
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Detroit, MI, May 1995

HIERARCHICAL STATIC SCHEDULING OF DATAFLOW GRAPHS
ONTO MULTIPLE PROCESSORS

José Luis Pino and Edward A. Lee

Department of Electrical Engineering and Computer Science
University of California

Berkeley, CA 94720

{pino,eal}@EECS.Berkeley.EDU

ABSTRACT
In this paper we discuss a hierarchical scheduling

framework to reduce the complexity of scheduling
synchronous dataflow (SDF) graphs onto multiple
processors. The core of this framework is a clustering
technique that reduces the number of actors before
expanding the SDF graph into an directed acyclic graph
(DAG). The internals of the clusters are then scheduled with
uniprocessor SDF schedulers which can optimize for
memory usage. The clustering is done in such a manner as
to leave ample parallelism exposed for the multiprocessor
scheduler. We illustrate this framework with a real-time
example that has been constructed in Ptolemy.

1. INTRODUCTION

Dataflow is a natural representation for signal
processing algorithms. One of its strengths is that it exposes
parallelism by expressing only the actual data dependencies
that exist in an algorithm. Applications are specified by a
dataflow graph in which the nodes represent computational
actors, and data tokens flow between them along the arcs of
the graph. Ptolemy [1] is a framework that supports
dataflow programming (as well as other computational
models, such as discrete event).

Generating a stand-alone application from a dataflow
graph description consists of two phases: scheduling and
synthesis [2]. In the scheduling phase, the dataflow graph is
partitioned for parallel execution. We splice send and
receive actors into the graph for interprocessor
communication. These actors do the synchronization
necessary for a self-timed implementation [3]. For each
target processor, a sequence of actor firings is determined.
In the synthesis phase, the code segments associated with
each actor are stitched together, following the order
specified by the scheduler. Commercial systems that use this
“threading” technique include Comdisco’s DPC [4] and

CADIS’s Descartes [5]. The techniques we describe here are
complementary to those in DPC and Descartes, and could,
in principle, be used in combination with them.

There are several forms of dataflow defined in
Ptolemy. In synchronous dataflow (SDF) [6], the number of
tokens produced or consumed in one firing of an actor is
constant. This property makes it possible to determine
execution order and memory requirements at compile time.
Thus these systems do not have the overhead of run-time
scheduling (in contrast to dynamic dataflow) and have very
predictable run-time behavior. The production/consumption
property on the arcs also provides a natural representation of
multirate signal processing blocks [7]. In this paper, we will
focus on scheduling SDF graphs onto multiple processors.

In the following sections, we will review scheduling
of SDF graphs including uniprocessor scheduling and DAG
construction. Then we will discuss the clustering techniques
that make up the hierarchical scheduling framework.
Finally, we look at extensions to current DAG schedulers
that use declustering in order to break larger grain clusters to
expose parallelism. In these circumstances we are able to
delay (and possibly avoid) the expansion of SDF sub-graphs
into the overall DAG.

2. SYNCHRONOUS DATAFLOW

Figure 1 shows a simple multirate SDF graph. In this
graph, actorA produces two tokens and actorB consumes
three tokens for each firing. In a valid SDF schedule, the
first-in/first-out (FIFO) buffers on each arc return to their
initial state after one schedule period. Balance equations are
written for each arc and an integral repetitions vector is
found that solves this system of equations [6]. In this simple
example, the balance equation for the arc is:

. Thus the repetition vector is:

. One of the valid schedules

2 RA× 3 RB×=

RA RB 3n 2n n Z
+∈,=

for this graph isAABAB. Given an SDF specification, we
can find a schedule at compile-time that is iteratively
repeated at run-time.

To schedule SDF graphs onto multiple processors, a
directed acyclic graph (DAG) is constructed from the
original SDF graph. The SDF graph exposes functional
parallelism in the algorithm; the DAG in addition exposes
the data parallelism available. The DAG for the graph of
figure 1 is shown in figure 2. Notice that for each actor in the
original SDF graph, there are multiple nodes in the DAG
corresponding to the repetitions count derived from the
balance equations.

Unfortunately, the expansion due to the repetition
count of each SDF actor can lead to an exponential growth
of nodes in the DAG. An SDF graph that exhibits this
growth is shown in figure 3. The order of the number of

nodes in the DAG is calculated to beO(MN). The growth is
undesirable, especially considering that known optimal
multiprocessor scheduling algorithms under precedence
constraints have complexity that is exponential in the
number of nodes in the DAG [8]. Most uniprocessor SDF
schedulers, on the other hand, do not require a DAG to be
generated for scheduling purposes.

To limit the explosion of nodes when translating an
SDF graph into a DAG graph, we introduce clustering of
connected subgraphs into larger grain “composite” actors.
The composite actors will then be scheduled with one of the
available uniprocessor schedulers. We cluster the actors in a
manner that simplifies the DAG graph, without hiding much
parallelism.

Many multiprocessor schedulers use clustering
heuristics to schedule the DAG graph onto multiple
processors [9-12]. It is important to note that each resultant
cluster is mapped onto a single processor. The purpose of
this paper is to introduce some simple clustering techniques
that can be used directly on the SDF graph, thereby reducing
the number of SDF nodes that are expanded in the final

2 3
BA

Figure 1. A simple SDF graph.

B1

A1

Figure 2. DAG for SDF graph in figure 1.

A2

A3

B2

DAG graph. Clustering the SDF graph also gives us the
opportunity to use specialized uniprocessor SDF schedulers.
These uniprocessor schedulers can optimize for such
parameters as code size and memory usage [13].

3. CLUSTERING TECHNIQUES

In this section we review our clustering techniques for
SDF graphs. There are currently four clustering techniques:
user specified, resource constraint limited, homogeneous
SDF chain structured subgraphs, and multirate chain
structured subgraphs for which all the actors have internal
state.

The first clustering technique is by far the simplest:
we allow the user to specify clusters that will be mapped
onto a single processor. This clustering technique empowers
the user with fundamental scheduling decisions. A potential
problem is that the user can introduce artificial deadlock.
However, this error is easily caught at compile time [14].
When we automatically cluster subgraphs, we must ensure
that the constructed clusters do not introduce artificial
deadlock. To do this we can apply the four cluster
conditions listed in [13].

The next clustering technique takes into account
resource constraints. When mapping SDF graphs onto
heterogeneous processors, a group of connected actors may
be required to be mapped onto a particular processor. Here,
we are free to cluster these SDF subgraphs as long as we do
not introduce artificial deadlock.

In the last two clustering techniques, we cluster
chains of SDF actors. A chain structured SDF subgraph is
one in which each actor is connected to at most two other
actors. One source actor is connected to all the input arcs
and one destination actor is connected to all the output arcs.
Thus, when clustering chain structured SDF subgraphs, we
do not group overbranch or merge SDF actors (actors
which have multiple sources or destinations), where
functional parallelism is exposed.

The third clustering technique groups the actors in a
homogeneous chain structured SDF subgraph where the
actors do not have internal state (or equivalently, have self
loop arcs). A homogeneous SDF subgraph is one in which

M 1
21

Figure 3. A SDF graph exhibitingO(MN) DAG nodes.

M 1
3

M 1
N

2 2
21

Figure 4. A homogeneous chain structured SDF graph

3 3
3

1 1
4

the number of outputs produced on an arc is equal to the
number of inputs consumed on that arc (see figure 3). This
clustering does not hide any of the available parallelism that
will be exposed in the final DAG. These clusters obey the
linear clustering heuristic described in [11] for DAG
multiprocessor scheduling.

Finally, the last clustering technique groups the actors
in chain structured subgraphs made up of multirate actors
having internal state. Internal state introduces dependencies
between the various repetitions of an actor in a schedule
period, thereby reducing the data parallelism available. For
example, if the actors in the SDF graph shown in figure 1
had internal state, then the resultant DAG shown in figure 2
would have additional precedence arcs connecting
A1→A2→A3 and B1→B2. Unlike the previous three
clustering heuristics, this technique can hide some of the
available parallelism although in this case, it does not.

4. ACOUSTICAL MODEM EXAMPLE

In this section we detail a quadrature phase-shift
keying(QPSK) acoustical model [15] which is scheduled
onto two heterogeneous processors (RISC, DSP). The SDF
specification is shown in figure 5. A pseudo-random bit
stream is generated on the workstation and then packed into
a DSP word stream(22 bits/word). The stream of words is
sent to a DSP which unpacks each word to form a bit
stream. These bits are then encoded into a symbol (2 bits/
symbol). The DSP transmits and then receives the symbol
stream over a speaker/microphone channel. The received

symbols are then decoded, packed and sent back to the
workstation, where the errors are displayed to the user. The
user can control the alignment of the symbol period and
examine the resultant constellation using the peek/poke
mechanism described in [16]. All of the transmitter and
receiver filters are polyphase FIR filters with interpolation
and decimation factors of 32 samples respectively.

Note that the SDF graph shown in figure 5 is
expressed hierarchically. There are a total of 38 SDF actors;
the corresponding DAG has a total of 2100 nodes. Since we
are able to use SDF uniprocessor schedulers on the SDF
subgraph clusters, for this example, we are able to obtain a
single appearance schedule which leads to very compact
code. A single appearance schedule is an SDF schedule in
which each actor only appears once [13]. To obtain the
single appearance schedule, three uniprocessor schedulers
and one multiprocessor scheduler were used by the
hierarchical scheduling framework. By using the cluster
hierarchy, the multiprocessor scheduler only had to schedule
a DAG with 8 nodes. The multiprocessor schedule
generated from the fully expanded DAG graph, has one
function call (or inlined procedure) for each of its 2100
nodes as compared to the 38 function calls for the
hierarchical schedule.

Finally, the makespans of the schedules generated
using the hierarchical scheduler and traditional full DAG
expansion varied by less than 4% (the hierarchical being
longer). The difference is due to the fact that a cluster of
SDF actors is treated as an atomic SDF actor by the outside

����
����
����
����

��
����

��

��
��

�
�

���
���

����
����
����
����

����
����
����
����

����
����
����
����

ii
ii

��
��
��

�
��

�

����
����
����
����

��� �
�
�
�
�
�

////
////
////
� ��

��
�
�
�
������

��
��

����
��

��
��

��
��
�

DSP
Modem

Error
Display

Figure 5. A QPSK acoustic modem. The top center block diagram is the top-level modem schematic. The hierarchy ofPseudo-Random
Bits, DSP Modem, andError Display blocks is expanded in the accompanying block diagrams. All of the blocks except for
theDSP Modem execute on the host workstation. TheDSP Modem executes on the Ariel S-56X DSP board.

�
�
�
�
��� �
�
�
��
��
�
�6

6
66
66
666

66
66
6
6
66
66

����
����
����

Quadrature
Transmitter

Quadrature
Transmitter

Peek Poke

Channel
Variable
Delay

In-phase In-phase
Transmitter ReceiverCoder Decoder

Unpack Pack
Bits Bits

Pseudo-
Random
Bits

V.22bis
Scrambler

Pack
Bits

Unpack
Bits

V.22bis
Descrambler

Error
Display

Delay
Control

Constellation
Display

scheduler. Hence all of the inputs must be available before
the cluster fires. Furthermore, none of the outputs will be
available until a cluster schedule iteration is completed. We
are investigating cyclo-static dataflow [17] as a method to
eliminate the variance in makespans. In cyclo-static
dataflow, each actor firing has distinct phases. Each phase
produces and consumes a fixed amount of data at each input
and output. The cluster schedule could then be expressed in
schedule phases, thereby allowing part of the cluster to fire
as soon as some of the input was available (versus waiting
for all of the input for all of the phases).

5. CONCLUSIONS

In this paper, we have introduced a hierarchical
scheduling framework for SDF graphs being mapped onto
multiple processors. This framework can drastically reduce
the number of nodes present in the final DAG graph, which
is used for parallel scheduling. We have shown a practical
example where this scheduling technique has greatly
improved the final schedule.

We plan to augment the SDF graph clustering
techniques by specializing some of the DAG clustering
heuristics found in multiprocessor schedulers for direct use
on the SDF graph. The objective is to hide only that
parallelism that would not be exploited anyway, and in
doing so, simplifying the DAG.

ACKNOWLEDGMENTS
This research is part of the Ptolemy project, which is

supported by the Advanced Research Projects Agency and
the U.S. Air Force (under the RASSP program, contract
F33615-93-C-1317), Semiconductor Research Corporation
(project 94-DC-008), National Science Foundation (MIP-
9201605), Office of Naval Technology (via Naval Research
Laboratories), the State of California MICRO program, and
the following companies: Bell Northern Research, Cadence,
Dolby, Hitachi, Mentor Graphics, Mitsubishi, NEC, Pacific
Bell, Philips, Rockwell, Sony, and Synopsys.

José Luis Pino is also supported by AT&T Bell
Laboratories as part of the Cooperative Research
Fellowship Program.

REFERENCES
[1] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt,

“Ptolemy: A framework for simulating and prototyping het-
erogeneous systems,”International Journal of Computer
Simulation, special issue on Simulation Software Develop-
ment, vol. 4, pp. 155-182, 1994.

[2] J. L. Pino, S. Ha, E. A. Lee, and J. T. Buck, “Software syn-
thesis for DSP using Ptolemy,”Journal of VLSI Signal Pro-
cessing to appear in special issue on Synthesis for DSP, 1993.

[3] E. A. Lee and S. Ha, “Scheduling strategies for multiproces-
sor real-time DSP,” presented at IEEE Global Telecommuni-
cations Conference and Exhibition. Communications
Technology for the 1990s and Beyond, Dallas, TX, USA,
1989.

[4] D. G. Powell, E. A.Lee, and W. C. Newman, “Direct synthe-
sis of optimized DSP assembly code from signal flow block
diagrams,” presented at IEEE International Conference on
Acoustics, Speech, and Signal Processing, San Francisco,
CA, 1992.

[5] S. Ritz, M. Pankert, and H. Meyr, “High level software syn-
thesis for signal processing systems,” presented at Interna-
tional Conference on Application Specific Array Processors,
Berkeley, CA, USA, 1992.

[6] E. A. Lee and D. G. Messerschmitt, “Synchronous data
flow,” Proceedings of the IEEE, vol. 75, pp. 1235-1245,
1987.

[7] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Multi-
rate signal processing in Ptolemy,” presented at IEEE Inter-
national Conference on Acoustics, Speech, and Signal
Processing, Toronto, Ont., Canada, 1991.

[8] M. R. Garey and D. S. Johnson,Computers and Intractabil-
ity: A guide to the theory of NP-completeness. New York:
W.H. Freeman, 1991.

[9] A. Gerasoulis and T. Yang, “A comparison of clustering heu-
ristics for scheduling directed acyclic graphs on multiproces-
sors,”Journal of Parallel and Distributed Computing, vol.
16, pp. 276-291, 1992.

[10] P. D. Hoang and J. M. Rabaey, “Scheduling of DSP programs
onto multiprocessors for maximum throughput,”IEEE
Transactions on Signal Processing, vol. 41, pp. 2225-2235,
1993.

[11] S. J. Kim and J. C. Browne, “A general approach to mapping
of parallel computations upon multiprocessor architectures,”
presented at International Conference on Parallel Processing,
University Park, PA, USA, 1988.

[12] G. C. Sih and E. A. Lee, “Declustering: A new multiproces-
sor scheduling technique,”IEEE Transactions on Parallel
and Distributed Systems, 1992.

[13] S. S. Bhattacharyya, J. T. Buck, S. Ha, and E. A. Lee, “A
compiler scheduling framework for minimizing memory
requirements of multirate DSP systems represented as data-
flow graphs,” University of California at Berkeley UCB/ERL
M93/31, April 25, 1993 1993.

[14] J. L. Pino, T. M. Parks, and E. A. Lee, “Automatic code gen-
eration for heterogeneous multiprocessors,” presented at
IEEE International Conference on Acoustics, Speech, and
Signal Processing, Adelaide, South Australia, 1994.

[15] E. A. Lee and D. G. Messerschmitt,Digital Communication,
2nd ed. Boston: Kluwer Academic Publishers, 1994.

[16] J. L. Pino, T. M. Parks, and E. A. Lee, “Mapping multiple
independent synchronous dataflow graphs onto heteroge-
neous multiprocessors,” presented at IEEE Asilomar Confer-
ence on Signals, Systems, and Computers, Pacific Grove,
CA, 1994.

[17] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete,
“Static scheduling of multi-rate and cyclo-static DSP-appli-
cations,” presented at IEEE International Workshop on VLSI
Signal Processing, La Jolla, California, 1994.

	TITLE
	ABSTRACT
	INTRODUCTION
	SYNCHRONOUS DATAFLOW
	CLUSTERING TECHNIQUES
	ACOUSTICAL MODEM EXAMPLE
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

