable connected to the card and the respondence to an incoming packet doe

processing time.
5
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A tool to model protocols must compromise on the issue of abstrac

level eventually. Therefore, the expressiveness of the tool has been carefully

sen to considerably match our perception of nature but still retain the simpl

and effectiveness for implementation. Before introducing the adopted descrip

language for protocols, let us return to our conceptual definition of protocols

re-explain those fundamental features in detail as follows.

"entity": Usually a hardware device or software code. However, wh

describing a protocol, it is always useful to isolate the embedded control l

from the actuators to identify the imaginary actors of the protocol. An actor h

means an agent process that provides communication services to a physical

It could be a single reactive module as well as a combinational aggregatio

modules. .

"conditional sequences": A series of logical control statements that gua

respondent actions. Typical guards are packet arrival, signal triggering, and ex

tion of timers. A simple form is similar to the IF-THEN-ELSE construct if a sp

cific condition is expected to happen. The CASE-THEN-ELSE is used to sw

the execution flow into a certain branch if a corresponding condition in a guard

is satisfied. The switching may be nondeterministic if more than one conditio

that guard list are evaluated to be true. In that case, one branch will be chosen

all qualified ones with equal probability.

"coordinate": The actions taken by the distributed autonomous proces

There is no overall supervisor directing the interaction among distributed no

Instead, each process has a predefined script to decide its response to an ev

then enter an appropriate state to keep the system healthy (e.g., no deadloc

sending out or waiting for a notification event, the physically distant nodes he

coordinate themselves to accomplish data communications.

"task": Most of time means to exchange information, i.e., sending a

receiving actions plus the data propagation over channels of two communic
6
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processes. Here these actions are described in a high-level sense and we neg

dependencies of devices and protocols. Specifically, the sending and receivin

just insertion and removal operation respectively to a queue. However, note

the queue is not necessarily a substantial data structure dedicated to repres

the channel. Depending on the synchrony model, it could be a FIFO queue

collection of separated events on a chronological queue. This flexible defin

enables various characterizations of channels such as random order, propa

delay, and packet corruption.

"message": The information passing from node to node over a chann

The usual forms of message are packets and signals. A packet usually co

many fields such as control header, data payload, and error detection code.

nal could be a pure triggering or a valued event to notify its counterpart that so

thing is happening.

These explanations characterize the basic requirements of a descri

language to specify distributed processes. A simple but adequate protocol m

ing language, PROMELA, caught our attention because its expressiveness

designed to specify precisely these protocol features. Figure 2.1 give

PROMELA example specifying a semaphore mechanism that functions as

basis of many asynchronous transmission protocols.

Figure 2.1 Asynchronous transmission using a semaphore mechainsm.

ch
BA

ack req

PA() {                                                PB() {
loop: loop:
 (req==1)->ch!HEADER,DATA;        req=1;
 ack=1;  (ack==1)->ch?h,x;
 (req==0)->ack=0;     req=0;
 goto loop;    (ack==0)->goto loop;
}  }
7
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In this example,A andB are two distributed nodes connected by a da

channelch. PA and PB are two processes built inA andB respectively which coor-

dinate the transmission. Signalsreq andack are accessible to both PA and PB an

are used to inform the other node that system status has changed. Bufferh andx

are the temporary spaces where header and data are stored. A typical sc

starts from settingreq to 1 by PB. As soon as perceiving the change ofreq, PA

sends HEADER and DATA onto channelch and setsack to 1. Seeingack turned

on, PB stores HEADER and DATA in buffer and resets thereq signal. This reset-

ting results in the releasing of signalack by PA, and then allows both PA and PB t

return to their original states. At this point, PA and PB are ready for the next it

tion.

This example shows how effective PROMELA can express the proto

features discussed. It uses independent processes to represent distributed "en

The "conditional sequences" guarding the evolution of system state are give

Boolean expressions. The actions updating the system state to "coordinate

cesses are done by assignments. The I/O actions to "exchange" data through

nels are succinctly abbreviated as ? and !. "Messages" passing over channe

easily formatted by explicitly enumerating all fields in order. Moreover, t

sequential specification fits well the convention of designing protocols by exam

ing intended scenarios. We will return to PROMELA in the next chapter.

2.2 CSP and FSM

One way to understand PROMELA is to look at its original computation

model, CSP. As its name suggests, CSP allows us to describe a concurrent s

by a group of sequential processes which take part in sequences of events.

processes operate independently and communicate with one another over

defined channels. To justify the appropriateness of specifying protocols using

the rest of this section we will examine a simple polling protocol to highlight t

notation and semantics of CSP.
8
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Figure 2.2 shows the CSP specification of a simple polling protocol. T

three defined processes are running concurrently and each executes seque

Notationc?x:M stands for a guard which waits for a messagex of type M from

channelc. If that message has not arrived, this statement blocks the execution

of the process. The symbol "[]" is followed by an alternative to the uppermost con

dition. Note these collateral conditions are not necessarily mutually exclus

Notationc!x denotes sending a messagex onto channelc. The "->" symbol simply

means "then do".

Figure 2.2  CSP specification of a simple polling protocol.

The protocol works in the way that the Requester first sends a POLL m

sage to the Sender. After the Sender have seen the POLL message, it retri

protocol data unit (PDU) from the localdataIn channel and sends the PDU to th

designated channel. Once the Receiver gets the PDU correctly, it delivers the

to localdataOut channel and revisits Requester to send another POLL messag

the Receiver receive a corrupted PDU, a NACK message will be sent and

Sender will resend another copy of the PDU on receiving the NACK.

Though the CSP specification is organized and self-explanatory, it la

hierarchy. Suppose now the Sender has two superstates, running and susp

Everything works normally in the running state and stops totally in the suspen

state. In addition, the transition between these two states can happen at an

[23]. It would be cumbersome to add a Boolean condition(state==running) in front

of every single statement in Sender to implement the high-level behavior.

shows a drawback of CSP for its inconvenience in specifying behaviors hiera

cally because basically all processes are flattened out [43].

Sender = (ch?y:{POLL}->dataIn?x:msgOK
[]ch?y:{NACK})->ch!x->Sender

Requester = (ch!POLL->Receiver)
Receiver = (ch?x:msgOK->dataOut!x->Requester

[]ch?y:msgOK'->ch!NACK->Receiver)
9
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CSP is not the only control-dominated computation model. FSM has l

been used to specify intricate control sequences [16]. Some elaborated FSM

as Statecharts [7] allows FSM to be hierarchically and concurrently combined

examine its expressive power, we redo the modeling by using hierarchical F

(HFSM) and show it in Figure 2.3. The resulting state diagram models the pr

col, but is not as clear as the textual representation in CSP. This impression c

from two side-by-side observations. First, scattered guard/action pairs mes

their relativity as compared with the aligned ones in textual form. Second, un

portant states complicate the diagram as all states at the same level have

explicitly shown. Such complexity is aggravated when the specification is fur

elaborated. Though applying more hierarchy helps to simplify the diagram at

level, we lose the sequential continuity of logical statements.

Figure 2.3  An HFSM representation of a simple polling protocol.

Fortunately, W.-T. Chang et al. advocate a new family of models of com

tation called *charts, which decouples the concurrency model from the hiera

cal FSM semantics [12]. Therefore, using *charts allows embedding a CSP m

in a hierarchical FSM to solve our dilemma of choosing CSP or FSM in repres

ing a protocol. Specifically, automata which implement the fundamental elem

of a protocol are specified in CSP to retain the logical clarity, but they all unav

ably appear as the leaf cells of the hierarchy. HFSMs are then applied to g

Suspended

Message
WaitRunning

Check

Wait
Data

Data

dataIn?x/

~(x in msgOK)/

(x in msgOK)/

ch?y:{NACK}/ch!x

Wait
Data

Check
Data

ch?y:{POLL}/ /ch!POLL

ch?x/
(x in msgOK)/

Ready to
Request

ch!NACK
~(x in msgOK)/

dataOut!x
10
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those automata in consideration of their functionality, geographical location, in

face encapsulation, or behavior at higher levels. Since we treat CSP modul

automata, such a heterogeneous hierarchy is straightforward. Figure 2.4 sho

example of embedding a CSP module inside FSM. Simply mapping each Boo

expression and event waiting as a state plus a guard, assignment and event

sion as an action, and symbol[] as a new transition, we can always transform

simple CSP module into an FSM. Figure 2.5 shows the resulting hierarchical

gram.

Figure 2.4  Embedding a CSP specification in an HFSM diagram.

Figure 2.5  A direct transform of a simple CSP specification into an HFSM.

By using this embedding methodology, Figure 2.6 gives our ultimate sp

fication of the simple polling protocol with a succinct and intelligible diagram.

Suspended ch?x,y->
((x>y)->ch!x,y

Sorter

[](x<=y)->ch!y,x)->Sorter

Running

Suspended

Running

Wait x,y Compare

(x>y)/ch!x,y

(x<=y)/ch!y,x

ch?x,y/
11
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Figure 2.6  A hybrid representation of a simple polling protocol.

2.3 Discrete-event Model

The discrete-event model of computation is the most popularly adop

semantics for modeling distributed or parallel systems in computer-aided sim

tions [5]. This fact results from the trade-off between our perception of nature

the ability of computers. While conducting a simulation using digital compute

computation is inevitably discrete. This limitation leads to the discreteness of

evolution and that contradicts our recognition of temporal continuity. One com

mised choice could be simulating the system with condensed source event

then obtain a discrete version of system state evolution, which is similar to a s

pled version from the continuous one [38]. In order to sort those discrete ev

chronically as well as to synchronize parallel subsystems, the DE model carr

notion of global time to indicate the occurrence of events [26]. These time sta

help to pinpoint system states on the time axis and form a discrete version [53

long as the time span between each two consecutive events remain short, th

crete version gives a good approximation to the real world [39].

Since a protocol is a collection of rules guiding the interaction among d

tributed and parallel processes, the DE concurrency model [20] also applies t

simulation of protocols and their underlying communication infrastructures. H

ever, the semantic subtleties while combining DE, FSM and CSP have to be

fully examined and defined before we can do so. For example, how shou

Suspended

Sender

(ch?y:{POLL}->dataIn?x:msgOK
[]ch?y:{NACK})->ch!x->Sender

[]ch?y:msgOK’->ch!NACK->Receiver

Receiver

Requester

ch!POLL->Receiver

ch?x:msgOK->dataOut!x->Requester

Running
12
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process interact with its counterpart when both the synchronization mechanism

DE and CSP are acting? How should a signal be converted while it is run

through the interface between DE and CSP models?

In order to embed CSP inside DE, we examine how a CSP module refin

DE computation unit (actor). When a DE actor fires [19], which occurs when th

is an event at one of its inputs carrying the earliest time stamp, the CSP mo

imitates the DE actor and responds to the environment. Several data asso

with the event are used to update the state of the CSP module:

1. The time stamp of the event is used to adjust the timers declared in the 
module.

2. The "present" indicator corresponding to the input port where the event
arrives is set.

3. A valued event uses its accompanied value to update the internal CSP v
able designated to the input port.

4. A message event forwards the message to the internal CSP channel de
nated to the input port.

After updating, the CSP module examines its currently blocked condi

and executes statements as many as the encountering conditions are non-blo

The execution is regarded as an instantaneous action that takes zero time.

reaching the first unexecutable statement, the CSP module outputs new eve

any, and surrenders control to the DE environment to finish one iteration. Eac

these outputting new events could be a pure event, a value, or a message gen

by an assignment or sending command during the iteration. However, in DE,

must be assigned a time stamp to denote their birth times. Recall our assumpt

zero-delay execution, these events are assigned the same time stamp as th

that triggered the reaction.

Consider the example shown in Figure 2.7. Suppose that an eventp with a

earliest time stampt arrives at porta of processA, and both processA andB are in

their initial states. The DE system reacts as follows:
13



r

1. Fire A: The waiting for eventp is satisfied after forwarding the pure

eventp from input porta to internal channela. A then sends a pure eventq to

channelc and that is immediately wrapped with time stampt and put onto the out-

put portc. After thatA still tries to execute more statements, but there is noreset

event shown on channelb. This blocking forcesA to surrender control to the DE

environment.

2. FireB: B takes eventq from channeld and sends out eventr with time

stampt to channele. After thatB returns to its initial state, i.e., waiting for anothe

eventq from channeld. Since there is no more event in channeld, the statement is

unexecutable andB hence surrenders the control.

Figure 2.7  Two CSP modules that refine DE actors.

Figure 2.8  Timed-CSP and untimed-CSP modules refine DE actors.

B

d?y:{q}->e!r->B

A

b?x:{reset}->A

a?x:{p}->c!q->

A

ed
q

DE

a

b

c

B

p

r

ed
q

DE

a

c

p

r

b

AA

fi fo

B
B

d?y:{q}->e!r->B

[](ta==5))->A

a?x:{p}->c!q->

(b?x:{reset}
ta=0->
14
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Now, suppose thatA has a timerta which synchronized with the environ-

ment to measure the timeA has waited for thereset event. A timeout event hap-

pens whenta reaches 5 time units and theresetevent has not arrived at channelb.

In this case,A resets itself anyway as having received thereset event. The new

specification of processA is given in Figure 2.8. Note that we have to equipA a

pair of feedback portsfi andfo for self-triggering. A detailed explanation of imple

menting such timing features in CSP [41][55] is discussed in the next chapter

2.4 A Hybrid Architecture

Summarizing the proposed structure of domains in above sections

depict an ultimate modeling architecture in Figure 2.9 using the same simple

ing protocol example. The DE model serves as the host environment where

modules and hierarchical FSMs containing CSP leaf cells sit in. Three feat

make this hybrid architecture a compelling model for protocol modeling and si

lation:

Figure 2.9  Proposed hybrid architecture for modeling protocols.

First, specifying protocol elements in CSP matches our intuitive percep

in distributed communication and parallel tasking. Its textual representation

retains a clear and intelligible form in notation.

[]chIn?y:msgOK’->
req!REQUEST

chIn?x:msgOK->

Receiver

ch!POLL->Requester

(chIn?y:{POLL}->

req?REQUEST->

[]chIn?y:{NACK})->
chOut!NACK->Receiver

dataOut!x->
Suspended

Requester

chOut!x->Sender

dataIn?x:msgOK

Sender

chOutchIn Running

dataIn

chIn chOut

req

dataOutReceiver

Requester

req ch

Sender

DE
15
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Second, hierarchical FSMs enable a modal execution of CSP mod

Similar to the command "watch" in some synchronous languages [11], embed

CSP in FSM allows activating and suspending CSP modules at any state. It

helps to represent a protocol at different levels of abstraction.

Third, DE model provides a global system time which facilitates the adju

ment of the timers in timed-CSP modules. It therefore proliferates the timing s

ments in timed-CSP that remarkably reduce the burden in specifying tim

behaviors.
16
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In this chapter, we present the details of the software tool that realizes

proposed hybrid architecture for protocol modeling and simulation. To leverag

existing tools, we integrate SPIN, the interpreter of PROMELA, into Ptolemy

framework providing many domains including FSM and DE. The integration fa

many challenges such as coordination of two simulation kernels, event conve

and forwarding, implementation of timed-CSP statements, and scheduling of

and DE.

We give a brief overview of Ptolemy in Section 3.1 and point out a poss

niche in its structure to accommodate an external tool. Then we explain the sim

tion kernel of SPIN and discuss the extension of its input language PROMEL

include temporal expression in Section 3.2. Section 3.3 describes the implem

tion considerations while embedding SPIN in Ptolemy. Finally, we introduce

tool SiP (SPIN in Ptolemy) in Section 3.4.

3.1 An Overview of Ptolemy

Ptolemy is a modeling and simulation framework for heterogeneous

tems. It covers many aspects of designing signal processing and communic

systems, ranging from algorithms, system modeling, simulation, through par

computing, software/hardware synthesis, and real-time applications. The non

matic kernel of Ptolemy allows users to freely choose a best matched doma

specify each of the subsystems from many built-in domains including sync
17
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nous/Boolean/dynamic dataflow, discrete-event, process network, etc. Pto

also functions as a coordination framework that deals with the scheduling of s

lation across all mixing domains.

The basic computation unit of modularity in Ptolemy is the Block. A sy

tem modeled by Ptolemy can thus be viewed as an interconnected block diag

Blocks communicate one another by propagating streams of messages

through links among them. Derived from Block, a Star is the lowest level objec

Ptolemy which contains a module of code that is invoked at run-time. Also der

from Block, a Galaxy may hierarchically contain both Galaxies and Stars to for

computation unit at a higher level. As expected, Universe is the name of the o

that contains a complete system.

Every Star in Ptolemy contains a "go()" method which will be execut

every time the Star is triggered. Typical scenario of the "go()" method is fi

examining Particles present at the input ports of the Star, getting Particles and

forming computation, and then generating new Particles on the output ports

found the "go()" method is actually a great niche to store the code for commun

ing with an external tool. Such a bridging "go()" method contains 3 parts in

design:

1. Get data from input ports and convert them into the format used by the e
nal tool.

2. Call an external procedure to perform an iteration of computation.

3. Wrap up the computation results and put them on output ports.

This is our main idea of the agent star described in Section 3.3. By w

ping up a SPIN process to imitate a Star, we enable Ptolemy kernel to exe

external computation without modifying the kernel..

3.2 SPIN and PROMELA

SPIN is a tool allows simulating and validating distributed modules

concurrent systems. Actually, it was originally designed to perform simulation
18
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verification of communication protocols. In this report, we only focus on its abi

of simulation and try to modify and integrate it into Ptolemy.

The input language to SPIN is called PROMELA, which is a descript

language for extended FSMs. Its syntax loosely bases on Dijkstra's guarded

mand language notation and C.A.R. Hoare's language CSP [30]. PROMELA

ports only three types of objects: processes, variables, and channels. Proces

like C functions in design, and like UNIX processes in behavior. The body o

process is a sequence of CSP-like statements that specify the behavior of a d

uted entity. Variables can be global or local, and can be given values by assign

or receiving statements within proper scopes. Supported types are Boolean

byte, integer, and user-defined structures. Channels are essentially queue

shared among processes. A channel is declared to pass a certain type of me

and is given a fixed finite length.

One obvious shortage of PROMELA, similar to most reactive mo

description language, is the lacking of temporal statements. However, the co

functioning of a distributed real-time system depends on the timely coordinatio

its interacting components [22]. The protocol elements thus inevitably hav

react according to those timing requirements. In Section 3.2.1 we propose se

temporal statements and their reacting semantics.

3.2.1 Extending PROMELA’s Expressiveness

The original PROMELA grammar has neither timer data type nor timi

commands. The SPIN simulation kernel regards the execution time of each at

PROMELA statement, a single command or an atomic block of commands, as

iteration. Therefore, every time span between two consecutive atomic stateme

considered as a universally equal and indivisible duration. This assumption l

awkward while coupling SPIN and DE domain because DE model requires e

operation having been assigned an execution duration. For regular DE compu

units, the duration could be either constant or variable, and is assigned as the
19
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consuming time of the executed commands in one iteration. This is accepta

the operation is similar in each iteration such as parity bit checking or extrac

header from a packet. However, during each iteration a protocol module could

cute a very different set of commands and hence a fluctuating execution time.

usual way to work around it is to define the duration of each executed atomic s

ment as one time unit. But, this assumption seems too coarse since it may reg

long arithmetic computation and a simple register shifting taking same opera

time.

We adopt a more flexible approach to specify the execution time

PROMELA code. A Programmer could place adelay(duration) command after

each atomic statement whose execution time is not negligible and assume

ahead it are zero-delay. For example, suppose during some state a protocol m

needs to perform two register shifting and one shortest path searching, we

placedelay(10) after that searching procedure to indicate the aggregate duratio

these three statements is 10 time units. Besides, thedelay( ) command can also be

used to assure the correctness of received data if signal settle time and bus

time are taken into consideration while modeling a bus I/O protocol.

Another temporal event in protocol specification is time-out. A typical ca

is to start a timer after sending a packet and retransmit the packet if an ackn

edgment has not been received after a predefined duration. To specify this ti

mechanism in PROMELA, we need to create the timer data type. A timer ca

reset to any starting time at any place of codes by assigning a value. Program

are allowed to use as many timers as necessary and have them running sim

neously. Theexpire(timer, target-time) command is used to check if a specifi

timer has expired as well as to register a likely time-out event in the future. N

the registered time-out event is not deterministic to happen since other e

could abort the waiting state or a timer reset command could change the ta

time.
20
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Routine state checking is also useful while specifying a protocol. A pro

col module may enter an idle state for a long time and be unaware of some

going wrong. In this case, programmers could use a timer and set a target-tim

inspect states again. Or, implicitly, using commandreturn (duration) will register a

promissory return time to invoke the module again.

To enhance PROMELA with these temporal features, we have to mo

the parsing rules of PROMELA and give corresponding execution codes in S

Our current implementation already includes all the features mentioned abov

addition, we allow timers to be mixed with or assigned by other arithmetic exp

sion. This requirement comes from that fact that timing is usually a paramete

other functions and target-times are often calculated by some formulas. More

It is also permitted to apply timers to comparison operations such as >, <, ==

This facilitate programmers verifying the timing at any moment before the tim

has reached its target-time.

3.2.2 The Simulation kernel of SPIN

The simulation kernel of SPIN is implemented as an interpreter

PROMELA. It relies on yacc to build a parse tree before the simulation can

started. Also, many symbol tables will be established to facilitate the evaluatio

variables, operation of queues, and control of program flow at run-time. Figur

gives a high-level view of the parse tree where two processes and their vari

and statements are shown.

The scheduler of SPIN randomly picks one sequential statement from

of all non-blocking processes and calls the evaluator to execute that statemen

evaluator then updates variables if the statement contains assignments, or d

next statement to be executed if the statement is a control flow command. As

the initial value of PC (next process to choose) in Figure 3.1 points to proces

and the internal PC of A and B point to statement P and Z respectively. Pos
21
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execution scenarios are PZQR, PQZR, and PQRZ if the control flows in A an

remain sequential and the execution blocked after R or Z.

Figure 3.1  The parse tree of processes built by SPIN simulation kernel.

Most of our modification is made to the scheduler and evaluator of

SPIN simulation kernel. We disabled the nodeterministic scheduler of SPIN an

the Ptolemy DE scheduler take over the scheduling. We also rewrote the core

routines of the evaluator so that timing statements, floating-point operations,

external C function calls could be understood by SPIN.

3.3 Integrating SPIN into Ptolemy

The way we integrate SPIN into Ptolemy is to have both their simula

kernel running at the same time. This approach requires an interface to interch

data, events, timings and other more subtle information such as pointers of

tions between SPIN and Ptolemy. Our idea is to create an agent star for each

col module written in PROMELA. An agent star is regarded as a regular DE

by Ptolemy and is in charge of passing all information back and forth betw

SPIN and Ptolemy such as propagating data through the input and output cha

so-called ports, of a star and a protocol module.

To choose a suitable class from DE stars, we at first enumerate the fea

of a PROMELA protocol module, so-called process, and select the star class w

quite describes those attributes. A process has I/O channels, parameterizable

and it is able to re-invoke itself after a specific duration. In addition, it always c

P Q R

PC
.B

.A

PC
nm

B
variable list

statement list

X Y Z

su

A
variable list

statement list

v t
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sumes all simultaneous incoming events before reacts to the environment like

putting data or emitting new events. Also, it is possible that many processes tr

one another simultaneously without a deterministic order. We soon found

DERepeatStar class with Phase mode and Delay type fits these requirement

well. Therefore, we let all agent stars be derived from the DERepeatStar clas

tuned to Phase mode and Delay type immediately after construction.

3.3.1 Communication Ports

In order to bind ports and states, we need to understand the data stru

of local variables of a process in SPIN. They could be single-space varia

arrays, FIFO (first-in-first-out) queues, or arrays of FIFO queues and they ar

allowed to be ports or states. To improve execution efficiency, we create a po

for each port and state variables and make the links at the first visit to the a

star. Also, at first visit, state variables are assigned the values which were par

terizable from Ptolemy environment as their initialization. After then, data arriv

star ports are written to the data structure of SPIN through their correspon

pointers.

The FIFO queues are accessed by using queue functions provided by S

Specifically, an agent star repeatedly gets a data unit, so-called particle, fro

input port and forwards it to the corresponding FIFO queue in SPIN. In the o

hand, if a port variable has been updated during an iteration, its updated value

be emitted to the output port of the agent star with an appropriate time stamp.

ilar actions apply to the FIFO queues if there are some data having been ins

into the queue during an iteration. Figure 3.2 illustrates how a SPIN proces

bound with a Ptolemy star and Figure 3.3 shows the forwarding paths betw

them.

A process not only cares the value of an incoming data, but also need

know if there are new events, i.e. new data, arriving a specific port. We introd

commandpresent(port) to test if a new particle has arrived at the given port a
23
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turnoff (port) to turn off that indication. The commandadmit(port) is used as

shorthand of testing and turning off immediately. An input port is also allow

assigning the sustainment of present indication. The attributive keywordpersist

indicates the present indication is persistent until it has been turned off explic

Without declaringpersist, an input port is considered volatile which retains th

indication only at the arrival time of a particle. As time proceeding, it will be dea

tivated automatically.

Figure 3.2  Extra pointers are used to bind the I/O prots of Ptolemy with the
corresponding variables in SPIN.

Figure 3.3  Particles are forwarded between Ptolemy and SPIN.
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3.3.2 Discrete-event Agent Star

Recall that an agent star only bridges ports between SPIN and Ptol

itself does not perform any operation specified in the protocol module it ser

For any incoming event, the agent star first forwards the particle, indicates s

present, and then calls a PROMELA interpretation procedure in SPIN to take

execution. Given the process identification number passed by the agent star,

locates the desired process and reloads its program counter to resume inter

tion. As we defined in last section, all consecutively executable PROMELA st

ments without adelay(duration) command beneath are considered zero-del

Therefore, SPIN always processes PROMELA codes continuously until an un

cutable statement is reached and then it returns control to Ptolemy. However

does not imply that statement is forever unexecutable because other processe

change the situation. If it does never get through, it is most likely an incorrect

tocol design which leads the system entering a deadlock or an abnormal term

tion.

There are four cases of unexecutability. First, adelay(duration) command

is always unexecutable because it will not be satisfied until global time has

ceeded by that duration. Second, anexpire(timer, target-time) command will not

be executable until the timer reaches its target-time. The third situation is the

usual one, a logical false condition. For example, an expressionACK==1 is

regarded as an unexecutable statement ifACK is not equal to 1 at that moment. Th

event present test commandpresent(port) is considered as a logical expression

well as all Boolean-typed functions. The last case is executing areturn (duration)

command. This is obvious as the function ofreturn ( ) is just to register a future

visit before it yields current control to Ptolemy simulation kernel.

3.3.3 Firing Mechanism

So far we have solved the semantics and implementation details relat

port binding and execution control transferring. However, they are not the m

reason we choose the DERepeatStar class as the base class of agent stars. T
25
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cialty of a DERepeatStar is that it is equipped a pair of feedback I/O ports

default. By placing a particle with an appropriate time stamp onto its feedback

put port, a DERepeatStar is able to re-invoke, so-called refire, itself at any fu

time. This is because that particle will follow the feedback link back to the st

feedback input port and become a triggering event when the global time rea

the moment as the time stamp of the particle. Therefore, for the cases that

yields control caused by timing commands such asdelay( ), expire( ) andreturn (

), the agent star is able to schedule itself a future refiring by using feedback p

As for the logical unexecutability, the agent needs not schedule any refiring s

that will eventually be solved by some input events sending from other process

the protocol was correctly designed [50].

The refiring time is assigned the earliest expected epoch when the un

cutable statement may become executable. As a result, it is true that we ca

estimate the time when a logical unexecutability would be solved, and hence w

not schedule a refiring for it. Nevertheless, we are able to schedule the refiring

timing conditions. For example, adelay(duration) command definitely suspend

the process forduration time units. The refiring time stamp is simply current glo

bal time + duration. This also applies to the commandreturn (duration). Their

semantic difference is thatdelay( ) absolutely stops the evolution of process durin

suspended time whilereturn ( ) allows other triggering to awake the process pri

guaranteed reentry. Commandexpire(timer, target-time) leads to schedule a refir-

ing at current global time +target-time- current value oftimer. Note this schedul-

ing will keep updating astimer and target-timemay vary before timeout. Briefly,

the principle of timing refiring is to invoke the process exactly at the time

becomes executable. Otherwise, the evolution of that process is delayed an

the simulation violates the definition of concurrency. Such being this case,

modeling of current processes is distorted and the simulation result is incorre

In addition to regular event firing and timing refiring, the broadcasti

event firing also awakes agent stars. It is often used in specifying protocol mod
26
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communicating through shared media such as a topology with a shared bu

radio broadcasting via atmosphere. Since construction, every agent star is end

state parametermediumwhich could be freely designated. During simulation, a

agent star could listen and/or broadcast events to all other members on the

medium, and have them be invoked to check if any further state transition is p

ble. We propose two ways to specify the medium an agent star belongs to: ex

assignment and implicit scope. The former method categorizes agent stars int

ferent medium groups according to the given medium names throughout hiera

The implicit scope method defines medium groups by the hierarchical levels o

protocol structure. Based on the Ptolemy design paradigm, the level of a s

uniquely determined by its parent compositional blocks, so-called galaxies.

cifically, the compositional architecture decides the scopes of media.

3.4 The Tool, SiP

SiP (SPIN in Ptolemy) is a preliminary software implementation of t

protocol modeling and simulation methodology proposed in this report. Its exp

mental prototype is announced in SRC Annual Review, Austin, March 1998.

first version SiP1.0, as a patch package supplemented with Ptolemy, was rel

on June 29. SiP1.1, supporting C++ function calls in PROMELA, was release

August 1. And SiP1.2, which allows floating-point operations in PROMELA, w

released on September 10. All packages and their installation instructions cou

downloaded from the URL of http://ptolemy.eecs.berkeley.edu/dgm/protocol/.

SiP contains four major components:

1. A Ptolemy language code generator for agent stars, calledppl2pl.
2. Add-on Ptolemy source codes supporting agent stars.

3. A Ptolemy-supported SPIN package.

4. A protocol element library.

A typical scenario of protocol modeling and simulation using SiP

described as follows.
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1. Specify each newly defined protocol module by PROMELA (enhanced w
new features).

2. Useppl2pl to generate the Ptolemy language codes of the agent star for e
new protocol module.

3. Make the agent stars of new protocol modules under Ptolemy environm
After doing this, a reusable icon for each new protocol module is created
the modules in build-in library.

4. Specify the architecture of protocols and the connections between proto
modules and system elements. Protocol modules can be grouped to for
more abstract compositional blocks as galaxies in Ptolemy.

5. Perform system-level simulation to verify the functionalities of the testing
protocols.

Figure 3.4  Four phases of SiP’s running cycle.

Figure 3.4 gives a closer view of the running cycle of SiP, which can be

egorized into four phases. Phase 1 is the Specification Phase indicating the e

of protocol modules as well as system construction. After received a simula

request, SiP enters Phase 2 to generate and preprocess PROMELA codes of

protocol modules on the system schematic. Once completing PROMELA c

generation, in Phase 3 SiP first has the SPIN parser to construct the parsing tr

each module, and then it binds all interfaces between each pair of agent sta

PROMELA process. Figure 3.5 gives the detailed view of a pair of PROME

process and its corresponding parse tree in SPIN at this point. Next, SiP s

Phase 4, the Ptolemy-SPIN Co-simulation Phase, to perform system-level sim

protocol + schematic
specification

PROMELA code
generation

protocol

bind Ptolemy & SPIN
parse PROMELA

library
module SPINPtolemy

1

2

3

4
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tion. Finally, the result of simulation feedbacks to Phase 1 to help the designer

idate the functionalities of protocols and evaluate the system-level performan

Figure 3.5  The side-by-side comparison of a PROMELA process and its
corresponding parse tree built by SPIN.
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To justify the effectiveness of our tool, in this chapter we examine a

specify several network protocols using SiP. Although the following cases are

damental building elements of protocols, they become reusable modules afte

resented in SiP. Leveraging on the cumulative designs of new modules, one

always construct more sophisticated protocol elements by exploiting the hiera

capability of the tool.

4.1 Connections

Data communication services in a network can be categorized into

types, connectionless and connection-oriented. Typical examples are the P

Switched Telephone Network (PSTN) and the Internet Protocol (IP) switching

work respectively. A connectionless service allows a node sending data pack

another node without having obtained a permission from it previously, whil

connection-oriented service needs a connection setup phase to guarantee th

ity of service (QoS) [28].

Specifically, in a connectionless communication, the switching process

can transfer a packet to its counterpart process PB at another switch each tim

packet is ready to be sent out. Both of the two switches have no information a

whether if the conducting packet is belonged to a certain data stream. Also,

have no knowledge of the traffic of the subsequent packet flow. Consequently

may start discarding packets when it runs out of buffers.
30
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Unlike the connectionless communication, a connection-oriented ser

requires PA to establish a connection to PB by a setup procedure before it s

first data packet to PB. The established connection can later be disconnecte

disconnection procedure similar to the connection procedure. We call the rul

the procedures to establish and disconnect a connection as a connection pr

[14].

Briefly, to establish a connection, PA first sends a connection req

(CON_REQ) to PB and waits for its response. After received the request,

checks the availability of its resource and replies PA with a positive acknowle

ment (CON_ACK) or a negative rejection (CON_REJ). Once the connection

been established, data packets can be transferred continuously from PA to P

disconnect the connection, the disconnection request (DIS_REQ) can be issu

either PA or PB. And, to confirm that request, the one received DIS_REQ rep

CON_REJ as a confirmation.

We first use SiP to model the connection requesting side, i.e. PA, as

lows.

#define IN_BUFF 32
#define OUT_BUFF 32
#define DATA_BUFF 256

mtype = { CON_REQ, CON_ACK, CON_REJ, DATA, DIS_REQ, IDLE, SETUP,
  CONNECTED, TEARDOWN }

proctype PA()
{
 inport chan pktIn = [IN_BUFF] of { int };
 inport chan dataBuf = [DATA_BUFF] of { int };
 outport chan pktOut = [OUT_BUFF] of { int };
 const int SETUP_TIMEOUT=64;
 const int DATA_TIMEOUT=5;
 int tempPkt;
 int state=IDLE;
 timer t1;
 do
   ::(state==IDLE)->
     if
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       ::(len(dataBuf)>0)->pktOut!CON_REQ; state=SETUP; t1=0;
       ::(len(pktIn)>0)->pktIn?tempPkt;
       ::else->return(0);
     fi;
   ::(state==SETUP)->
     if
       ::pktIn?CON_ACK->state=CONNECTED; t1=0;
       ::pktIn?CON_REJ->state=IDLE;
       ::(len(pktIn)==0)->
         if
           ::expire(t1,SETUP_TIMEOUT)->state=IDLE;
           ::else->return(0);
         fi;
     fi;
   ::(state==CONNECTED)->
     if
       ::pktIn?CON_REJ->state=IDLE;
       ::(len(dataBuf)>0)->dataBuf?tempPkt; pktOut!DATA; pktOut!tempPkt; t1=0;
       ::(len(dataBuf)==0)->
         if
           ::expire(t1,DATA_TIMEOUT)->pktOut!DIS_REQ; state=TEARDOWN;
           ::else->return(0);
         fi;
     fi;
   ::(state==TEARDOWN)->pktIn?CON_REJ->state=IDLE;
 od;
}

Figure 4.1  SiP specification of the connection process at requesting side.

Process PA uses a pair of I/O ports,pktIn andpktOut , to communicate

with process PB. It also provides a service access point (SAP),dataIn, for the

entity it served,A, to input data packets. In above specification, we adopt a tim

t1 to simplify the interface between PA andA instead of having one explicit con-

trol port and one status feedback port. The former method lets timeout even

tiate a disconnection request automatically while the later method require

explicit external controlling signal.

Process PA has four states, IDLE, SETUP, CONNECTED, and TEA

DOWN. Initially, the state is set to IDLE. Once PA gets the first data packet fr

A, it enters the SETUP state and starts to establish a connection with PB by s
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ing CON_REQ to it. At the same time, a timer is started to prevent PA from w

ing for PB's reply forever. If PA does receive a correct reply, it will be eith

CON_ACK or CON_REJ and that decide the next state of PA to be CONNECT

and IDLE respectively. Or, the reply is lost and t1 expires. In this case, PA se

CON_REQ again and reset t1 to start another trial of connection.

When a connection has been established, PA sequentially forwards

packets from A to PB. If there is no more data packet indataIn for

DATA_TIMEOUT time units, we assume this is the case thatA has already sent all

data and a disconnection request DIS_REQ should be sent immediately. By d

that, PA enters the TEARDOWN state and wait for CON_REJ from PB to confi

the disconnection. In fact, a CON_REJ from PB at any moment will force PA b

to the IDLE state.

Compared with PA, PB is simpler in the connection protocol as it only h

two states, IDLE and CONNECTED. Its SiP specification is listed below.

#define IN_BUFF 32
#define OUT_BUFF 32
#define DATA_BUFF 256

proctype PB()
{
 inport chan pktIn = [IN_BUFF] of { int };
 outport chan pktOut = [OUT_BUFF] of { int };
 outport chan dataBuf = [DATA_BUFF] of { int };
 int tempPkt;
 int state=IDLE;
 do
   ::(state==IDLE)->pktIn?CON_REQ->
     if
       ::(len(dataBuf)<DATA_BUFF/2)->pktOut!CON_ACK; state=CONNECTED;
       ::else->pktOut!CON_REJ;
     fi;
   ::(state==CONNECTED)->
     if
       ::pktIn?DIS_REQ->pktOut!CON_REJ; state=IDLE;
       ::pktIn?DATA->pktIn?tempPkt->
         if
           ::(len(dataBuf)<DATA_BUFF)->dataBuf!tempPkt;
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           ::else->pktOut!CON_REJ; state=IDLE;
         fi;
     fi;
 od;
}

Figure 4.2  SiP specification of the connection process at receiving side.

Initially set to the IDLE state, PB acknowledges the connection requ

from PA only when at least half of its local buffer is empty. Otherwise, it repl

with CON_REJ to reject the connection. Once the connection has been e

lished, PB is in CONNECTED state and it forwards every incoming packet to

local buffer. If the incoming rate is much higher than the processing rate and

the local buffer is exhausted, PB will send PA a disconnection notificati

CON_REJ, and interrupt connection immediately. After that, PB returns to

IDLE state.

Although we now have built the two communicating modules of the co

nection protocol, it only models a simplex connection. Specifically, these

modules only allow establishing a connection from PA side to PB side but not

other direction. However, as explained in Chapter 2, more complicated proto

can always be constructed if we have taken the reusability into account. For e

ple, the middle part of Figure 4.3 shows a design of half-duplex protocol wh

each side consists of both PA and PB blocks. Since a half-duplex protocol at

allows one connection from one side to the other, each side needs an extra c

input to switch between transmitting and receiving modes. The switching con

here is similar to the "push-to-talk" button on a talk radio whose position dec

the radio to send out or receive from a channel. As shown in the figure, we im

mented this mechanism by using a relay and a multiplexer to direct and m

packet streams. For each side, PA block is activated and PB is shut off whe

control is on and inversely when it is off. A galaxy icon representing the schem

is shown on the right. It can be reused to build even higher layer schematics

as an N-port half-duplex module.
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Figure 4.3  Construct duplex connection protocols using simplex blocks.

A full-duplex connection protocol can be similarly constructed as shown

the bottom of Figure 4.3. Note that in this case we do not have an extra contro

because now PA and PB blocks are allowed to interact with their counterp

simultaneously. That is, data packets now can propagate in both direction

establishing a two-way connection.

4.2 Error Detection and Recovery

In last section, we assume the channel between two distant processe

and PB is perfect. That is, through that channel packets can always arrive the

side correctly. The real world, however, is not such perfect. Three different type
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errors could happen during the delivery: corruption, loss, and out-of-order ar

[27]. The sender or receiver hence has to detect whether some error happene

ing the transmission, and then either correct it or initiate a retransmission pr

dure.

Due to electrical interference or thermal noise, bits may be altered at

point of the medium thorough the connection. To recover the corrupted bits

error control code accompanied with the erroneous packet needs to contain en

information for the correction. The price of this recovery ability is that more b

are required for the error control code and thus less efficient in conveying

[27]. The bit error rate (BER) of the medium and end-to-end latency are two m

considerations while making the trade-off between recovery ability and data

ciency. Intuitively, low BER requires less protection bits and small latency aff

multiple trials of transmission so that simpler protection techniques are prefer

Today's wired networks, especially the optical links, suffer from very lo

BER and moderate latency. Instead of trying to recover corrupted bits, more

cient technique such as cyclic redundancy check (CRC) is widely used in the

link layer to detect bit corruption. For example, an Ethernet frame carries u

1,500 bytes of data requiring only a 4-byte CRC code. Besides, BISYNC by IB

DDCMP by DEC, IMP-IMP used in ARPANET, HDLC, FDDI and ATM all adop

the CRC algorithm [2]. However, this protection code is only for detecting

occurrence of bit corruption but not able for recovery. Once a receiver detects

error, it immediately discards the frame and executes a predefined routin

inform the sender that a retransmission of that frame is required.

The elaboration of detection techniques is more like refining an algorit

rather than a protocol design issue. Alternatives such as two-dimension parity

Internet checksum algorithms also try to correlate data bits with much sho

redundant bits. These techniques manipulate the data packets themselves

not involve in the interaction of distributed processes, which is the core issu

specifying protocols. In fact, while designing a reliable communication proto
36
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we often assume that an error detection technique has been chosen and conc

on working out the routines to recover errors. Specifically, we enumerate pos

scenarios of errors, and then define corresponding recovery rules to resend

rupted and lost packets and reorder out-of-order packets.

Recall the PA and PB processes in last section, the issue now is to hav

packets sent by PA be delivered at PB without corruption, loss or reorder.

usual approach of error recovery is having PB reply PA an acknowledgem

packet in response to the received data packets sent by PA. Then PA examin

received acknowledgements to perceive which packets has lost or discarded

due to corruption. After that PA can either resend those missing packets or

batch basis depending on the consideration of complexity and efficiency.

Three features are generally shared in the error recovery protocols. F

each data packet sent by PA includes a sequence number field. Therefore by

ining the numbers, PB is able to reorder those out-of-order packets. Second

packets received by PB is acknowledged by replying PA an acknowledgem

packet. This response could be taken with respect to each individual data pac

a block of them. Third, a number is predefined to limit the maximal amount of d

packets PA can send without receiving acknowledgement regarding any of t

This upper bound is usually called window size. Error recovery protocols with

feature are hence named sliding-window protocols.

A typical sliding-window protocol works as follows. At sender's side, P

continuously sends data packets containing increasing sequence numbers to

long as allowed by the window size. Whenever PA receives acknowledgemen

window is moved ahead of all acknowledged data packets. If the earliest

packet within the window has not been acknowledged for a predefined tim

duration, PA resends that packet using its original sequence number. At rece

side, PB replies all correct packets and discards corrupted ones. For those cor

received packets, PB only stores the unacknowledged ones because it reco

that the rest in fact have already been saved but whose past acknowledge
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were lost. Besides, PB uses sequence numbers to store out-of-order packets

rect order.

A practical specification of the sliding-window protocol using SiP is show

below.

#define IN_BUFF 32
#define OUT_BUFF 32
#define DATA_BUFF 256
#define SWINSIZE 17

utility {
enCRC; deCRC; Max;
}

proctype PA()
{
 inport chan pktIn = [IN_BUFF] of { int };
 outport chan pktOut = [OUT_BUFF] of { int };
 inport chan dataBuf = [DATA_BUFF] of { int };
 const int PKT_TIMEOUT=10;
 int lar=-1, lps=-1, dataBkup[SWINSIZE];
 int tempPkt, tempSN, tempCRC;
 timer tm[SWINSIZE];
 do
   ::((lar+SWINSIZE > lps) && (len(dataBuf)>0))->

dataBuf?tempPkt; lps++; pktOut!tempPkt; pktOut!lps; pktOut!enCRC(tempPkt, lps);
dataBkup[lps%SWINSIZE]=tempPkt; tm[lps%SWINSIZE]=0;

   ::((lps > lar) && expire(tm[(lar+1)%SWINSIZE], PKT_TIMEOUT))->
     pktOut!dataBkup[(lar+1)%SWINSIZE]; pktOut!lar;
     pktOut!enCRC(dataBkup[(lar+1)%SWINSIZE], lar+1);
     tm[(lar+1)%SWINSIZE]=0;
   ::(len(pktIn)>0)->pktIn?tempPkt; pktIn?tempSN; pktIn?tempCRC;
     if
       ::deCRC(ACK,tempSN,tempCRC)->lar=Max(lar, tempSN);
       ::else->skip;
     fi;
od;
}
#define RWINSIZE 17
#define ACK 255

proctype PB()
{
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 inport chan pktIn = [IN_BUFF] of { int };
 outport chan pktOut = [OUT_BUFF] of { int };
 outport chan dataBuf = [DATA_BUFF] of { int };
 bool needAck=0, rcvInd[RWINSIZE];
 int npe=0, dataBkup[RWINSIZE], i;
 int tempPkt, tempSN, tempCRC;
 i=0;
 do
   ::(i<RWINSIZE)->rcvInd[i]=0; i++;
   ::else->break;
 od;
 loop:
  pktIn?tempPkt; pktIn?tempSN; pktIn?tempCRC;
  if
    ::deCRC(tempPkt,tempSN,tempCRC)->
      if
        ::(tempSN < npe)->needAck=1;
        ::((npe <= tempSN) && (tempSN < npe+RWINSIZE))->
          rcvInd[tempSN%RWINSIZE]=1; dataBkup[tempSN%RWINSIZE]=tempPkt;
          do
              ::rcvInd[npe%RWINSIZE]->dataBuf!dataBkup[npe%RWINSIZE];
                rcvInd[npe%RWINSIZE]=0; needAck=1; npe++;
              ::else->break;
          od;
        ::else->skip;
      fi;
      if
        ::needAck->pktOut!ACK; pktOut!npe-1; pktOut!enCRC(ACK, npe-1); needAck=0;
        ::else->skip;
      fi;
    ::else->skip;
  fi;
  goto loop;
}

Figure 4.4 SiP specification of a sliding-window protocol (PA for transmitting
side; PB for receiving side)..

Variables, constants and auxiliary procedures used in these two proc

are defined as follows:

lar : last acknowledgement received
lps : last packet sent
npe : next packet expected
SWINSIZE: sending window size
RWINSIZE: receiving window size
39



eout,

is that

ing

track

wl-

nds

cket,

ding

.

its

cket. If

et

st. PB

equal

be

that,

rre-

hed.

next

et has

case,

e data

s to

been
enCRC: encode CRC
deCRC: decode CRC

PA has three major states, sending a packet, acknowledgement tim

and receiving an acknowledgement packet. The prerequisite to send a packet

lps has to be still within the sending window size and there must exist pend

packets to be sent. After sending a packet, PA resets and starts a timer to keep

of the time it has been waiting for that packet. If the timer of the oldest unackno

edged packet, which was sent PKT_TIMEOUT time units ago, expires, PA se

that packet again and resets the timer. After receiving an acknowledgement pa

PA first verifies its correctness by using CRC checking, and moves the sen

window ahead of the acknowledged packet index if the verification is positive

PB will be triggered only when a data packet arrives. After verifying

correctness, PB takes actions with respect to the sequence number of the pa

the number is smaller thannpe, PB recognizes that one earlier copy of this pack

has been successfully received but all of its acknowledgements have been lo

then sends another acknowledgement for this packet again. If the number is

to or greater thannpe and less thannpe+RWINSIZE, the packet is said to be

within the receiving window. The data bytes contained in the packet will then

stored but not yet delivered because they could be out-of-order packets. After

PB examines the receiving indications starting from npe and delivers the co

sponding data bytes sequentially until the first negative indication is reac

Finally, an acknowledgement is sent to acknowledge all packets prior the

expected packet. The last case of a correctly received packet is that the pack

a sequence number larger than the upper bound of receiving window. In that

PB has to discard the packet because it does not have spare buffer to store th

bytes of the packet. As for corrupted packets, PB simply discards all of them.

4.3 Flow Control

At the end of last section, we mention that the receiving process PB ha

discard packets due to running of out buffer, even though those packets have
40
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correctly received. To avoid wasting transmission bandwidth like this, the sen

process PA should control the flow of its outgoing packet stream so that it will

overwhelm PB's handling capability. However, on the other hand, PA should

try to send PB as many packets as possible for maximizing efficiency. The req

ment of such trade-off leads to the development of various flow control sche

[48].

The sliding-window protocol discussed above in fact has a very primit

design of flow control. Its sending window size, SWINSIZE, prevent PA send

further packets if the number of unacknowledged packets already reaches the

This blocking remains until PA receives an acknowledgement for some pa

within the sending window.

There are three defects of the sliding-window protocol in terms of cont

ling the packet flow. First, large SWINSIZE makes the control ineffective due

the rare blocking on PA side. This happens when the round-trip time (RTT) of

>PB->PA is long and we try to "fill the pipe" to achieve higher efficiency. Seco

fixed SWINSIZE disables PA from adapting the sending window size to refl

current situation of PB. Intuitively, one would like to shrink SWINSIZE when P

is very busy and enlarge it when PB is close to idle. Third, in sliding-window p

tocol, an acknowledgement bundles both the information of confirming recep

and allowing further sending, which makes PA less perceivable to the actual s

of PB. For example, PB may want to acknowledge some packets but still kee

blocked because it is currently too busy to accept any new packets. The bund

however, is unable to differentiate this situation.

For the rest of this section, we will discuss a modified version of the s

ing-window protocol that allows PA to change SWINSIZE depending on the

quency of discarding packets [14]. In the modified protocol, the cons

SWINSIZE is replaced with a variableswinsize whose value ranges from

MINSWS to MAXSWS. Depending on the occurrence of packet discard,swinsize

has the flexibility to be adjusted within that range and which actually tunes
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tightness of sending window. Specifically, whenever an acknowledgement tim

happens and PA resends the corresponding packet,swinsizeis reduced by a factor

of 2 if the new value is not less than MINSWIN. On the other hand, every time

successfully sends THRSWS packets to PB without having to resend any o

them,swinsizeis incremented by 1 if the new value is not greater than MAXSW

The adaptation algorithm of this scheme, though effective, turns out

pessimistic when timeouts happen consecutively. Say the waiting for ackn

edgements of packet 3, 4, 5,. . . expires one by one,swinsizewill be decreasing

exponentially. However, we know that most timeouts are not caused by the tr

mission error which rarely happens in today's wired media. Most of time th

missing packets are discarded by the receiver due to insufficient buffer of proc

ing ability. Therefore, it is expected that the syndrome of packet loss appears

burst fashion. In this case, after resending packet 3 and halving swinsize, PA

not want to decreaseswinsizeagain when the acknowledgement of packet 4 a

expires later.

One way to work around the problem is to keep track of an "unlikely w

dow" that specifies a continuous list of possibly discarded packets. After

resending a packet, it checks whether the sequence of the packet falls i

unlikely window. If yes,swinsizeremains unchanged; otherwise it is halved. T

updating of the unlikely window is done whenever theswinsizeis reduced.

Figure 4.5 shows the PA process accomplished the flow control sch

described above. Since the controlling is totally done by PA, in this scheme P

the same as the one in last section.

utility {
enCRC; deCRC; Max; Min;
}

#define SWINSIZE 17
#define MINSWS 2
#define MAXSWS 17
#define THRSWS 2
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proctype PA()
{
 inport chan pktIn = [IN_BUFF] of { int };
 outport chan pktOut = [OUT_BUFF] of { int };
 inport chan dataBuf = [DATA_BUFF] of { int };
 const int PKT_TIMEOUT=10;
 int lar=-1, lps=-1, uws=-1, uwe=-1, cap=0, swinsize=(MINSWS+MAXSWS)/2;
 int tempPkt, tempSN, tempCRC, dataBkup[SWINSIZE];
 timer tm[SWINSIZE];
 do
   ::((lar+swinsize > lps) && (len(dataBuf)>0))->dataBuf?tempPkt;
     lps++; pktOut!tempPkt; pktOut!lps; pktOut!enCRC(tempPkt, lps);
     dataBkup[lps%SWINSIZE]=tempPkt; tm[lps%SWINSIZE]=0;
   ::((lps > lar) && expire(tm[(lar+1)%SWINSIZE], PKT_TIMEOUT))->
     pktOut!dataBkup[(lar+1)%SWINSIZE]; pktOut!lar;
     pktOut!enCRC(dataBkup[(lar+1)%SWINSIZE], lar+1); tm[(lar+1)%SWINSIZE]=0;
     if
       ::((uws<=lar+1) && (lar+1<=uwe))->skip;
       ::else->swinsize=Max(swinsize/2, MINSWS); uwe=lps;
     fi;
     uws=lar+2; cap=0;
   ::(len(pktIn)>0)->pktIn?tempPkt; pktIn?tempSN; pktIn?tempCRC;
     if
       ::deCRC(ACK,tempSN,tempCRC)->
         cap=cap+Max(tempSN-lar, 0); lar=Max(lar, tempSN);
          if
            ::(cap>=THRSWS)->swinsize=Min(swinsize+1, MAXSWS);
              cap=cap-THRSWS;
            ::else->skip;
          fi;
       ::else->skip;
     fi;
 od;
}

Figure 4.5  SiP specification of a modified sliding-window protocol for flow
control at transmitting side.

Variables and constants used in above specification are defined as fol

swinsize : sending window size
cap : consecutively acknowledged packets
uws : unlikely window start
uwe : unlikely window end
MAXSWS: maximum sending window size
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MINSWS: minimum sending window size
THRSWS: threshold of consecutive acknowledgements to increase swinsize

Note that PA now has an adaptive window size,swinsize, which is updated

whenever timeout happens orcap>=THRSWS. These two cases in fact can b

regarded as the implicit and explicit status feedback from PB. Beside, the

bounds of unlikely window,uwsanduwe, are updated only after processed a tim

out event. Being such case,cap is reset because the earliest unacknowledg

packet has been assumed discarded and thus the acknowledgement is no

continuous.

4.4 Routing

Generally, networks are constructed to allow distributed end-users to

vey information one another. Such data interchanging would be trivial if

intended communicating partner is always an adjacent node of the sender. In

for above sections of this chapter, the protocols we mentioned will only work

this trivial way if no effort is made to implement a forwarding mechanism betwe

the two communicating entities. This is where routing protocols enter the pic

to form a full circle of end-to-end connection.

The fundamental idea of routing is to attach an address tag of the des

tion node to the data packet and let the intermediate nodes figure out a way t

ward the packet. In a packet switching network, the routing process is done

hop-by-hop fashion, i.e., each router only decides which neighboring router

nected to it would probably be the best (fast and cheap) next hop in terms of

warding a packet to its destination. A direct question arisen from this approa

"Which neighbor should a router choose to forward a packet?". The answer i

prosperity of current designs of routing protocols.

A common necessity of routing processes is to establish and mainta

routing table. The table lists the current best next hop from the router to all o

reachable nodes. Note that information may have to be updated as the status
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links belonged to the network changes. A router hence has to keep gathering

reports from other nodes and recalculating those best next hops periodically

Two common problems associated with routing tables are:

1. A routing table will not be scalable if it enumerates all reachable nodes

in the table. Some simple designs use an entry for each possible destinatio

in the network. Doing this requires a table to be large enough to accommo

date the number of nodes in the network and that is usually not feasible in

consideration of memory requirement.

2. A routing table needs to store up-to-date information to reflect any

changes in the network topology and in the connection status of links. The

first consideration of the changes makes a router more robust to tolerate th

failure of other nodes and to support the mobility of end nodes. The second

leads to the design of an intelligent router that avoids congested links while

routing a packet.

Various routing protocols, such as hierarchical, random, distributed, ba

ward learning, source, and mobile routing [14] have been proposed to solve a

problems. Because most of these designs have the complexity and subtlety b

the scope of this thesis, we will only discuss a simplified hybrid routing protoco

this section. Nevertheless, it does partially solve the two problems and provide

overview of the issues while designing a routing protocol.

Our hybrid routing protocol (HRP) mixes part of hierarchical, distribute

and source routing protocols. It is hierarchical because the whole network is p

tioned into several subnetworks and each subnetwork contains several hosts

address representation therefore has 2 fields for two levels of resolution. We le

routing process only consult the information at subnetwork layer and thus e

entry in the routing table now stands for a subnetwork instead of an individ

host. Doing this remarkably saves the memory requirement of the routing ta

Our routing protocol also allows a router to inform others about its connection
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tus with adjacent nodes, which is the sole feature of the distributed routing. Fin

the source routing assumes that all hosts have current and complete inform

about the network topology, so do the routers (but not end-hosts) in our ass

tion. In the source routing, when a packet is generated, the process calculat

best route for the packet to reach its destination and attaches the route t

packet. When a node in that route receives the packet, it simply looks its succ

in the route and forwards the packet. This approach would be infeasible if the r

information is too long to be included in a packet. In our protocol, the rout

works on a hop-by-hop basis at each router although the complete informati

available to computer the whole route. One advantage of the hop-by-hop routi

that no route is attached to a packet and thus less overhead is introduced.

Figure 4.6 shows the design of our hybrid routing protocol using SiP.

utility{
netproc;
}

#define IN_BUFF 32
#define OUT_BUFF 32
#define DATA_BUFF 256

#define DATA_TYPE 10
#define RTT_TEST 11
#define RTT_REPLY 12

proctype HRP()
{
 inport chan pktIn = [IN_BUFF] of { int };
 outport chan pktOut1 = [OUT_BUFF] of { int };
 outport chan pktOut2 = [OUT_BUFF] of { int };
 inport chan InDataBuf = [DATA_BUFF] of { int };
 outport chan OutDataBuf = [DATA_BUFF] of { int };
 const byte SUBNET_ID=1;
 const byte HOST_ID=1;
 int LONG_ID;
 int type,srcid,dstid,data;
 int nbr, nextid, cost;
 timer upd, rtt[2];
 LONG_ID=SUBNET_ID*256+HOST_ID;
 upd=0;
46



 loop:
  do
    ::expire(upd, 200)->
       pktOut1!RTT_TEST; pktOut1!SUBNET_ID;
       pktOut1!netproc(1, SUBNET_ID, 1); pktOut1!0;
       pktOut1!RTT_TEST; pktOut1!SUBNET_ID;
       pktOut1!netproc(1, SUBNET_ID, 2); pktOut1!0;
       upd=0; rtt[0]=0; rtt[1]=0;
    ::(len(InDataBuf) > 0)->InDataBuf?dstid; InDataBuf?data;
       type=DATA_TYPE; srcid=LONG_ID; break;
    ::(len(pktIn) > 0)->pktIn?type; pktIn?srcid; pktIn?dstid; pktIn?data; break;
    ::else->return(0);
  od;
  if
    ::(type==RTT_REPLY)->nbr=netproc(2, SUBNET_ID, srcid);
      cost=rtt[nbr-1]/2; netproc(3, SUBNET_ID, srcid, cost);
    ::(type==RTT_TEST)->
      if
        ::(netproc(2, SUBNET_ID, srcid)==1)->
          pktOut1!RTT_REPLY; pktOut1!SUBNET_ID; pktOut1!srcid; pktOut1!0;
        ::(netproc(2, SUBNET_ID, srcid)==2)->
          pktOut2!RTT_REPLY; pktOut2!SUBNET_ID; pktOut2!srcid; pktOut2!0;
      fi;
    ::(type==DATA_TYPE)->
      if
        ::(dstid/256==SUBNET_ID)->OutDataBuf!data;
        ::else->nextid=netproc(4, SUBNET_ID, dstid/256);
          if
            ::(netproc(2, SUBNET_ID, nextid)==1)->
              pktOut1!DATA_TYPE; pktOut1!srcid; pktOut1!dstid; pktOut1!data;
            ::(netproc(2, SUBNET_ID, nextid)==2)->
              pktOut2!DATA_TYPE; pktOut2!srcid; pktOut2!dstid; pktOut2!data;
            ::else->skip;
          fi;
      fi;
    ::else->skip;
 fi;
 goto loop;
}

int netproc(int* args)
{
  #define ROUTER_NUM 4
  #define id2idx(ID) (ID-1)
  static int net[ROUTER_NUM][ROUTER_NUM]={{1, 2, 3, -1}, {2, 1, 4, -1},
                                                                                       {3, 1, 4, -1}, {4, 2, 3, -1}};
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  static int cost[ROUTER_NUM][ROUTER_NUM]={{0, 90, 50, -1}, {90, 0, -1, 20},
                                                                                         {50, -1, 0, 30}, {-1, 20, 30, 0}};
  int pathcost[ROUTER_NUM], tmpcost, src_sn, dst_sn, bestnext, node2, done=0, i, n;
  switch (args[0]) {
    case 1: return(net[id2idx(args[1])][args[2]]);
    case 2: for(i=1; i<ROUTER_NUM; i++)
                   if (net[id2idx(args[1])][i]==args[2]) return i;
    case 3: cost[id2idx(args[1])][id2idx(args[2])]=args[3];
                  cost[id2idx(args[2])][id2idx(args[1])]=args[3]; return 1;
    case 4: src_sn=args[1]-1; dst_sn=args[2]-1; bestnext=dst_sn;
     for(i=0;i<ROUTER_NUM;i++)
      pathcost[i]=(cost[src_sn][i]>-1)? cost[src_sn][i]:MAXINT;
     while (!done) {
      done=1; n=1;
      while((n<ROUTER_NUM)&&(net[src_sn][n]>0)) {
       node2=id2idx(net[src_sn][n]);
       if (cost[node2][dst_sn]>-1) {
        tmpcost=pathcost[node2]+cost[node2][dst_sn];
        if (tmpcost<pathcost[dst_sn]) {
         pathcost[dst_sn]=tmpcost;
         bestnext=node2;
         done=0;
        }
       }
       n++;
      }
     }
     return(net[bestnext][0]);
  }
}

Figure 4.6  SiP specification of the Hybrid Routing Protocol with its auxiliary
C procedure netproc().

HRP models a router having multiple input ports and 2 output ports. N

mally, it takes DATA_TYPE packets and use Bellman-Ford algorithm to decid

which neighbor it should forward the packet for minimizing the latency of t

complete route. The implementation of the Bellman-Ford algorithm [2] is sho

in the above auxiliary C procedure. Besides, in order to gather up-to-date stat

links used by the algorithm, a router generates extra packets, with

RTT_TEST, and sends them to its neighbors to request a RTT measurement t

every 200 time units. Whenever receives a RTT_TEST type packet, a router im
48
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diately sends a RTT_REPLY type packet back to the one initiated the tes

Therefore, on receiving the RTT_REPLY type packet, the testing initiator is abl

obtain the RTT and update the current "cost" of a specific link with value RTT

Note in HRP we assume this update is made globally and simultaneously t

routers for simplicity. However, we know that actually this has to be done us

some broadcasting mechanism.

The auxiliary C procedure netproc implements more than one funct

The first argument serves as the index of intended function and the rest argum

have different meanings under different functions. A detailed description is g

below.

4.5 Multiple Access

The protocols considered so far are designed for point-to-point comm

cation links, which assume that on a specific medium there is only one host s

ing signal at a time. Under such assumption, a receiver needs only conside

transmitted signal from some peer and noise on the link, but not signals from o

peers which shared the same medium.

However, there are many widely used communication media such as r

broadcast, satellite, and multitap bus [28], which may have two or more host

Index Arguments Return Function Description

1 host ID,

neighbor index

neighbor
ID

Return the ID of a neighbor by giving
its index.

2 host ID,

neighbor ID

neighbor
index

Return the index of a neighbor by giv-
ing its ID.

3 host ID,

neighbor ID, cost

1 Update the cost of the link between
two giving hosts.

4 source subnet ID,

destination sub-
net ID

best next
ID

Decide the best next hop and return its
ID.
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sending out signals simultaneously. In this case, different data streams will i

fere with one another if no measures are taken to regulate the use of the me

Such a collision can be avoided if only one host is permitted to use the medium

transmission at a time. Two usually adopted approaches are used to impleme

feature: token and carrier sense. The single token in a network allows only

host transmitting at a certain moment, and all other hosts have to wait until

hold the token. Two popular protocols based on this approach are Token Bus

Token Ring protocols [27].

Carrier sense, as implied by its name, requires a host listening to

medium before it can send out signals. As long as the medium is in use, exi

carrier signal, the rest hosts refrain from transmitting and remain waiting. One

advantage of this approach is that a collision may still occur when two or m

hosts start sending at almost the same time such that they all thought the med

cleared. The occurrence of a collision requires all receiving hosts throwing a

whatever they have received recently. In addition, all sending hosts have to

transmitting and, after some time, retransmit the same message. However,

collisions may happen following the same scenario again and again [24]. A pr

col based on this approach is called a CSMA/CD (Carrier Sense Multiple Ac

with Collision Detection) protocol. In this section we will look at a simple prot

col using the CSMA/CD technique, which is actually is simplified version of t

most popular local area network (LAN) protocol, Ethernet protocol. Two key f

tures of CSMA/CD are preserved in our Simple Ethernet Protocol (SEP): ca

sense (to make sure the medium is free) and collision detection (to see if any

host is also transmitting). Data frame and jam frame are the only two type

frames defined in this protocol. Under normal condition, a host broadcasts

frames onto the medium for conveying information. The jam frame will be tra

mitted when a collision has been detected, which is meant to garble all frame

the medium so that all hosts will be aware of the occurrence of the collision.
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The SiP specification of the transmitting and receiving processes of

are shown in Figure 4.7(a) and Figure Figure 4.7(b) respectively. In the proto

we assume that a frame is transmitted byte by byte at a speed of one byte pe

unit. The collision detection thus can be done between the transmission of

two consecutive data bytes. The CRC computation procedures have been mo

to operate in a byte-by-byte fashion due to the same reason. Their first argu

has value 0, 1 and 2 to differentiate the cases of starting, intermediate and en

frame. We also define an end-to-end propagation delay, PROP_DELAY, w

results in the possible unawareness of far-end transmission by using carrier s

The share medium is modeled by a broadcasting channel BUS which is declar

a wireless port.

utility {
 enCRC; deCRC; randNum; Max;
}

#define DATA_BUFF 256
#define MAX_BYTES 1024
#define PL_BYTES 64
#define JAM 127

proctype XMT()
{
 inport chan dataBuf = [DATA_BUFF] of { int };
 wireless chan BUS = [MAX_BYTES] of {int};
 const byte HOST_ID=1;
 const int PROP_DELAY=5;
 const int RAND_WAIT=32;
 bool rexmt=0;
 int i, dstid, data, bidx, bmax=0, dataBkup[PL_BYTES];
 car_sen:
 do
    ::(rexmt || (len(dataBuf)>0))->bidx=0;
      if
        ::rexmt->skip;
        ::else->dataBuf?dstid;
      fi;
      do
         ::(len(BUS)>randNum(PROP_DELAY)+2)-> delay(1+randNum(RAND_WAIT));
         ::else->break;
     od;
51



     BUS!dstid; BUS!HOST_ID; enCRC(0,dstid); enCRC(1, HOST_ID);
     do
       ::(bidx<PL_BYTES)->
         if
           ::(rexmt && (bidx<bmax))->data=dataBkup[bidx];
           ::else->dataBuf?data; dataBkup[bidx]=data;
         fi;
         BUS!data; enCRC(1, data); bidx++; delay(1);
         if
           ::(len(BUS)>bidx+2)->i=0;
             do
                 ::(i<PROP_DELAY)->BUS!JAM; delay(1);
                 ::else->break;
             od;
             delay(PROP_DELAY+randNum(RAND_WAIT));
             rexmt=1; bmax=Max(bmax,bidx); goto car_sen;
           ::else->skip;
         fi;
       ::else->BUS!enCRC(2, 0); rexmt=0; bmax=0; delay(1); goto car_sen;
     od;
   ::else->return(0);
 od;
}

Figure 4.7(a)  SiP specification of the transmitting process of the SEP.

proctype RCV()
{
 outport chan dataBuf = [DATA_BUFF] of { int };
 wireless chan BUS = [MAX_BYTES] of {int};
 const byte HOST_ID=1;
 int i, srcid, temp, bidx, dataBkup[PL_BYTES];
 wait_frm:
 BUS?HOST_ID->BUS?srcid;
 deCRC(0, HOST_ID); deCRC(1, srcid); bidx=0;
 do
     ::(bidx<PL_BYTES)->(len(BUS)>0)->
       if
         ::BUS?[JAM]->delay(PROP_DELAY);
           do
               ::(len(BUS)>0)->BUS?temp;
               ::else->break;
           od;
           do
               ::(len(BUS)==0)->return(0);
               ::((len(BUS)>0) && (BUS?[JAM]))->BUS?temp;
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               ::else->goto wait_frm;
           od;
         ::else->BUS?temp; dataBkup[bidx]=temp;

deCRC(1, temp); bidx++;
       fi;
     ::else->BUS?temp;
       if
         ::deCRC(2, temp)->i=0; dataBuf!srcid;
           do
               ::(i<PL_BYTES)->dataBuf!dataBkup[i];
               ::else->break;
           od;
         ::else->skip;
       fi;
       goto wait_frm;
 od;
}

Figure 4.7(b)  SiP specification of the receiving process of SEP.

In the transmitting process, XMT, dataBuf is the service access point to

higher layer protocol, Logical Link Control (LLC) sub-layer protocol, for inpu

ting data frames. The buffer dataBkup has a size of PL_BYTES bytes to stor

payload of the currently conducting frame. During the carrier sense phase, if X

has a frame to send but the medium is in use, it waits a random duration of

equiprobably between 1 and RAND_WAIT. XMT sends JAM signal f

PROP_DELAY time units when it is transmitting data bytes and detects that e

bytes from other host(s) have been inserting into BUS. Indicesbidx andbmax are

used to indicate the position of next byte to be transmitted and the position o

byte where a collision was detected in last transmitting trial. Flagrexmt indicates

whether if the transmitting process is in the retransmission phase.

As for the receiving process RCV, dataBuf is the SAP to the LLC sub-la

where the correctly received frames are delivered. Normally RCV receives

stores data bytes in buffer dataBkup for later CRC verification. When a JAM sig

is detected, RCV discards all received bytes of the currently receiving frame

removes all the following corrupted data bytes and JAM signal until the medium

cleared again.
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Figure 5.1  Graph diagram of the example network used in this chapter.

In order to validate our design of protocol elements discussed in last c

ter, we construct an example network system by reusing those modules to m

the communication protocols running on the hosts and routers in the network.

ure 5.1 depicts a connected graph diagram showing the nodes and the links

network. The nodes are numbered in the format of hierarchical address, whi

represented asn1.n2 to denote the sub-network indexn1 and the host indexn2.

AliasesR1, R2, R3, andR4 are four routers located in sub-networks 1, 2, 3, and

respectively. Except sub-network 3, where all nodes share the same mediu

nodes in other sub-networks are connected by point-to-point links. In the re

1.3 1.2 1.1

3.1

2.1

4.1 4.2

3.2 3.3

BA R1

R2

R3

R4

C1 D

C2

Example Network
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this chapter, we will demonstrate how to build such a network system using

and perform simulation of a streaming video application running on it.

Figure 5.2 shows a SiP schematic that models the network in Figure

Recall the concept we stated in Chapter 2, that each network node in SiP repre

a single protocol module or a group of them. In other words, we perceive the a

ities of a network as the interactions among protocol modules. Therefore,

blocks with names ROUTER and HOST shown in Figure 5.2 are all protocol m

ules instead of physical hardware entities. Starting from the left, HOST_A (aliaA

in Figure 5.1) is a video encoder that generates and transmits a variable-bi

packet stream to a multicast server [45], HOST_B (aliasB). The server then dupli-

cates and broadcasts the stream to two designated client hosts, HOST_C1

C1) and HOST_C2 (aliasC2). For not overwhelming serverB, the transmission

from A to B can not start untilB confirms the connection request fromA using the

connection protocol we discussed in Section 4.1. In addition,A and B follow a

flow control protocol to regulate their traffic using the sliding-window techniq

introduced in Section 4.3. Figure 5.3 gives a detailed views of the structures of

tocols insideA andB. A contains a video encoder (VENC), an address attach

process (AttAddr), a flow control and a connection protocol of transmitting s

(SWPA and PA).B has a connection and a flow control protocol of receiving si

(PB and SWPB), a multicasting process (Distrb), and an SWPA.

Figure 5.2  A SiP schematic modeling the example network in Figure 5.1.
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Figure 5.3  The internal structures of galaxies HOST_A and HOST_B.

RouterR1 takes the both broadcasting streams fromB and route them to

their designated destination sub-networks using the HRP routing prot

explained in Section 4.4. Our initial parameters makeR1 chooseR3 to direct both

the packets forC1 and C2. This turns out congestingR3 quickly and slowing

down both streams toC1 andC2. Fortunately, HRP updates the routing table pe

odically and soon figures out that, fromR1, R2 may be a better choice to delive

packets toC2. After receiving packets fromR1, R2 realizes the destination of

those packets is sub-network 4 and thus it redirects them toR4. The simulation

result of this feature is given in Figure 5.4. As one can see, the shooting pa

flow via R3 turns flatter afterR2 started to share the traffic at time 240.

To make the simulation more informative, we build flow control capabil

in R4 but notR3 to evaluate the importance of traffic regulation in a connectio

less network. Figure 5.5 shows the internal structure ofR4, which consists of a

routing protocol (HRP), a finite-length queue (FINITE_Q), a flow control protoc

of receiving side (SWPB), and a selective acknowledgement protocol of trans
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la-
ting side (SAPA, which is a slight variation of SWPA). The SWPB module he

will interact with the SWPA in hostB to adaptively adjust the size of sending

Figure 5.4  Simulation result shows that using adaptive routing table
optimization can resolve traffic congestion at routers.

window and it hence mitigates bursting traffic between them. As forR3, no effort

is made to deal with a variable-bit-rate packet flow and thus all processed pa

will be discarded when its output buffer is filled. Figure 5.6(a) shows the simu

tion result of the output queue lengths ofR3 (no-SW, the dots) andR4 (SW, the
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crosses). We set both their maximum queue sizes as 18, soR3 discards packets

whenever its queue length exceeds 18.R4 has a zigzag shape of queue length

Figure 5.5  The internal structure of the galaxy ROUTER_4.

around the maximum size of its queue because, once its queue gets too

SWPA cuts down its sending window size or even stops transmission to leR4

digest its queued packets. And then, after receiving more acknowledgements

the SWPB inR4, SWPA enlarges its sending window size gradually and that le

to the rising of the queue length ofR4 again. Since we set the maximum sendin

window size as 17, one can see from the figure that the queue length ofR4 stop

growing at that number. Therefore, R4 is able to guarantee that no packet wou

discarded due to an output buffer overflow. Figure 5.6(b) shows the cumula

number of packets discarded atR3 andR4. Not surprisingly, onlyR3 suffers from

buffer overflows.

Note that so far we have used the SWPA/SWPB pair many times. Th

the major advantage of using SiP to model network protocols because reusing

tocol modules remarkably reduces the burden in specifying the same or sim

protocols repeatedly. Moreover, since Ptolemy follows object-oriented parad

all replicated modules of a specific protocol are actually different objects der

from the same class. They are the same protocol, but they can be given diff

parameters and then evolve independently. The encapsulation property of o

SAPA

dataBuf

pktIn

pktOut

����
����
����
����
�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

SWPB

dataBuf

pktOut

pktIn

��
��

ROUTER

pktIn

RTin

pktOut

RTout1

RTout2 ��
��

FINITE_Q

Qlen

pktLoss

pktOut

�����
�����
�����
�����
�����
�����
�����
�����
�����Router 4
58



arbled

ibed

ket.

tined

-

ing
oriented design also assures the state of these sibling modules not being g

one another.

Figure 5.6 (a)Upper: Simulation result shows that using flow control protocol
can constrain the queue length within maximum size. (b)Lower: Not
using flow control protocol results in queue overflows and thus some
packets have been discarded.

Return to our discussion of packet forwarding, which has been descr

all the way from the video encoder to the destination sub-network of the pac

We now consider the scenario of delivering a packet from a router to the des

host within the same sub-network. SinceC2 has a dedicated link directly connect

ing it with R4, we simply build a selective acknowledgement protocol of receiv
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side (SAPB) inC2 to coordinate its counterpart SAPA inR4 to accomplish the

communication. Unlike the above simple point-to-point communication, sub-

work 3 needs a more elaborated protocol to deal with its multi-tap bus. As sh

in Figure 5.1, routerR3 shares the same medium with other two peers, includ

C1. We use the multiple access protocol SEP, a CSMA/CD protocol introduce

Section 4.5, to implement the communication process of all peers on the bus

ure 5.7 shows the internal view of SEP, which consists of a transmitting an

receiving process (SEPXMT and SEPRCV). Note that in our design, there i

link among all the SEPXMT and SEPRCV processes in all peers on the bus.

because we adopt "wireless" I/O ports while specifying the SEP protocol.

broadcasting nature of these ports appropriately imitates the topology of sh

medium and also comparatively simplifies the wiring. Following the SEP proto

R3 finally delivers the packets toC1 via the shared bus.

Figure 5.7  The internal structure of galaxy SEP.

The last issue to consider in this simulation is,why not using flow control

protocol everywhere so that no entity would ever discard a packet?This answer is,

not all application can afford long latency during transmission [44]. For dire

immediate applications, such as videoconferencing, Internet phone, whiteb

talk, etc., long delay between continuous or consecutive information is not to

ble. Packets that successfully arrive their destinations with old time stamps wi

useless. As a result, the flow control protocol though effectively smoothes the

fic, the latency introduced by it leads to packet discard, too. Figure 5.8 gives a

ulation result that serves as a good example to account for this phenomenon.

symbol (dot or cross) in the figure indicates an event of receiving a packet.

vertical axis in the figure represents the sequence number of a received pack

the horizontal axis gives the time when the packet was received. Obviously,

SEPXMT SEPRCV������
������
������
������
������
������

������
������
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������

Simple Ethernet Protocol (SEP)
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the simulation result, using flow control (cross) suffers longer latency, althoug

is free from packet loss. On the other hand, without using flow control (dot),

can receive packets earlier at the price of discarding packets. Nevertheless, on

always adopts some error (loss) concealment algorithm to enhance the recon

tion quality of the information. This latency consideration also leads to the gen

adoption of UDP (User Datagram Protocol, which does not includes flow con

mechanism) for delivering real-time and delay-sensitive information in the Inte

realm. As for applications carrying deferrable information, such as FTP (

Transfer Protocol), Web browser, etc., the TCP (Transmission Control Proto

which has a built-in sliding window protocol for flow control) is widely used

reduce the impact to the Internet while conducting busty packet streams.

Figure 5.8 Simulation result shows that using flow control protocol could lead
to longer lantency due to buffering bursty traffic.
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To support communication protocols modeling in a system-level design

this report we have proposed a hybrid model of computation to allow mixing p

tocol modules with other subsystems. By embedding CSP in FSM and DE

found a protocol can be succinctly specified and effectively simulated in a sys

context. The resulting architecture using such integration of domains has

investigated to clarify and define its semantics of concurrency and synchrony

Base on the proposal, we have prototyped a supporting software infras

ture, SiP, by leveraging on two existing tools, SPIN and Ptolemy. The consi

ation of combining these two tools originates from the fact that SPIN is desig

for protocol specification and Ptolemy supports heterogeneity in system-l

modeling. We examine the internal data structure of SPIN and elaborate a sp

actor class in Ptolemy to accomplish data sharing and simulation scheduling

resulting software implementation not only enriches the expressiveness o

input language of SPIN, PROMELA, in temporal statements, it also lighten

niche in Ptolemy to accommodate an auxiliary co-simulation tool.

The testing of SiP starts from the attempt at specifying several fundame

communication protocols such as connection, error detection and recovery,

control, routing, and multiple access. Because the supporting commands o

well cover the necessary expressions in protocol specification, we efficiently

a reusable module for each of these protocols. In addition, we also examin

extension of these modules by mixing them with other Ptolemy actors or exte
62
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C language subroutines. An early observation of the reusability of the tool has

been identified, when we were building a duplex connection module using sim

ones and coupling the modules originally designed for error recovery and

control respectively.

To evaluation the capability of SiP in modeling a complete network syst

we construct an example network on which a streaming video application m

casts a packet flow to two remote client hosts. By reusing all protocol element

mentioned in last paragraph, with very little extra effort we finish the modeling

the system. For this example, it proves the reusability of SiP does remark

reduce the burden in specifying similar protocol modules repeatedly. As for

tem-level simulation, many interesting results also have been discussed usin

example. We have observed how the fluctuation of queue length and transmi

latency affect the behavior of flow control, connection, and routing protocols. A

how the parameters and adaptation schemes of these protocols impact the q

of services over a network.

One open issue of SiP is, to exploit the formal verification capability

SPIN and provide a model checking [46] tool using Ptolemy's graphical user in

face. In [42], a compiler that translates Statecharts into PROMELA has been

posed. It is reported to facilitate the modeling and performing partial or

reduction [31][32] of a large number of reactive modules by using Statecharts

SPIN. Actually, we believe that by leveraging on the object-oriented kernel and

well-developed code generation domain in Ptolemy, SiP should be able to pro

similar or even more superior features.
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Appendix A: SiP v1.2 User’s Manual

A.1 Introduction

SiP (SPIN in Ptolemy) is a system-level protocol modeling tool develop

at University of California at Berkeley. It relies on a translatorppl2pl and a SiP

kernel to cooperate with the Ptolemy environment. The translator converts

input language to SiP, called Ptolemy-supported PROMELA Language orppl, into

the description language of Ptolemy Stars, called Ptolemy Language orpl. The

automatically generatedpl code can then be used to build an agent Star in Ptole

to make a connection with its originalppl code. The SiP kernel is bulit into

Ptolemy environment to accomplish a Ptolemy-SPIN co-simulation involving b

agent Stars of protocol modules and built-in Ptolemy Blocks (Stars and Galax

Figure A.1 illustrates the two phases of system specification while using SiP.

Figure A.1  SiP’s two phases of system specification.

The first phase is to code protocol modules inppl, and the second phase i

to design a system schematic in Ptolemy using the agent Stars of these mo

and Ptolemy’s built-in Blocks. Since agent Stars are regualr Stars in Ptolemy

domain, the second phase is almost the same as the usual way to const

Ptolemy schematic. The detailed explanation of how to construct a schema

Ptolemy environment can be found in the Volume I of Almagest, the Ptolem

User’s Manual (ftp://ptolemy.eecs.berkeley.edu/pub/ptolemy/www/papers/alm

ppl2pl

edit I/O ports edit process body

design Ptolemy
schematic

code ppl files
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est/user.html). Also shown in the above figure, one minor difference in the se

phase is the extra step to executeppl2pl if the declaration of ports in a protoco

module has been changed. This assures the consistency of an agent Star

corresponding protocol module. Note that if the change was the process bo

the protocol module, no addition step needs to be taken because the agent Sta

tains no information about the process body.

This manual will focus on the first phase, the design of protocol modu

Specifically, we will introduce the syntax and semantics of all constructs ofppl in

the Section A.2 and demonstrate an example to walk through the two de

phases in Section A.3.

A.2 The Elements of ppl

In SiP, every leaf process of a protocol is coded inppl. Theppl file should

contain exact one process and have a file name as same as its process name.

ally, appl file is organized as follows.

/* This file, PP.ppl, shows the basic structure. */
utility {
func1;
private:
func2;
}

#define QSIZE 10

proctype PP() {
 inport int IN;
 outport int OUT;
 const int WSIZE=5;
 < statements; >
}

In the rest of this section, we will give an introduction to the use ofppl for

specifying protocol processes. While designing a process, one principle a

should keep in mind is to minimize the specialness and complexity of the proc

This would facilitate the reusability of the process and reduce burden to debu
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A.2.1 Data Types, I/O Ports, and Constants

Six basic data types,bool, bit, byte, short, int, anddouble, are supported

by ppl. Following the same order, they occupy 1, 1, 8, 16, 32, and 64 bits res

tively. A variable is declared similarly to the syntax of C language. The declara

below creates a byte array and two initialized variables in Boolean type and do

type respectively.

byte frame[32];
bool done=0;
double RTT=60.514;

Variables are regarded as local to a process, so their names can be reu

other processes. One way to make a variable accessible by another proces

declare it as awireless port like:

wireless int votes;

In this case, all processes within the same scope can read/write value from/t

variablevotes. The scope is a parameter of every agent Star. It can be explic

specified a channel name to force different processes listening to the same cha

The timer data type has the same resolution asdouble but it has very dif-

ferent behavior to previous basic data types. A timer counts up automatically a

simulation time proceeds. It can be set to any floating-point number at any mo

as if it is manually adjusted to that epoch. The declaration ’timer t1=0.0’ creates a

timer t1 and resets it initially.

The user-defined data type follows the C-like syntax. For example, the

lowing declaration defines a new data typePDU and a variablepacket in that

type.

typedef PDU {
  int header;
  byte data[1024];
  int checksum;
}
PUD packet;
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The same as the syntax of C, the third byte in thedata field of variablepacket is

expressed bypacket.data[2].

I/O ports are the interface enables a process to communicate with an

process. They can be categorized into two types, signal channels and me

channels. A signal channel is an extension of a variable, which allows to s

receive a value to/from a port. A typical declaration is given below.

inport byte Data;
outport double Result;

A message channel is unidirectional and first-in-first-out (FIFO). For instance

inport chan dataIn = [256] of { int };
outport chan dataOut = [1] of { double };

declares an input message channel inint type with a buffer space of 256 slots an

an output message channel indouble type with single buffer space.

Two adjective keywordsmulti andpersist are used to specify the proper

ties of I/O ports.multi declares a multi-port that allows multiple connection to d

ferent processes.persist declares a persistent input port that keeps the pres

indicator on even if the data arrived the port at an earlier time. Two examples

given as follows.

multi outport bit chipSelect;
persist inport double batchMeasure;

A const is used to specify a parameter of a process. It becomes astate of

the agent Star belonged to the process. It has an initial value but can be given

value at run-time. A typical declaration looks like:

const int myID=123;

A.2.2 General Statements

The arithmetic operation and Boolean expression ofppl are exactly the

same as C language. They include +, -, *, /, %, ++, and -- for arithmetic; >, >=,

<=, <, and != for comparison; &&, ||, and ! for Boolean expression; &, |, ^, ~, <
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and >> for bitwise operation. Two consecutive statements are separated by a

colon ’;’ or an arrow ’->’. In ppl, Boolean expressions are simplified as regu

statements. Therefore, the condition((a==b)&&(c>d)) can be an independen

statement. It will be either executable or blocked at run-time depending on the

ues of variables. An unexecutable statement will block the process until the co

tion becomes true later. This is the most common approach to synchronize

another process.

By definition, an assignment ’=’ is always executable. Assigning a value

an output signal channel implicitly issues a data output event. For example,

chipSelect=1;

sends out a bit ’1’ to the output portchipSelect. As for message channels, opera

tors ’?’ and ’!’ are used to receive and send data respectively. For example,

dataIn?radius; dataOut!(radius*radius*3.14);

reads the head element from channeldataIn and writes it to variableradius. After

that a computation result is sent out to channeldataOut. The operator ’?’ can be

also used to test the head element of an input channel. The expression

dataIn?[5];

is not a reading operation. Instead, it is a Boolean condition that checks if the

element of channeldataIn has a value of 5. The commandlen(dataIn) is another

way to check the status of a message channel, which returns the current num

elements queued in a message channel. The condition(len(dataIn)>=5) is execut-

able when there are at lease 5 elements hold bydataIn.

Three commands are used to check and change the present indicato

input port.present(dataIn) is executable if there is at least one new arrival at t

input portdataIn. turnoff(dataIn) is always executable that turns off the indicato

admit(dataIn) functions as same aspresent(dataIn), but it turns off the indicator

after the checking if there is indeed a new arrival. It is equivalent to the statem

present(dataIn)->turnoff(dataIn).
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To assure a process operates correctly, a user could use theprintf command

to print out the run-time values of specific variables. Its syntax is the same a

printf command in C. Another way to detect design faults is to place assert s

ments at some checking points. For instance,

assert( (a>b) || (c<d) );

takes no effect when the condition is true, but a violating condition will imme

ately stop the simulation and respond a warning message to the user.

A.2.3 Control Flow

There are four control flow constructs in ppl: case selection, repetit

watching guard, and unconditional jump. The general form of a case selectio

if
  ::(condition 1)-> statements;
  ::(condition 2)-> statements;
  ::else-> statements;
fi

Exact one branch will be selected and executed at one time. If more than one

dition are executable, one of them will be picked with an equal probability. On

other hand, if no condition is satisfied, the statements onelse branch will be exe-

cuted. Furthermore, suppose under the same case and theelse option is absent, the

process will be blocked until at least one condition becomes executable. To a

the blocking, usually theelse branch is given as ’else->skip;’, which means to

skip the whole selection construct if no condition is satisfied.

The second control flow isdo loop. A do loop has exactly the same struc

ture as theif construct. It will be executed repeatedly until it encounters a statem

break. A factorial function can be implemented as follows.

f=1;
do
  ::(n>1)-> f=f*n; n--;
  ::else->break;
od
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The watching-guard construct ’unless’ has a structure shown below.

{ statement block 1 } unless { statement block 2}

Before each statement in block 1 is executed, the first statement in block 2 w

checked. If the later is unexecutable, statements in block 1 are executed repea

Once the first statement in block 2 happens to be executable, the execution of

ments in block 1 stops immediately. Note that a statementbreak in block 1 would

also exit the loop.

The unconditional jumpgoto functions as it does in common compute

languages. For example, ’goto Waiting’ forces the program counter switching t

the statement below labelWaiting. Note thatppl identifiers cannot be labels.

A.2.4 Timing Commands

The commanddelay(duration) suspends the process forduration time

units. It is always unexecutable if theduration is positive, because the system tim

will not be advanced during an iteration. After having slept forduration time

units, the process wakes up again and continues executing the statements af

delay command.

To model the time-out checking mechanism in a protocol, the comm

expire(timer, target-time) is used to check if a specific timer has expired. It al

registers a likely time-out event in the future. Note the registered time-out eve

not deterministic to happen since other events could abort the waiting state

timer assignment could change thetarget-time.

Routine state checking is useful while specifying a protocol. A proto

module may enter an idle state for a long time and be unaware of something g

wrong. A programmer could use a belatedly refiring commandreturn(duration) to

register a promissory return time to invoke the process again. Besides, to sus

execution immediately but not to register any return time, the commandreturn(0)

is usually used to yield control of execution.
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A.2.5 External Function Calls

To declare external C++ functions, theutility construct is used to specify

the function names as well as their scopes. For example,

utility {
  pubFOO;
private:
  prvFOO;
}

declares two external functionspubFOO andprvFOO. The functionpubFOO is

public and could be shared with other processes, while the functionprvFOO is

private and not accessible by other processes. Suppose theppl file containing

aboveutility construct is namedtestFOO.ppl, the templates of these functions wi

be created in the names with pathes as ’./utility/pubFOO.cc’ and ’./utility/test-

FOO/prvFOO.cc’ after executingppl2pl. It is user’s responsibility to fill the code

in these templates. A typical template looks like:

// Arguments stored in args[0], args[1], args[2], ...
// Do not erase the remark symbol ahead function name.
// int pubFOO(int* args)
{

 }

Note the declaration in theutility construct does not include the augments of fun

tions. Therefore, given all variables are notdouble type, following forms of call-

ings are all valid.

a=pubFOO(1, 2, i); b=pubFOO(2, k+2); c=prvFOO(5, 6, 7, 8); d=prvFOO();

A Ptolemy Block could be also used as an external function. The comm

extoper(outport, inport) fires a Ptolemy Block and waits a reply from it. Th

command sends out a triggering signal tooutport and waits a new arrival, usually

the computation result from the Block, atinport. This command enables usin

existing Ptolemy built-in Blocks as the computation subroutines of appl process.
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A.3 A Simple Example

In this section, we use a simple example to walk through the design pr

dures of SiP. The following two processes implement a redundant transmis

protocol. Upon receiving aPOLL request, the Sender process sends an integer

a redundant copy of the number to the Receiver. The Receiver checks if the

copies have the same value to decide whether the data have been corrupted

transmission. If the two copies are the same, the Receiver sends out the num

dataOut channel and sends anotherPOLL request to the Sender; otherwise, th

Receiver sends aNACK notification to the Sender for requesting a retransmissi

To differentiate the iterations of transmission, the Sender increases the se

number whenever it receives a POLL request.

Sender.ppl:
#define POLL 1
#define NACK 2
proctype Sender()
{
 inport chan chIn = [10] of { byte } ;
 outport chan chOut = [10] of { int };
 int x=0;
 do
   ::chIn?POLL->x++; chOut!x; chOut!x;
   ::chIn?NACK->chOut!x; chOut!x;
 od;
}

Receiver.ppl:
proctype Receiver()
{
 inport chan chIn = [10] of { int };
 outport chan chOut = [10] of { byte };
 outport chan dataOut = [10] of { int };
 int x1,x2;
 chOut!POLL;
 loop:
  chIn?x1->chIn?x2;
  if
    ::(x1==x2)->dataOut!x1; chOut!POLL;
    ::else->chOut!NACK;
  fi;
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 goto loop;
}

Applying ppl2pl to both processes, we obtain twopl files DESender.pl

andDEReceiver.pl in directory ’./ptolemy/’ as the source code of agent Stars. W

then create two agent Stars in the facet ’./user.pal’ by using the ’make star’ func-

tion in Ptolemy environment. Now we are ready to open a new facet and spe

the schematic of our system. However, it is perceivable that the transmission

be error-free if we directly connect the I/O ports of the two agent Stars. To im

ment an unreliable channel, we adopt the built-in AWGN (Additive White Gau

ian Noise) Galaxy to add noise to data. We also include a Delay Star to mode

propagation delay. Figure A.2 shows the design of the channel model.

Figure A.2  The model of an unreliable channel with propagation delay.

The schematic of our system is shown in Figure A.3. TheXMgraph Star is

used to display the received data.

Figure A.3  A communication system over an AWGN channel.

Figure A.4 gives a simulation result of the above system. Note that th

was a transmission error at time 9 and a later retransmission made it up. How

the redundant transmission protocol cannot guarantee the correctness of re

data. Suppose the two copies of data were both corrupted during transmissio

happen to have the same value when the Receiver reads them, the Receiv

regard them as a correctly received pair. As shown in Figure A.5, the Rece

made a wrong decision at time 5.
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Figure A.4  A simulation result shows the error recovery ability of the
redundant transmission protocol.

Figure A.5 A simulation result shows that the redundant transmission protocol
cannot guarantee an error-free transmission.
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Appendix B: SiP v1.2 Programmer’s Manual

B.1 Introduction

SiP (SPIN in Ptolemy) is a system-level protocol modeling tool develop

at University of California at Berkeley. Its software package includes a stand-a

executable fileppl2pl, a Ptolemy-supported SPIN package (modified from SP

v3.0 by Lucent Technologies - Bell Labs), and several supplemental files to

Ptolemy DE domain. We assume in this manual that the readers are thorou

familiar with the DE domain and know how to write a DE Star. Refer to the Ch

ter 12 in Volume II of Almagest, the Ptolemy’s Programmer’s Manual (ftp

ptolemy.eecs.berkeley.edu/pub/ptolemy/www/papers/almagest/prog.html). R

ers are also encouraged to read SiP User’s Manual to have the background k

edge of the Ptolemy-supported PROMELA Language, calledppl. In following

sections, we will focus on the implementation issues ofppl2pl, agent Star, and the

Ptolemy-supported SPIN kernel.

B.2 Translator ppl2pl

Each leaf cell of a protocol module is specified by appl process. It will nei-

ther be understood by Ptolemy nor SPIN without translation. SiP provides

ppl2pl translator to generate apl (Ptolemy Language) file of the customized age

Star from appl process, such that the Ptolemy kernel can access to that pro

through its agent Star.

Since an agent Star only customizes the mechanism to read/write Par

from/to the internal channels in SPIN, theppl2pl only processes the declaration o

I/O ports, parameterizable constants, and external functions of appl process to

generate the code of its agent Star. The detailed actions taken byppl2pl to deal

with these three types of declaration are listed as follows.

• I/O ports : Theinport andoutport in appl process are converted into theinput
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andoutput constructs in thepl file respectively. A port with data typesbool,

bit, byte, short, andint in theppl process are all specified as an integer-typ

port in thepl file, and thedouble is mapped to thefloat. Keyword multi is

retained to indicate the port is a multiple I/O port, while keywordwireless tells

ppl2pl to neglect the port because a wireless port is not implemented

regualr Ptolemy I/O port. Usually in go() an extra statement is applied to e

input port to maintain the present indicator of the port. The keywordpersist

disables that maintenance to keep the incoming Particles persistent. In

each input port relies on a loop to forward all arriving Particles to its cor

sponding channel in SPIN. Each output port also has a loop to flush ou

queued elements in its corresponding channel in SPIN. These forwarding l

are added in go() while an I/O port declaration is detected in theppl process.

Because SPIN uses a special data structure to access its channels, in apl file

some temporary variables in that data structure are included in theconstructor

construct and are deleted in thedestructor construct.

• parameterizable constants: The const declaration in theppl process is con-

verted into thedefsate construct in thepl file. Its data type and initial value are

specified by corresponding fields in thedefstate construct. Since the value of a

state could be changed at run-time, an extra statement is added in go() t

the new value of theconst in SPIN at the beginning of the first arrival to th

agent Star.

• external functions: Theppl allows includingpublic andprivate external C++

functions. Apublic function is included in thecode construct in thepl file so

that it is accessible by other agent Stars. Aprivate function is included in the

method construct to add a new member function to the class of the agent

(each agent Star is a new class derived from DESiPStar) so that the functi

only accessible by the agent Star itself. Since a function is tracked by a po

to make it accessible by the SPIN evaluator, for each functionppl2pl creates a
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pointer in theprotected construct and assigns its value in theconstructor con-

struct.

Theppl2pl also auto-documents the generatedpl file by filling its author

anddescriptor constructs. This will require executing some UNIX system co

mands.

B.3 Agent Star

The best way to understand the functions of an agent Star is to do a

by-side comparison of its code with its originalppl process. An example is given

below to be referred by the discussion in the rest of this section.

ppl process (MOD.ppl):
#define Base 100
proctype MOD()
{
 wireless bool running=1;
 inport int value;
 outport int result;
 const int modulus=10;
 loop:
  running->admit(value)->result=Base+(value-Base)%modulus;
 goto loop;
}

generated pl file (DEMOD.pl):
defstar
{
    name { MOD }
    domain { DE }
    derivedfrom { SiPStar }
    author { Shang-Pin Chang }

descriptor { DEMOD.pl is an agent star associated with PROMELA file MOD.ppl. It was
generated by spchang@coulomb.eecs.berkeley.edu on Sun Dec 13 01:38:00 PST 1998. }
    copyright { Copyright (c) 1990-1998 The Regents of the University of California. All
rights reserved. See the file $PTOLEMY/copyright for copyright notice, limitation of liability,
and disclaimer of warranty provisions. }
    output {
        name { result }
        type { int }
    }
    input {
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        name { value }
        type { int }
    }
    defstate {
        name { scope }
        type { string }
        default { "" }
        desc { Scope of the wireless ports used in file MOD.ppl }
    }
    defstate {
        name { instOp }
        type { int }
        default { 0 }
        desc { Set to 1 for an instant operation module, otherwise 0. }
    }
    defstate {
        name { modulus }
        type { int }
        default { "10" }
        desc { Initial value of modulus used in file MOD.ppl }
    }
    protected {
        Symbol *sym_result;
        Symbol *sym_value;
        double lastP_value;
    }
    destructor {
        unregisterPXPStar();
    }
    method {
        name { getScope }
        access { protected }
        arglist { "(void)" }
        type { "const char*" }
        code { return (const char*)scope; }
    }
    code {
        extern RunList* findproc3(int ID);
        extern Symbol* findloc2(RunList *x, const char *s);
    }
    setup {
        delayType = instOp? FALSE:TRUE;
    }
    begin {
        SPINReady = FALSE;
        DERepeatStar::begin();
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        outputPML(((strlen(scope)>0)? 1:0),"/export/coulomb/coulomb1/spchang/thesis/
examples/",fullName(),name(),className(),(const char*)scope);
        registerPXPStar();
    }
    go {
     if (!SPINReady) {
      run_Proc = findproc3(sipID);
      run_Proc->host = this;
      sym_result = findloc2(run_Proc,"result");
      sym_value = findloc2(run_Proc,"value");
      lastP_value = 0.0;
      ((int *)(findloc2(run_Proc,"modulus")->val))[0] = (int)(modulus);
      SPINReady = TRUE;
     }
     if (lastP_value<arrivalTime) sym_value->present = 0;
     while (value.dataNew) {
      ((int *)(sym_value->val))[0] = (int)(value.get());
      sym_value->present = 1;
      lastP_value = arrivalTime;
     }
     if (arrivalTime >= completionTime) {
      NxtFireDur = RunSpin(run_Proc,arrivalTime);
      if (sym_result->updated) {
       result.put(arrivalTime) << ((int *)(sym_result->val))[0];
      }
      setNextFiring();
      GlobalUpdate();
     }
    }
}

B.3.1 PROMELA Code Generation outputPML()

To generate the PROMELA code of all agent Stars on a schematic be

the first Star is fired, we include the function calloutputPML() for PROMELA

code generation in thebegin construct in thepl file. Since thebegin method is

executed exactly once, all agent Stars would also output their PROMELA c

exactly once. However, there may be many cloned agent Stars on a schemat

it results a very large PROMELA file containing repeated processes. This w

then reduce the efficiency while generating the parse tree. Benefitted from SP

ability to support multiple instances of a process, we only let the first visited ag
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Star generate the code and force its clones within the same scope be di

instances of the same process. We will discuss the scope of an agent Star la

Opposite to the function ofppl2pl, outputPML()processes theppl process

body instead of its I/O ports, constants, and external functions. The major tas

outputPML()is to set alldefines andwireless ports in the generated PROMELA

code having a correct scope. For example, suppose the agent Star of the aboppl

process MOD has a clone in both galaxy G1 and G2, its statement

#define Base 100

will appear in the generated PROMELA code twice, which is not a desired re

This is solved by casting thedefine with the scope of its agent Star as follows.

#define G1_Base 100
#define G2_Base 100

Such scope casting also applies to their process names andwireless ports. There-

fore, the generated PROMELA code contains following statements:

proctype G1_MOD(int _SIP_ID)
   .....
  G1_running->admit(value)->result=Base+(value-Base)%modulus;
   .....
proctype G2_MOD(int _SIP_ID)
   .....
  G2_running->admit(value)->result=Base+(value-Base)%modulus;

Note that in this case theirwireless ports listen to different channelsG1_running

and G2_running. This is the usual case when the clones of an agent Star

embedded in different galaxies. To force them having the same scope, expl

give the same name to the scopestate of both clones (seedefstate scope in

above DEMOD.pl). For example, let the name of scope beALL and the generated

PROMELA code would contain only one process and two instances like:

#define ALL_Base 100
proctype ALL_MOD(int _SIP_ID)
{
   .....
  ALL_running->admit(value)->result=Base+(value-Base)%modulus;
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}

init
{
 run ALL_MOD(1);
 run ALL_MOD(2);
}

B.3.2 Pointer Binding

The pointer binding of the ports/states of an agent Star and the chan

constants in its corresponding SPIN process is accomplished during the first

to the go() method of the agent Star. The code within the(!SPINReady) block at

the beginning of the go() method in the above DEMOD.pl is the additional c

executed during the first visit to the go() method. The agent Star uses fun

findproc3()to locate the pointer of its corresponding SPIN process and locates

signal channelsvalue andresult within that process by using functionfindloc2().

These pointers will facilitate the access to the process and channels in SPIN d

subsequent visits to the go() method of the agent Star. Note that the point

const modulus is also located to set its initial value using the value ofstate mod-

ulus of the agent Star. At this point, the agent Star letsSPINReady be true to indi-

cate the pointer binding is finished.

B.3.3 The Scenario of go()Method

Except the extra code executed at the beginning of the first visit to the

method, a regular execution scenario of the go() method is described as fol

Readers should refer to the code inside go() method after the(!SPINReady) block

in the above  DEMOD.pl while reading this section.

The lastP_valueis used to denote the arrival time of the previous arrival

portvalue. If it is earlier than the current system time, the present indicator of p

value is turned off before the testing of new arrivals at the port. Then the ag

Star uses a loop to get all Particles in portvalue and writes them to the signa

channelvalue in its SPIN process. At the same time the arrival time is recorded
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lastP_valueand the present indicator is turned on if any Particle has been dete

at the port.

After forwarded all Particles, the agent Star is ready to call SPIN kerne

execute its corresponding SPIN process for one iteration. However, the prer

site is thearrivalTime must be later or equal to thecompletionTime. This would

not be satisfied when the process is executing adelay() command and the duration

has not expired yet. Otherwise, the process will be executed for one iteratio

calling Run_Spin(). After that the agent Star checks whether if theoutport result

has been updated during that iteration. If yes, the updated value is sent out

output portresult of the agent Star to form a new Particle.

The last two steps aresetNextFiring()and GlobalUpdate(). The former

estimates the refiring time to the agent Star and sends out a dummy Particle w

future time stamp to thefeedbackOutport. The later checks whether if anywire-

less outport has been updated during the iteration at SPIN kernel. If so, it will

all agent Stars having awireless inport listening to the same channel within th

same scope.

B.4 Ptolemy-supported SPIN Kernel Run_Spin()

Run_Spin()allows the SPIN kernel to resume the interpretation of the p

cess from the last unexecutable statement at its previous iteration till the first u

ecutable statement at the current iteration (could be the same statement). B

the interpretation begins, two routines have to been done. First, all update in

tors of outports are turned off. Thus an agent Star could check which ports h

been updated during the iteration and generate new Particles for them. Seco

timers in the process are advanced by the elapsed time from the last iteration

current system time. This is essentially important to the correct functioning of

ing commands in theppl specification. Besides, the interpretation greatly relies

the SPIN evaluatoreval() defined inDESiPrun.cc, where all SiP command are

explicitly listed and self-explanatory to show their detailed steps of evaluation
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