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This thesis presents an analytical model of the behavior of dataflow graphs

with data-dependent control flow. In this model, the number of tokens produced or

consumed by each actor is given as a symbolic function of the Boolean-valued tokens

in the system. Several definitions of consistency are discussed and compared. Neces-

sary and sufficient conditions for bounded-length schedules, as well as sufficient con-

ditions for determining whether a dataflow graph can be scheduled in bounded

memory are given. These are obtained by analyzing the properties of minimal cyclic

schedules, defined as minimal sequences of actor executions that return the dataflow

graph to its original state. Additional analysis techniques, including a clustering algo-

rithm that reduces graphs to standard control structures (such as “if-then-else” and

“do-while”) and a state enumeration procedure, are also described. Relationships

between these techniques and those used in Petri net analysis, as well as in the theory

of certain stream languages, are discussed.

Finally, an implementation of these techniques using Ptolemy, an object-ori-

ented simulation and software prototyping platform, is described. Given a dynamic
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dataflow graph, the implementation is capable either of simulating the execution of the

graph, or generating efficient code for it (in an assembly language or higher level lan-

guage).

Edward A. Lee
Thesis Committee Chairman
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THE DATAFLOW PARADIGM

1

I believe that the current state of the art of computer programming

reflects inadequacies in our stock of paradigms, in our knowledge of exist-

ing paradigms, and in the way our programming languages support, or fail

to support, the paradigms of their user communities.

— R. Floyd

This dissertation is devoted to the application of a particular model of computa-

tion, namely dataflow, to the solution of problems in digital signal processing (DSP). It is

not our intent to dogmatically insist that any particular model be applied in a pure form;

rather, it is our thesis that the most efficient applications of dataflow to DSP use a hybrid

model, combining the best features of dataflow and other models of computation, and that

it is advantageous to determine as much as possible about the execution of a dataflow

system at “compile time”. Therefore this section is an attempt to place the dataflow para-

digm in context with respect to other possibilities and to flesh out the theoretical back-

ground for the graphical and stream-based models of computation we will consider.

In section 1.1, we discuss the distinction between operational and definitional par-

adigms in computer science, building a case for consideration of definitional approaches
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to problem formulation in computer science. A variety of operational and definitional

models are discussed. In section 1.2, we focus on those definitional models that can be

expressed graphically, most of which are related in some way to the Petri net model.

These models, for the most part, form the basis of dataflow computing. The rest of the

chapter presents a survey of dataflow computing from both the hardware and software

perspectives: section 1.3 discusses dataflow machines, and section 1.4 discusses lan-

guages that implement a dataflow model. Finally, section 1.5 summarizes the chapter.

Following Floyd [Flo79], we adopt the termparadigmfrom Thomas Kuhn’sThe

Structure of Scientific Revolutions. A Kuhnian paradigm, in the field of history of science,

is a work that shares two characteristics: it succeeds in attracting an enduring group of

adherents away from competing modes of scientific activity, and it is sufficiently open-

ended to leave all sorts of problems for the “converts” to solve [Kuh62]. By analogy, in

computer science we can say that structured programming is a paradigm (Floyd’s main

example), as is object-oriented programming, logic programming, communicating

sequential processes, and many others. Floyd also identifies techniques with more limited

applicability as paradigms, thus branch and bound or call by name are paradigms.

Ambler et al. identify three levels of programming paradigms [Amb92]: those

that support high-level approaches to design (functional languages, object-oriented

design), methods of algorithm design, and low-level techniques (copying versus sharing

of data, for example). We are mainly concerned with high-level paradigms, but unlike

Ambler, we will consider both programming language paradigms and those that pertain

to computer architecture. In general, we have a hierarchy of languages: at the highest

level, the user or system designer manipulates the most abstract objects. Any number of

intermediate levels may intervene between this model and the physical machine, and par-

adigms model the organization and design of each level.
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1.1.  OPERATIONAL VS DEFINITIONAL

Whether we consider programming languages or computer architecture and orga-

nization, it appears that one distinction is fundamental: the difference between opera-

tional and definitional approaches to problem-solving. Roughly stated, the distinction has

to do with the level of detail in which the designer or programmer must specify how the

answer is computed, in addition to specifying what is computed. This distinction is simi-

lar to, but not the same as, the distinction between imperative and declarative models of

programming made by the advocates of functional programming (for example, [Hud89]).

1.1.1  The Operational Paradigm

The most successful paradigm for computer architecture and organization is the

von Neumann model of the computer. The most important aspect of this model for our

purposes is that the von Neumann machine has a state, corresponding to the contents of

memory and of certain internal registers in the processor (the program counter, for exam-

ple). The machine executes one instruction at a time in a specified order, and the result of

each instruction is that one or more memory locations and internal registers take on a new

value.

The most commonly used computer languages have retained this fundamental

paradigm: the programmer is presented with a higher-level and cleaner version of a von

Neumann machine, and the task of the programmer is to specify the states and to sched-

ule the state transitions. Following Ambleret al., we refer to programming paradigms in

which the designer or programmer specifies the flow of control that converts the starting

state into the solution state by means of a series of state transitions as operational.

Given this definition, there are a great variety of programming languages and par-

adigms that fall under the operational approach, from unstructured assembly language to

structured programming to object-oriented programming. Ambleret al divide traditional
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operational programming languages into two principal groups: imperative and object-ori-

ented. Languages that support abstract types and information hiding but not inheritance,

such as Ada, would fall in the latter group according to their classification, although other

authors, notably Booch in [Boo91], call such languagesobject-based. The difference

between imperative and object-based languages is mainly that the states have become

much more abstract in object-based languages.

Parallel languages in which the programmer explicitly controls the threading to

some degree are also considered operational. We will not discuss such languages further;

the interested reader is directed to [Bal89].

While operational, imperative languages are very widely used, and many software

engineering techniques have been developed to make them more manageable, there are

some significant disadvantages. As pointed out by Backus [Bac78], the imperative state

transition model renders programming as well as programming execution intractable to

formal reasoning. To be fair, there are techniques for reasoning about sequential pro-

grams provided that some structure is followed, as Dijkstra, Floyd, Hoare and others have

shown. There are also languages that are explicitly based on a state machine model, such

as Esterel [Ber92] and Statecharts [Har87], but they represent definitional (or pseudo-def-

initional) rather than operational approaches, since the programmer uses the language to

specify properties the solution is to have and does not specify the exact sequence of steps

in finding the solution. From an organizational point of view, programs for a state transi-

tion machine constitute rather sophisticated work schedules [Klu92], and efforts to rea-

son about programs must deal with the fact that the specification of the exact order in

which operations are to be performed can get in the way of the logic.

Despite these disadvantages, the very aspects that cause difficulties for the imper-

ative specification of large parallel systems (the need to precisely specify all details,

together with their order) often turn into advantages when it is necessary to obtain the
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maximum performance for a particular small piece of code on a particular piece of hard-

ware. As we will later see, certain hybrid models (e.g. coarse-grain dataflow as in block

diagram languages and the cooperating sequential processes model of [Kah74]) may be

used to combine aspects of the operational and definitional approaches.

1.1.2  Definitional and Pseudo-definitional Models

In the definitional or declarative paradigm, we express the result we wish to pro-

duce by defining it rather than by giving a step-by-step method of computing it. Relation-

ships between inputs and the required output are specified in a formal manner, and inputs

are transformed to outputs by state-independent means. In principle, the programmer

does not specify the order of operations, but in many cases mechanisms are provided to

“cheat” and hence we use the termpseudo-definitional to describe the hybrid approach

that results.

The canonical example of this paradigm is one of the oldest, that subset of Lisp

known as “pure Lisp”. In this subset, results are computed as a result of function applica-

tion alone; there is no assignment (other than the binding of formal arguments to actual

parameters), no side effects, and no destructive modification of list storage. Results are

generated by copying, and garbage collection is used to reclaim memory without inter-

vention by the programmer. This is a simple example of functional programming, where

the key concept is that of functional composition, feeding the result of one function to the

next until the desired result is computed.

The major categories of definitional paradigms that we consider here include

forms-based programming, logic programming, functional programming, and dataflow

and stream approaches. Forms-based programming, as is used in spreadsheets, may well

be the most common form of definitional programming in existence today, if we consider

the sheer numbers of “programmers” (many of whom do not realize that they are in fact

programming).
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In the logic programming paradigm, we are given known facts, relationships, and

rules of inference, and attempt to deduce particular results. Just as functions are the key

to functional programming, relations are the key to logic programming. “Thus, logic pro-

gramming from the programmer’s perspective is a matter of correctly stating all neces-

sary facts and rules [Amb92].” Evaluation of a logic program starts from a goal and

attempts to deduce it by pattern matching from known facts or deduction from the given

rules. In principle, this makes logic programming purely definitional, but because of the

combinatorial explosion that results almost all logic programming languages have means

of implicitly controlling the order of evaluation of rules, including mechanisms known as

“cuts” to inhibit backtracking. Use of these mechanisms is essential in the logic program-

ming language Prolog, for example [Mal87].

Functional programming languages are characterized by the lack of implicit state

(state is carried around explicitly in function arguments), side effects, and explicit

sequencing. Modern functional languages are characterized by higher-order functions

(functions are permitted to return functions and accept functions as arguments), lazy

evaluation (arguments are evaluated only when needed) as opposed to eager evaluation

(in which arguments are always evaluated before passing them to functions), pattern

matching, and various kinds of data abstraction [Hud89]. Functional languages possess

the property known asreferential transparency, or “equals may be replaced by equals”;

this is a powerful tool for reasoning about and for transforming functional programs.

In the dataflow paradigm, streams of data flow through a network of computa-

tional nodes; each node accepts data values, commonly calledtokens, from input arcs and

produces data values on output arcs. The programmer specifies the function performed at

each node. The only constraints on order of evaluation are those imposed by the data

dependence implied by the arcs between nodes. Visual representations for this kind of

computation are natural; in addition, there are textual representations for such languages
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that are typically translated into a dataflow graph internal form.

Dataflow languages are, for the most part, functional languages, distinguished

mainly by their emphasis on data dependency as an organizing principle. Like functional

languages, they are applicative, rather than imperative; many lack the notion of a higher-

order function (a function that operates on and returns functions). In several dataflow lan-

guages, a distinguishing feature is the use of identifiers to represent conceptually infinite

streams of data; this feature apparently originated in the language Lucid [Ash75]. The

best-known languages of this type are Lucid, Val [Ack79] and its successor SISAL

[McG83], and Id [Arv82] and its successor, Id Nouveau [Nik86]. We will explore the fea-

tures of these languages and others in more detail in the next section.

Dataflow machines and graph reduction engines are examples of machines that

implement definitional programming paradigms directly in hardware. We will have more

to say about dataflow machines later in this thesis (see section 1.3); for a discussion of

graph reduction engines see [Klu92].

1.2.  GRAPHICAL MODELS OF COMPUTATION

Graphical models of computation are very effective in certain problem domains,

particularly digital signal processing and digital communication, because the representa-

tion is natural to researchers and engineers. These models naturally correspond to data-

flow semantics, resulting in many cases in definitional models that expose the parallelism

of the algorithm and provide minimal constraints on the order of evaluation. Even where

text-based rather than graphical languages are used (as in section 1.4), compilers often

create graphical representations as an intermediate stage. Almost all graphical models of

computation can be formulated as either special cases of, or in some cases, generaliza-

tions of Petri net models, including the dynamic dataflow models that are the core of this

thesis. This section introduces the analysis techniques that provide tools for understand-
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ing and manipulating these models.

1.2.1  Petri Nets

Petri nets are a widely used tool for modelling, and several models of dataflow

computation are important special cases of Petri nets. Before explaining the special cases,

we will discuss Petri nets in their general form, using the definition of Peterson [Pet81].

A Petri net is a directed graph, , where  is the set

of vertices and  is a bag (not a set) of arcs.1 The set  of vertices can

be partitioned into two disjoint sets  and , representing two different types of graph

nodes, known asplaces andtransitions. Furthermore, every arc in a Petri net either con-

nects a place to a transition, or a transition to a place (no edge may connect two nodes of

the same type). Thus if  is an arc, either  and  or  and

. There may be more than one arc connecting a given place to a given transition, or

vice versa2; thus  is a bag rather than a set, and the membership function for a given

node pair specifies the number of parallel arcs present between that pair of nodes.

In addition, places may contain some number oftokens. A marking of a Petri net

is simply a sequence of nonnegative integers, one value per place in the net, representing

the number of tokens contained in each place. It can be considered a function from the set

of places  to the set of non-negative integers , : . A Petri net together with a

marking is called amarked Petri net.

For each transition  in a Petri net, there is a corresponding set of input places

 (the set of places for which an arc connects the place to the transition) and a set of

1. A bag is distinguished from a set in that a given element can be includedn times in a bag, so
that the membership function is integer-valued rather than Boolean-valued. A discussion of bag
theory as an extension of set theory as it applies to Petri nets appears in [Pet81].
2. In Petri’s original formulation, parallel arcs were not permitted; we use the more general form
discussed in Peterson [Pet81] and, following Peterson, use the termordinary Petri netto discuss
the more restricted case.

G V A,( )= V v1 … vs, ,{ }=

A a1 … ar, ,{ }= V

P T

ai vj vk,( )= vj P∈ vk T∈ vj T∈

vk P∈

A

P N µ P N→

t

I t( )
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output places  (the set of places for which an arc connects the transition to the

place). Similarly, we can define the set of input transitions and output transitions for each

place,  and .

The execution of a marked Petri net is controlled by the presence or absence of

tokens. A Petri net executes by firing transitions. When a transition fires, one token is

removed from each input place of the transition (if there aren parallel arcs from a place

to a transition, thenn tokens are removed from the place) and one token is added to each

output place of the transition (again, if there aren parallel arcs from the transition to the

same output place,n tokens are added to that place). The number of tokens in a given

place can never be negative, so a transition may not fire if there are not enough tokens on

any of its input places to fire the transition according to these rules. A transition that has

enough tokens on all of its input places for it to fire is said to be enabled. Enabled transi-

tions may fire, but are not required to; firings may occur in any order. Execution may con-

tinue as long as at least one transition is enabled.

In figure 1.1, we see a simple marked Petri net with five places and four transi-

tions. In this example, transitions  and  are enabled; the marking can be represented

as a vector {1,1,2,0,0}. If transition  is fired, the new marking will be {1,1,1,1,0} and

O t( )

I p( ) O p( )

p1
p2

p3

p4

p5

t1 t2

t3

t4

Figure 1.1 A simple Petri net.

t1 t2

t2
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transition  will be enabled. This Petri net does not have parallel arcs; if, for example,

there were two parallel arcs between  and , then firing  would remove both tokens

from .

1.2.2  Analysis of Petri Nets

Petri nets are widely used in modeling; in particular, a Petri net may be used as a

model of a concurrent system. For example, a network of communicating processors with

shared memory or a communications protocol might be so modeled. For this model to be

of use, it must be possible to analyze the model. The questions that one might ask about a

Petri net model also apply when analyzing other models, both those that occur for models

that are subsets of Petri nets and for other computational models that we will consider.

The summary that follows is based on that of Peterson [Pet81] and Murata [Mur89].

For a Petri net to model a real hardware device, it is often necessary that the net

have the property known assafeness. A Petri net with an initial marking  issafe if it is

not possible, by any sequence of transition firings, to reach a new marking  in which

any place has more than one token. If this property is true, then a hardware model can

represent a place as a single bit or, if the token represents data communication, space for

a single datum.

It is possible to force a Petri net to be safe by adding arcs, provided that there are

no parallel arcs connecting places and transitions. To force a place  to be safe, we add

another place  that has the property that  has a token if and only if  does not have

a token. To achieve this, transitions that use  are modified as follows [Pet81]:

If  and , then add  to .

If  and , then add  to .

This technique was used by Dennis to simplify the design of static dataflow

machines [Den80]. In this context, these additional arcs are calledacknowledgment arcs.

t4

p3 t2 t2

p3

µ

µ'

pi

p'i p'i pi

pi

pi I t j( )∈ pi O tj( )∉ p'i O tj( )

pi O tj( )∈ pi I t j( )∉ p'i I t j( )
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Safeness is a special case of a more general condition calledboundedness. In

many cases we do not require that the number of tokens in each place is limited to one; it

will suffice to have a limit that can be computed in advance. A place isk-bounded if the

number of tokens in that place never exceedsk, and a net as a whole isk-bounded if every

place isk-bounded. If, for a Petri net, somek exists so that the net isk-bounded, we sim-

ply say that it is bounded. Where Petri nets are used as models of computation and tokens

represent data, we can allocate static buffers to hold the data if the corresponding net is

bounded.

Another important property of a Petri net model isliveness. Liveness is the avoid-

ance ofdeadlock, a condition in which no transition may fire. Let  be the set of

all markings that are reachable given the Petri net N with initial marking . Using the

definition of [Com72], we say that a transition  is live if for each , there

exists a sequence of legal transition executions  such that  is enabled after that

sequence is executed. Speaking informally, this means that no matter what transition

sequence is executed, it is always possible to execute  again. A Petri net is live if every

transition in it is live.1

Another important property of Petri net models isconservativeness; a net is

strictly conservative if the number of tokens is never changed by any transition firing. A

net isconservative with respect to a weight vector wif, for each place  we can find a

weight  such that the weighted sum of tokens  never changes; here  is the

number of tokens in the place  while the marking  is in effect. Note that all Petri nets

are conservative with respect to the all-zero vector. A net is said to beconservative (no

modifiers) if it is conservative with respect to a weight vector with all elements greater

1. Commoner also defined lesser levels of liveness; this definition corresponds to “live at level 4”.

R N µ,( )

µ

tj µ' R N µ,( )∈

σ tj

tj

pi

wi wiµi

M

∑ µi

pi µ
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than zero. Every conservative net is bounded, but not vice versa.

All the problems discussed so far are concerned withreachable markings, in the

sense that they ask whether is it possible to reach a marking in which some property

holds or does not hold. In that sense, given an algorithm for finding the structure of the

set of reachable markings, we can answer these and other analysis questions.

The reachability tree represents the set of markings that may be reached from a

particular initial marking for a given Petri net. The initial marking becomes the root node

of the tree. Each node has one child node for each transition that is enabled by that mark-

ing; the tree is then recursively expanded, unless a node duplicates a node that was gener-

ated earlier. Note that if a net isk-bounded, for anyk, this construction is finite; there are

a fixed number of distinct markings that are reachable from the initial marking. An addi-

tional rule is added to make the construction finite even for unbounded nets. To under-

stand this construction, we define a partial ordering on markings. We say that  if,

when considered as a vector, each element of  is greater than or equal to the corre-

sponding element of  (meaning that each place has as many or more tokens under mark-

ing  as under marking ); we then say that  if and only if  and .

Now consider a sequence of firings that starts at a marking  and ends at a marking

such that . The new marking is the same as the initial marking except for extra

tokens, so we could repeat the same firing sequence and generate a new firing  that has

even more tokens; in fact, when considered as a vector, . Every place

that gains tokens by this sequence of firings is unbounded; we can make its number of

tokens grow arbitrarily large simply by repeating the firing sequence that changes the

marking from  to . We represent the potentially infinite number of tokens associated

with such places by a special symbol, , which can be thought of as representing infinity.

When constructing the reachability tree, if we ever create a node whose marking is
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greater (in the sense we have just defined) than another node that occurs on the path

between the root and the newly constructed node, we replace the elements that indicate

the number of tokens in places that may grow arbitrarily large with . As we continue

the construction of the tree, we assume that a place with  tokens can have an arbitrary

number of tokens added or removed and still have  tokens. Given this convention, it

can be shown that the resulting reachability tree (with infinitely growing chains of mark-

ings replaced by  nodes) is finite for any Petri net; this construction and the proof was

given by Karp and Miller [Kar69].

Given this construction, we have an algorithm for determining whether a Petri net

is bounded: if the  symbol does not appear in the reachability tree, the Petri net is

bounded. Similarly, possible weight vectors for a conservativeness test can be determined

by solving a system ofm equations inn unknowns, wherem is the number of nodes in the

reachability tree andn is the number of places. These equations take the form

(1-1)

where  is the marking associated with the  node in the reachability graph,

and wrepresents the unknown weight vector. We treat  as representing an arbitrarily

large number, so that any place that ever has a  symbol must have zero weight. If the

system is overly constrained there will be no nonzero solutions and the system will not be

conservative. The reachability tree cannot be used to solve the liveness question if there

is a  entry, as this represents loss of information.

1.2.3  The Computation Graphs of Karp and Miller

The earliest reference to the dataflow paradigm as a model for computation

appears to be the computation graphs of Karp and Miller [Kar66]. This model was

designed to express parallel computation and represents the computation as a directed

graph in which nodes represent an operation and arcs represent queues of data. Each node

ω

ω

ω

ω

ω

µi
Tw 1=

µi i th

ω

ω

ω



14

has associated with it a function for computing outputs from inputs. Furthermore, for

each arc , four nonnegative integers are associated with that arc:

, the number of data words initially in the queue associated with the arc,

, the number of data words added to the queue when the node that is con-

nected to the input of the arc executes;

, the number of data words removed from the queue when the node that is con-

nected to the output of the arc executes;

, a threshold giving the minimum queue length necessary for the output node to

execute. We require .

Karp and Miller prove that computation graphs with these properties are determi-

nate; that is, the sequence of data values produced by each node does not depend on the

order of execution of the actors, provided that the order of execution is valid. They also

investigated the conditions that cause computations to terminate, while later views of

dataflow computation usually seek conditions under which computations can proceed

indefinitely (the avoidance of deadlock). They also give algorithms for determining stor-

age requirements for each queue and for those queue lengths to remain bounded. In

[Kar69], Karp and Miller extend this model to get a more general form called a “vector

addition system”. In this model, for each actor we have a vector, and this vector repre-

sents the number of tokens to be added to each of a set of buffers. Negative-valued ele-

ments correspond to buffers from which tokens are subtracted if the actor executes.

Actors may not execute if that would cause the number of tokens in some buffer to

become negative. If the number of tokens in each buffer is represented as a vector, then

executing an actor causes the vector for that actor to be added to the system state vector,

hence the name “vector addition system.” If actors are identified with transitions and

buffers are identified with places, we see that this model is equivalent to Petri nets.

dp

Ap

Up

Wp

Tp

Tp Wp≥
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It is not difficult to see that Karp and Miller’s computation graph model can be

analyzed in terms of Petri nets. The queues of data can be modelled as places and the

nodes can be modelled as transitions. Each arc of the computation graph can be modelled

as  input arcs connecting a source transition to a place, followed by  output arcs

connecting a place to an output transition and  arcs connecting the output transi-

tion back to the place. The Petri net model differs from the computation graph model in

that Petri net tokens do not convey information (other than by their presence or absence),

only the number of tokens matters. Since Petri net tokens are all alike, the fact that

streams of values are produced and consumed with a first-in first-out (FIFO) discipline is

not reflected in the Petri net model. However, the constraints on the order of execution of

transitions are exactly the same.

1.2.4  Marked Graphs

Marked graphs are a subclass of Petri nets. A marked graph is a Petri net in which

every place has exactly one input transition and one output transition. Parallel arcs are not

permitted. Because of this structural simplicity, we can represent a marked graph as a

graph with only a single kind of node, corresponding to transitions, and consider the

tokens to “live” on the arcs. This representation (with only one type of node correspond-

ing to Petri net transitions) is standard in dataflow. Marked graphs can represent concur-

rency (corresponding to transitions that can be executed simultaneously) and

synchronization (corresponding to multiple arcs coming together at a transition) but not

conflict (in which the presence of a token permits the firing of any of several transitions,

but firing any of the transitions disables the others). Marked graphs are much easier to

analyze than general Petri nets; the properties of such graphs were first investigated in

detail in [Com72].

In particular, the question of whether a marked graph is live or safe can be readily

answered by looking at its cycles. Acycle of a marked graph is a closed sequence of tran-

Up Tp

Tp Wp–
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sitions that form a directed loop in the graph. That is, each transition in the sequence has

an output place that is also an input place for the next transition of the sequence, and the

last transition in the sequence has an output place that is an input place for the first transi-

tion in the sequence. It is easy to see that if a transition that is in a cycle fires, the total

number of tokens in the cycle will not change (one token is removed from an input place

in the cycle and one is added to an output place in the cycle). From this it can be shown

that:

• A marking on a marked graph is live if and only if the number of tokens on each

cycle is at least one.

• A live marking is safe if and only if every place is in a cycle, and every cycle has

exactly one token.

1.2.5  Homogeneous Dataflow Graphs

It is natural to model computation with marked graphs. We can consider transi-

tions to model arithmetic operations; if we then constrain the graph to be safe, using the

results just described, it is then possible to avoid queuing; each arc needs to store only a

single datum. However, since it was shown earlier that it is possible to transform any

ordinary marked Petri net into a safe net by the addition of acknowledgment arcs, it is

usual to represent computation in terms of dataflow graphs without these extra arcs. The

acknowledgment arcs may then be added, or we may execute the graph as if they were

there (as in Petri’s original model, in which a transition was not permitted to fire if an out-

put place had a token). It is then necessary only to be sure that the resulting graph does

not deadlock, which can only occur if there is a cycle of nodes (transitions) that does not

contain a token.

The static dataflow model of Dennis was designed to work in this way: ideally,

the rule was that a node could be evaluated as soon as tokens were present on all of its
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input arcs and no tokens were present on any of its output arcs. Instead, acknowledgment

arcs were added, so that a node could be enabled as soon as tokens were present on all

input arcs (including acknowledgment arcs) [Den80].

Dataflow actors that consume one token from each input arc and produce one

token on each output arc are calledhomogeneous. The value, if any, of a token does not

affect the eligibility of an actor to execute (though it usually does affect the value of the

tokens computed). These restrictions are relaxed in more general dataflow models.

Graphs consisting only of homogenous dataflow actors are called homogenous dataflow

graphs and correspond to marked graphs.

Static dataflow machines permit actors other than homogeneous dataflow actors,

such as the SWITCH and SELECT actors we will discuss in the next section. However,

the constructs in which these actors appear must be carefully controlled in order to avoid

deadlock given the constraint of one token per arc [Den75b].

1.2.6  General Dataflow Graphs

In the most general sense, a dataflow graph is a directed graph with actors repre-

sented by nodes and arcs representing connections between the actors. These connections

convey values, corresponding to the tokens of Petri nets, between the nodes. Connections

are conceptually FIFO queues, although as we will see, mechanisms are commonly used

that permit out-of-order execution while preserving the semantics of FIFO connections.

We permit initial tokens on arcs just as Petri nets have initial markings.1

If actors are permitted to produce and consume more than one actor per execu-

tion, but this number is constant and known, we obtain the synchronous2 dataflow model

1. Ashcroft and Wadge [Ash75] would call this model “pipeline dataflow” and argue for a more
general model, permitting data values to flow in both directions and not requiring FIFO, as in their
Lucid language (see section 1.4.1). Theirs is a minority view; Caspi, for example [Cas92] con-
tends that the Lucid model is not dataflow at all.
2. The termsynchronous has been used in very different senses by Lee and by the designers of the
stream languages LUSTRE [Hal91] and SIGNAL [Ben90]. We will use the termregular to refer
to actors with constant input/output behavior to avoid this possible source of confusion.
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of Lee and Messerschmitt [Lee87b]. We will call actors that produce and consume a con-

stant number of tokensregular actors, and dataflow graphs that contain only regular

actorsregular dataflow graphs. The canonical non-homogeneous regular dataflow actors

are UPSAMPLE and DOWNSAMPLE, shown in figure 1.2.

If no restrictions are made on when actors can fire other than data availability, the

regular dataflow model is a subclass of Petri nets; it is obtained by starting with marked

graphs and permitting parallel arcs between places and transitions, imposing the require-

ment that each place have only a single input transition and a single output transition.

Lee’s model is not, in fact, the same as this subclass of Petri nets because the execution

sequence is chosen to have certain desirable properties, while Petri net transitions are per-

mitted to fire whenever enabled. We will investigate the properties of Lee’s model in

detail in section 2.2.

We will use the termdynamic actorto describe a dataflow actor in which the

number of tokens produced or consumed on one or more arcs is not a constant. As a rule,

in such actors the numbers of tokens produced or consumed depends on the values of cer-

tain input tokens. These models are usually more powerful than Petri net models, as Petri

net models are not Turing-equivalent, but, as we shall see, dynamic dataflow models usu-

ally are. However, this increase in expressive power also makes dynamic dataflow graphs

Figure 1.2 Regular dataflow actors produce and consume fixed numbers of tokens.

DOWNSAMPLEDOWNSAMPLEUPSAMPLEUPSAMPLE

ENABLED FIRED ENABLED FIRED

1

12

2
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much harder to analyze, as many analysis problems become undecidable.

We can conceive of actors whose token consumption and token production

depends on the values of control inputs. The canonical examples of this type of actor are

SWITCH and SELECT, whose function is shown in figure 1.3. The SWITCH actor con-

sumes an input token and a control token. If the control token is TRUE, the input token is

copied to the output labeled T; otherwise it is copied to the output labeled F. The

SELECT actor performs the inverse operation, reading a token from the T input if the

control token is TRUE, otherwise reading from the F input, and copying the token to the

output. These actors are minor variants of the original Dennis actors [Den75b], are also

used in [Wen75], [Tur81], and [Pin85], and are the same as the DISTRIBUTOR and

SELECTOR actors in [Div82].

 We can also conceive of actors whose behavior depends upon the timing of token

arrivals. An example of this class of actor is the non-determinate merge actor, which

passes tokens from its inputs to its output based on the order of arrival. This actor resem-

bles the SELECT actor in the figure below except for the lack of a control input. Non-

determinate actors may be desirable to permit dataflow programs to interact with multiple

SWITCH
T F

SWITCH
T F

ENABLED FIRED

SWITCH
T F

SWITCH
T F

ENABLED FIRED

ENABLED FIRED

SELECT
T F

SELECT
T F

ENABLED FIRED

SELECT
T F

SELECT
T F

TRUE

TRUE

FALSE

FALSE

Figure 1.3 The dynamic dataflow actors SWITCH and SELECT.
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external events [Kos78]. In addition, if the set of admissible graphs is severely restricted,

graphs with the nondeterminate merge can have a completely deterministic execution; for

example, it can be used to construct the “well-behaved” dataflow schema discussed by

Gaoet al in [Gao92].

If the operations represented by the nodes of a dataflow graph are purely func-

tional, we have a completely definitional model of computation. Some non-functional

operations, such as those with history sensitivity, can also be accommodated within a def-

initional model; any dataflow actor that has state may be converted into an equivalent

dataflow actor without state by the addition of a self-loop. The new actor accepts data

inputs and a state input, and computes data outputs and a new state; the initial token value

on the self-loop represents the initial state. If actors with state are represented in this man-

ner, then dataflow programming strongly resembles functional programming, in that state

is represented explicitly in arguments to functions and is explicitly passed around as an

argument.

1.2.7  Kahn’s Model for Parallel Computation

Kahn’s small but very influential paper [Kah74] described the semantics for a lan-

guage consisting of communicating sequential processes connected by sequential streams

of data, which are produced and consumed in first-in first-out order. The model of compu-

tation is further developed in [Kah77]. No communication path exists between the pro-

cesses other than the data streams; other than that, no restriction is placed on the

implementation of each process — an imperative language could be used, or the process

could simply invoke a function on the inputs to produce the output and therefore be state-

free. Each process is permitted to read from its inputs in arbitrary order, but it is not per-

mitted to test an input for the presence of data; all reads must block until the request for

data can be met. Thus the SWITCH and SELECT actors of the previous section could be

implemented as Kahn actors, but not the non-deterministic merge, since it would be nec-
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essary to commit to reading either the first input or the second, which would cause inputs

on the opposite channel to be ignored. It is shown that, given this restriction, every stream

of data that forms a communication stream is determinate, meaning that its history

depends only on the definitions of the processes and any parameters, and not on the order

of computation of the processes.

The semantics of Kahn’s parallel process networks are a strict superset of the

models considered by many dataflow and stream languages, as well as hybrid systems

that permit actors to be implemented using imperative languages or to have state. Hence,

when we say that all language constructs in a dataflow or stream model obey the Kahn

condition, we mean that the model can be implemented without requiring input tests on

streams or non-blocking read operations and we then can be assured that all data streams

are determinate.

1.3.  DATAFLOW COMPUTING

Dataflow computing originated largely in the work of Dennis in the early 70s. The

dataflow model of computer architecture was designed to enforce the ordering of instruc-

tion execution according to data dependencies, but to permit independent operations to

execute in parallel. Synchronization is enforced at the instruction level.

There have been two major varieties of “pure” dataflow machines, static and

tagged-token. In a static dataflow machine, memory for storing data on arcs is preas-

signed, and presence bits indicate whether data are present or absent. In a tagged-token

dataflow machine, token memory is dynamically allocated, and tags indicate the context

and role of a particular token.

1.3.1  Static Dataflow Machines

The earliest example of a static dataflow machine was Dennis’s MIT static data-

flow architecture [Den75a], although the first machine to actually be built was Davis’

DDM1 [Dav78].
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In a static dataflow machine, dataflow graphs are executed more or less directly,

with nodes in the graph corresponding to basic arithmetic operations of the machine.

Such graphs, where nodes represent low-level operations, are calledfine-grain dataflow

graphs, as opposed tocoarse-grain dataflow graphs in which nodes perform more com-

plex operations. The graph is represented internally as a collection ofactivity templates,

one per node. Activity templates contain a code specifying what instruction is to be exe-

cuted, slots for holding operand values, and destination address fields, referring to oper-

and slots of subsequent activity templates that need to receive the result value [Arv91]. It

is required that there never be more than one token per arc; acknowledgment arcs are

added to achieve this, so that a node is enabled as soon as tokens are present on all arcs

(including acknowledgment arcs).

The original MIT static dataflow architecture consists of a group of processing

elements (PEs) connected by a communication network. A diagram showing a single pro-

cessing element appears in figure 1.4. The Activity Store holds activity templates that

have empty spaces in their operand field and are waiting for operand values to arrive. The

Update Unit receives new tokens and associates them with the appropriate activity tem-

plate; when a template has all necessary operands, the address of the template is entered
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Figure 1.4 A simple model of a processing element for a static dataflow machine
[Arv86]
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into the Instruction Queue. The Fetch Unit uses this information to fetch activities and

forward them to the appropriate Operation Unit to perform the operation. The result value

is combined with the destination addresses to determine where to send the result, which

may need to go to the Update Unit of the same PE or to that of a a different PE through

the communications network [Den80], [Den91].

The requirement that there be only one token per arc, and that communication

between actors be synchronized by acknowledgment arcs, tends to limit the parallelism

that can be achieved substantially. If waves of data are pipelined through one copy of the

code, the available parallelism is limited by the number of operators in the graph. An

alternative solution is to use several copies of the machine code [Den91].

1.3.2  Tagged-Token Dataflow Machines

Tagged-token dataflow machines were created to overcome some of the short-

comings of static dataflow machines. The goal of such machines is to support the execu-

tion of loop iterations and function/procedure invocations in parallel; accordingly,

recursion is supported directly on tagged-token dataflow machines, while on static data-

flow machines it is not supported directly. To make this possible, data values are carried

by tokens that include a three-part tag. The first field of the tag marks the context, corre-

sponding to the current procedure invocation; the corresponding concept in a conven-

tional processor executing an Algol-like language is the stack frame. The second field of

the tag marks the iteration number, used when loop iterations are executed in parallel.

The final field identifies the activity, corresponding to the appropriate node in the data-

flow graph — this might be an instruction address in the physical machine [Arv91]. A

node is then enabled as soon as tokens with identical tags are present at each of its input

arcs; all three fields must match. No feedback signals (acknowledgment arcs) are

required. A diagram of a single processing elemement of this type of machine appears in

figure 1.5.
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The MIT Tagged-Token Dataflow Machine [Arv90] and the Manchester Dataflow

Computer [Gur85] were both independently designed according to the principles

described above, roughly at the same time. The latter machine was actually built in 1981.

In both machines, a “waiting-matching unit” is responsible for collecting tokens destined

for binary operators and pairing them together, dispatching operations when a match is

found. Unary operators may be dispatched immediately without going through the wait-

ing-matching unit.

In addition to the structure described above, the MIT machine had a special type

of storage for large data structures using the concept ofI-structures [Arv90]. An I-struc-

ture is a composite object whose elements can each be written only once but can be read

many times. These structures arenon-strict, meaning that it is possible to perform an

operation requiring some elements of the structure even though the computation of other

elements of the structure is not yet complete. There are three operations defined on I-

structures:allocation, which reserves a specified number of elements for the structure;I-

fetch, which retrieves the content of a given element of the structure, deferring the opera-

tion if the element has not yet been computed, andI-store, which writes a given element

of the structure, signalling an error if the element has already been written. The I-struc-
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Figure 1.5 Block structure of a single processing element in the MIT tagged-token
dataflow machine [Arv91].
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ture storage unit provides specialized hardware to support these rules, and tokens contain

references to I-structures. I-structure operations are split-phase, meaning that the read

request and the response to the request are two separate actions and do not cause the issu-

ing processing element to wait.

One of the main problems with tagged-token machines has been that the waiting-

matching unit is a bottleneck; the operation of matching the tokens is expensive and the

amount of memory required to store tokens waiting for a match is large. A second prob-

lem is that the amount of parallelism that can be uncovered by the operation of a tagged-

token machine is very large. If too many tokens are generated that must wait for a match

and the waiting-matching unit fills with tokens, the machine deadlocks. Finally, the

expensive token-matching functions are always performed, even on purely sequential

code where they gain nothing because there is no parallelism to exploit.

Some of these problems have been addressed by subsequent architectural designs.

For example, in the Monsoon project [Pap88], rather than allocating memory for tokens

dynamically, explicitly addressed and statically allocated token store is used. In this

model, a separate memory frame is allocated for each function activation and loop activa-

tion, much as a new stack frame is allocated on function entry on a conventional von

Neumann machine that is executing an Algol-like language. To make this idea practical,

we must limit the amount of parallelism in dataflow graphs (specifically, the number of

loop iterations that may be active simultaneously) by means of special constructs. For

this purpose, structures known ask-bounded loops were used [Cul89].

1.3.3  Dataflow/von Neumann Hybrid Machine Models

Dataflow machines were conceived of to address the problems of latency and syn-

chronization, problems that have not been addressed as effectively as might be desired in

von Neumann machines or in networks of such machines. Dataflow machines do syn-

chronization on the execution of every fine-grain dataflow actor, at a smaller cost than
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would be required on a traditional processor. Unfortunately, on short segments of sequen-

tial code that have all required data in local high-speed storage (registers and cache), any

overhead for synchronization is wasteful. These sequential code segments, corresponding

to basic blocks operating on local variables in traditional imperative programming lan-

guages, are more efficiently executed by a RISC-style processor1. However, synchroniza-

tion between processors is more efficiently handled using a dataflow approach. It

therefore seems natural to attempt to combine the approaches.

The greatest deficiency of the pure dataflow model is the excessive token match-

ing and overhead required for communication between actors. Enhancements that exploit

temporal or spatial locality (caches, for example) are also hard to achieve in the pure

dataflow model. Most of the hybrid models achieve a reduction in overhead by applying

some form of clustering: certain sequences of actors are combined into threads, which are

sequentially executed without incurring the cost of matching overhead.

Some of these hybrid approaches, such as [Bic91], retain the notion of the token

and resemble traditional tagged-token machines, except for the clustering of actors into

threads. Others, which have been described as “dataflow architectures without dataflow”

[Gao88], retain a data-driven execution model but fetch all data from shared memory. A

multilevel dataflow model, which exploits features of the von Neumann model such as

virtual space, multilevel memory hierarchies, and RISC design principles, has been

developed by Evripidou and Gaudiot [Evr91]; this project has some resemblance to that

of Gaoet al.

Finally, there is a category of machines that enhance RISC architecture with addi-

tional mechanisms for tolerating memory and communication latencies, supporting fine-

1. A RISC (Reduced Instruction Set Complexity) processor, as used in most workstations today, is
a pipelined von Neumann processor characterized by a load-store architecture, many general-pur-
pose registers, a simple and regular instruction set, and a multilevel memory hierarchy including
one or more caches [Hen90].
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grain synchronization among multiple threads of execution. MIT’s Alewife project, using

a modified form of the standard Sparc RISC architecture known as Sparcle, is the best

known example [Aga93].

1.4.  DATAFLOW AND STREAM LANGUAGES

Dataflow languages were first developed to support programming of dataflow

machines. Since data dependencies were the organizing principle of the paradigm and

since any artificial sequencing was objectionable, these languages were essentially func-

tional languages. For several of the languages discussed, a user-written textual form is

converted internally into a dataflow graph.

The two most important languages developed in the early days of dataflow

machines were Val [Ack79], which later became Sisal, and Id [Arv82], which later

became Id Nouveau [Nik86]. For the most part, these and other languages developed dur-

ing that period did not have higher-order functions, and they werestrict (meaning that all

inputs to any function must be completely computed before the function can begin execu-

tion), reflecting the data-driven rather than demand-driven style of control used in data-

flow machines (in which new data are produced as quickly as possible and constraints in

the graphical structure are used as a throttling mechanism). Id also supports non-strict

composite objects in the form of I-structures, whose semantics were discussed in section

1.3.2.

Another interesting and important dataflow language is Lucid [Ash75], which is

distinguished by the use of identifiers to represent streams of values. A one-dimensional

stream might represent a time series or a sequence of values passing through a dataflow

node; Lucid also supports streams of higher dimension. This language was intended to

have semantics that were sufficiently clear to prove assertions about parallel programs.

Finally, we will discuss the languages LUSTRE and SIGNAL, languages with a

theoretical foundation that has contributed much to the solution of problems of consis-
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tency and boundedness in general dataflow.

1.4.1  Lucid

Lucid is a functional language in which every data object is astream (a sequence

of values). It is first-order: we may only construct new streams, not new functions. All

Lucid operations map streams into streams. Like some of the other languages we will dis-

cuss in this section, it can be considered to be a dataflow language in which the variables

(the streams) name the sequences of data values passing between the actors, which corre-

spond to the functions and operators of the language. Skillcorn [Ski91] points out its

resemblance to Kahn’s networks of asynchronous processes [Kah74]; other stream lan-

guages, together with the graphical dataflow systems used in Gabriel [Bie90] and

Ptolemy [Buc91], also fit this model. While Lucid supports multidimensional streams, we

will discuss a subset of Lucid in which streams are one-dimensional and the elements of

streams are either integers or Boolean-valued. We then have pointwise functions or oper-

ators, which construct new streams by applying sample by sample to existing operators.

There are three special non-pointwise operators:

• initial , which takes a single stream argument and produces a new stream in

which each element is equal to the first element of the input stream;

• succ , which takes a stream and discards the first element;

• cby  (continued by), which is written as an infix operator, taking two streams. The

output stream consists of the first element of the first stream argument, followed

by the whole of the second argument.

There is also a pointwise conditional operator:

if c then ts else fs (1-2)

in whichc is a Boolean stream andts  andfs  are streams of the same type. This opera-

tor, if thought of as a dataflow actor, always consumes one element from each of the three
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input streams for each element produced in the output stream; this behavior is quite dif-

ferent from the behavior of conditionals in other stream languages, such as SIGNAL.

In addition, Lucid permits user-defined functions, which may be recursive.

As a simple example, a Lucid program (or definition, since Lucid is a definitional

language) for the series of Fibonacci numbers, given in [Ski91] is

fib = 1 cby (1 cby (fib + succ fib)) (1-3)

Parentheses have been added to make the structure of the program clearer. It is easy to see

that the first two elements offib  are 1; in addition, it can be seen that element  is

equal to the sum of elementsn and .

Note that there is no way to subsample a stream using the above operators, mean-

ing that we cannot produce a stream that has values “less frequently” than the input

streams.

1.4.2  SISAL

SISAL is an acronym for “Streams and Iteration in a Single Assignment Lan-

guage.” SISAL originated in the dataflow community as the language Val [Ack89] and

was used to program the Manchester Dataflow Machine [Gur85]. It has a target-architec-

ture-independent dataflow graph intermediate form. The language has evolved into a

complete functional language; for example, it has higher-order functions. Implementa-

tions exist for a variety of uniprocessors, shared-memory multiprocessors, the Cray X/

MP, and other machines [Böh92]. It has been a major goal of the SISAL project to dem-

onstrate sequential and parallel execution performance competitive with programs writ-

ten in conventional languages, and impressive results have been achieved [Bur92].

SISAL has powerful features for manipulating arrays (including vector subscripts

to select and manipulate subarrays) and non-strict stream types, which are produced in

order by one expression evaluation and consumed in the same order by one or more other

expression evaluations. As an example of a non-strict operation on streams consider the

n 2+

n 1+
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following, from a “Sieve of Eratosthenes” program:

function Sieve(S: stream[integer];

M: integer returns stream[integer])

for I in S returns

stream of I unless mod(I,M) = 0

end for

end function

The above function accepts a stream of integers and produces another stream, and

the result may be used before the stream is completely computed. Production and con-

sumption of streams may be pipelined. Streams are usually generated byfor  expres-

sions, as above.

There are two forms offor  expressions. In the first form, values are distributed to

(multiple instances of) the body of thefor  expression and each body instance contributes

a value to the overall result (the result might be an array or stream, or a reduction operator

might be applied). TheSieve  function above has this type offor  construct. In the sec-

ond form, an iteration, dependencies are expressed between values defined in one body

instance and values defined in the preceding body instance. Again, each body instance

returns a value that contributes to the result. Here is an example of the iterative form:

function Integers(lower: integer; upper: integer

returns stream[integer])

for initial

I := lower;

while I < upper repeat

I := old I + 1;

returns stream of I

end for

end function

This form of thefor  appears to have an imperative structure, but in fact does not;

instead, we are defining the value that certain labels have in each body instance, and the

relations between successive instances form a recurrence. It is not difficult to compile
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such recurrences into a dataflow graph intermediate form.

The program examples in this section are simplified versions of examples appear-

ing in [Böh92].

1.4.3  SIGNAL and LUSTRE

SIGNAL and LUSTRE are both stream languages that owe part of their inspira-

tion to Lucid. However, there are important differences between the approach used in

these languages from the approach used in Lucid, and there is a sense in which these lan-

guages are much closer to what is usually meant by dataflow, although there are impor-

tant distinctions, the main one being that queuing of values on arcs does not occur.1 Both

of these languages are descendants of ESTEREL [Ber92]. These languages form a family

of tools for the design ofreactive systems, including real-time systems and control

automata. Time is explicitly modeled in all of these languages.

In Lucid, it is possible to define a stream so that “future” values depend on “past”

values or vice versa, as long as there is some definition for each element. This is

exploited effectively in [Ski91] for multidimensional cases in, for example, solving

boundary value problems. In SIGNAL and LUSTRE, however, streams can be thought of

as evolving in time, and operators that are not point-to-point are always causal (so that for

each stream, “future” elements only depend upon “past” elements of the same and other

streams). Furthermore, each stream variable has associated with it a clock, representing

in an abstract sense the time instances at which a stream has values.

Like Lucid, in SIGNAL and LUSTRE streams can be constructed by applying

pointwise operators to other streams, and there are constructs resembling Lucid’ssucc

and cby  operators. Conditional operators in these languages are quite different from

Lucid, however; both SIGNAL and LUSTRE provide awhen operator that has the effect

1. Differences between the synchronous model provided by these languages and the dataflow
model are discussed in detail in section 2.3.5.
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of subsampling a stream, producing another stream that is “less frequent.” For example,

we could write

xp = x when x > 0 (1-4)

Having done this, we may inquire into the meaning of the statement

y = xp + x (1-5)

It appears that there is an inconsistency here; assuming that the streamx has both

positive and negative values and that the stream is arriving at a steady rate, it appears that

the two streams arriving to be summed have different sample rates (in thatxp  will con-

tain fewer values thanx in any given time interval). Both LUSTRE and SIGNAL use a

mechanism called the “clock calculus” to determine whether it is valid to combine two

streams in this manner. Due to some differences in the definitions of the two languages,

there are some important differences in the clock calculus of the two languages. The

clock calculus is discussed in detail in section 2.3.4.

The when operator can be thought of as representing one half of the SWITCH

actor discussed in section 1.2.6 (there is a significant difference in that no queuing of

tokens is permitted). One significant difference between the LUSTRE and the SIGNAL

languages is what is done to replace the corresponding SELECT actor. The LUSTRE lan-

guage has theif/then/else  statement, with semantics like that of Lucid. This state-

ment accepts a Boolean stream and two streams to be selected from. Just as for the

dataflow SELECT actor, a token is consumed from the Boolean input stream for each

output value produced (although it is not exactly the same as SELECT). Accordingly, this

actor obeys the Kahn condition: it can be implemented by a communicating sequential

process that never tests its inputs for the presence of data. Since other LUSTRE actors

also obey the Kahn condition, all streams defined and computed by the language are

deterministic. However, theif/then/else  does not correspond to the dataflow

SELECT, since all three input streams have the same rate in the LUSTRE model; a state-



33

ment like

absx := if x > 0 then x else -x (1-6)

would require both a SWITCH and a SELECT, or a conditional assignment, in a dataflow

model.

 SIGNAL provides a different actor to combine streams,default . This actor

merges two streams to produce a third stream:

a3 := a1 default a2 (1-7)

This actor produces a stream that is defined at any logical instant where at least one of the

inputsa1 or a2 is defined; if both streams are defined at the same time, the value chosen

is taken from the first argument, in this casea1. In [LeG91] this is called a deterministic

merge, and indeed it is deterministic in the sense that, given a definition of the streamsa1

anda2, a3 is always defined and comes out to the same answer. However, its lack of a

control input makes it resemble the non-deterministic merge of dataflow. If the clocks of

the two signals were given, indeed the operation would be deterministic, but in SIGNAL

the definitions of the signals determine their clocks. The semantics ofdefault  permit

the construction of non-deterministic systems, and they also violate the Kahn condition

[Kah74] in that, if we attempt to implement the above statement by means of a process

that reads streamsa1 anda2 and outputs the streama3, it cannot be done if we impose

the restriction that read operations on input streams be non-blocking.

An example of a non-deterministic SIGNAL system can be found in [LeG91].

1.5.  SUMMARY AND PREVIEW OF FUTURE CHAPTERS

This chapter has presented some of the basic models that are at the foundation of

dataflow and functional models and attempted to place them in context, providing the

basis for analytical models that will be presented in future chapters. Dataflow systems

can be analyzed by considering the properties of the actors as communicating objects by

building on Petri net theory, or by analyzing the properties of the streams of data that con-
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nect them, as is done in stream languages. For optimum performance, it is necessary to do

as much work as possible at compile time, possibly by clustering the graph to find threads

and allocating as many resources as possible in advance.

In the next chapter, we consider a very important special case of dataflow graphs:

regular dataflow graphs, in which the entire computation can be scheduled at compile

time. We then discuss attempts to extend this model to accommodate dynamic actors, and

the “clock calculus” model of LUSTRE and SIGNAL will be developed in detail.
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STATIC SCHEDULING OF DATAFLOW
PROGRAMS FOR DSP

2

Fallacy: It costs nothing to provide a level of functionality that

exceeds what is required in the usual case.

—J. Hennessy & D. Patterson [Hen90]

Dataflow has been widely adopted as a model for digital signal processing (DSP)

applications for two principal reasons. The first reason is that dataflow does not overly

constrain the order of evaluation of the operations that make up the algorithm, permitting

the available parallelism of the algorithm to be exploited. This advantage holds regard-

less of the application area. The second reason is that a graphical dataflow model, or the

model provided by a stream language such as Lucid, frequently is an intuitive model for

the way that DSP designers think about systems: operators act upon streams of data to

produce additional streams of data. Accordingly, coarse-grain dataflow has been applied

to DSP since the beginning, in the form of languages that directly execute block diagrams

in some form. DSP researchers and users have found this kind of dataflow representation

useful even when there is no possibility of exploiting parallelism (because the whole
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graph will be executed by a sequential processor, for example).

Digital signal processing differs from other application areas in that the amount of

data-dependent decision making is small, the structures of the problems are regular, and

applications typically have very tight constraints on cost, together with hard real time

deadlines that must be met. Because design trade-offs are frequently very different from

those common in the more “mainstream” computer market, the DSP community has its

own programmable digital signal processors, languages, and software.

On the application of dataflow to DSP, Lee commented that “the dataflow tech-

niques of general purpose computing are too expensive for DSP and more powerful than

what is required” [Lee91a]. This is because many DSP algorithms have almost no deci-

sion making, meaning that large parts of the problem can be efficiently scheduled at com-

pile time for single or multiple processors. Of course, “little decision making” is not the

same as “none”, and to forbid all data-dependent decision-making will prevent us from

using some valuable algorithms. Nevertheless, we will begin our explorations of static

scheduling of algorithms for DSP with the assumption that there is no data-dependent

decision making at all, and then later relax this assumption.

2.1.  COMPILE-TIME VERSUS RUN-TIME SCHEDULING

For the purposes of this thesis, we define scheduling to consist of three opera-

tions: assigning actors to processors, determining the order of execution of the actors on

each processor, and determining the exact starting time of each actor. Every system that

executes a dataflow graph must perform all of these tasks; however, depending on the

implementation and on the information we have about the execution requirements of the

graph, some functions may be performed at “compile time”, leaving others to be per-

formed at “run time.”

In [Lee89], Lee introduces a “scheduling taxonomy” defining four classes of

scheduling (see figure 2.1). He uses the termfully dynamicto describe implementations
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in which all decisions about the execution of the graph are deferred until run time. We

may delay the assignment of an actor to a processor until its input data are ready, for

example, and then choose the first available processor. Some dataflow machines, such as

the original MIT static dataflow architecture [Den75a], used this style of execution.

It is also possible to partition the actors of the dataflow graph between the various

processors in advance, but then have the processors determine the order of actor execu-

tion at run time; this is calledstatic allocation. Many dataflow machines work this way,

for example, the Monsoon architecture [Pap88]. In the third type of scheduling, the com-

piler determines both the processor assignment and the order of execution of each node,

but does not determine the exact timing of actor execution; where inter-processor com-

munication exists, implicit or explicit synchronization operations are required so that

actors will wait for data to become available. This technique is commonly used when

there is no hardware support for scheduling, as when generating code for networks of von

Neumann processors with shared memory. The Gabriel system [Bie90] is one example of

this. The final possibility is to make all decisions at compile time, and this is calledfully

staticscheduling.

RUN RUN RUN

RUN RUN

RUN

COMPILE

COMPILE COMPILE

COMPILE COMPILE COMPILE

assignment ordering timing

fully dynamic

static allocation

self-timed

fully static

Figure 2.1 The time which the scheduling activities “assignment”, “ordering”, and “tim-
ing” are performed is shown for four classes of schedulers. The scheduling activi-
ties are listed on top and the strategies on the left [Lee89].
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If we possess an accurate model of the execution requirements and data depen-

dencies of every actor, together with the properties of the target architecture to be used

(including the costs and restrictions on communication between processors), then it is

possible in principle to construct an optimal schedule for the execution of a dataflow

graph on a given system of parallel processors with no run-time overhead for scheduling

purposes. In practice, the multi-processor scheduling problem is NP-complete even in the

simplest cases (see [Sih91] for a detailed discussion of NP-completeness as it applies to

multiprocessor scheduling) so that most researchers use heuristic methods to obtain near-

optimal schedules with various definitions of “goodness.” Many of these techniques are

elaborations on Hu’s list scheduling ([Hu61]). Nevertheless, some researchers have built

systems that produce optimal static multiprocessor schedules for DSP systems for some

special cases (for example, [Sch86] and [Gel93]).

Even when it is possible to generate a fully static schedule, it is sometimes prefer-

able to produce code for a self-timed system anyway, because such a system is consider-

ably more robust to variations in timing because of minor differences in clock rates,

errors in the specifications for timing of some operations, interrupts, and other factors. As

long as the generated code conforms to Kahn’s model of communicating sequential pro-

cesses [Kah74], the self-timed system will execute reliably regardless of variations in

timing.

When dynamic actors (actors whose execution is data-dependent) are included in

the dataflow graph, it is clear that at least some scheduling decisions must be made at run

time. Nevertheless, many of the techniques used for compile-time scheduling can be

modified so as to remain applicable on dynamic dataflow graphs; it is not necessary to

switch to a fully dynamic execution model. These techniques form the core of this thesis.

2.2.  SCHEDULING OF REGULAR DATAFLOW GRAPHS

If a dataflow graph contains only actors for which the number of tokens produced



39

and consumed on each arc is known in advance, and the time required to execute each

actor is known with precision, it is then possible in principle to produce a fully optimal

multiprocessor schedule for that graph (as discussed in the previous section, we must

often settle for a near-optimal schedule because of the computational complexity of the

scheduling problem). We will call dataflow actors with this property (known and constant

numbers of tokens produced and consumed) regular dataflow actors, and graphs consist-

ing only of regular actors will be called regular dataflow graphs.1

Clearly, regular dataflow graphs cannot have data-dependent firings of actors, as

might occur in an if-then-else construct or a loop in which the number of iterations is

determined by a computed value. But by imposing this limitation we obtain several very

useful qualities: we can detect “sample rate inconsistencies” corresponding to unbounded

numbers of tokens on arcs, or starvation conditions corresponding to deadlock. If these

do not occur, a periodic schedule is always possible that permits the graph to be repeat-

edly executed on unbounded streams of data, and it is also possible to construct an acy-

clic precedence graph that permits the construction of a near-optimal multi-processor

schedule. Finally, memory for data buffers between actors may be allocated statically,

meaning that we are no longer constrained to FIFO processing of data streams in many

cases, and that it is unnecessary to pay the overhead of a tagged-token system. That is, the

compiler can associate static memory locations with actor firings to exploit data parallel-

ism fully when there is no data dependency between successive firings of the same actor.

Section 2.2.2 will demonstrate in detail how this is done.

2.2.1  The Balance Equations for a Regular Dataflow Graph

In figure 2.2 below we present a simple example of a regular dataflow graph. In

order to produce a compile-time schedule for the repeated execution of this graph, it is

1. This terminology is from [Gao92]; Lee used the term “synchronous data flow” [Lee87b] but
this can be confused with the use of the term “synchronous” for the LUSTRE model [Hal91].
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first necessary to solve thebalance equations for the graph, which determine the relative

number of iterations for each actor that will ensure that the number of tokens produced on

each arc is equal to the number of tokens consumed. This produces one equation to be

solved for each arc. It is convenient to express the resulting equations in matrix form; to

do so, we define thetopology matrix . This matrix has one row for each actor in the

graph and one column for each arc; the element  represents the number of tokens

added to arcj by the execution of actori. If the arc is an input arc for the actor, the value

of the corresponding element in the topology matrix will be negative.

We now wish to find arepetition vector , whose  element represents the num-

ber of times to execute actori, that solves the equation

(2-1)

where  is the zero vector. For example, given the graph in figure 2.2, the topology

matrix is

. (2-2)

It can be seen that all solutions to the equation are of the form

(2-3)

1 2 3 4 5
10 1 10 1 1 10 1 10

Figure 2.2 A regular dataflow graph. The numbers adjacent to arcs give the number of
tokens produced or consumed on that arc by the associated actor.
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where  is arbitrary and the smallest integer solution has . It is shown in [Lee87b]

that a necessary condition for the existence of a periodic schedule for a connected regular

dataflow graph is that the rank of  be equal to one less than the number of actors, or

equivalently, that the null space have dimension 1. For a collection of disconnected

graphs, the null space must have dimension equal to the number of disconnected graphs,

and the problem can be decomposed into separate systems of equations for each of the

disconnected graphs.

If there is no solution to  (2-1) except for the zero vector, we say that the graph is

inconsistent. Inconsistency occurs if and only if there is an undirected cycle of arcs in the

graph that is inconsistent in the following sense: treat the graph as an non-directed graph

for the purpose of the consistency check; then any loop of arcs may be considered a

cycle, regardless of the direction of the arrows. Consider a sequence of arcs

 that form such a loop. Let  designate the starting actor, which is con-

nected to arc  and arc , and let actor  be the actor that is connected to arcs

and . We now define thegain  of an arc  to be equal to the ratio of the number of

tokens produced or consumed by actor  on arc , divided by the number of tokens pro-

duced or consumed by actor  on the same arc (actor  is identified with ).

The cycle is inconsistent if the following condition does not hold:

(2-4)

k k 1=

Γ

1 2 3
1 1 1 2

1 1

Figure 2.3 An inconsistent regular dataflow graph.
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That is, the gain around every undirected cycle must be equal to one. As an example, for

the graph in figure 2.3, we obtain a product of 2 and therefore the graph is inconsistent.

This result is easily proved by considering the following algorithm for solving for

the repetitions vector: arbitrarily choose an actor and set its repetitions value to one. Next,

for each arc connected to that actor, set the repetitions value of the adjacent actor (the

actor connected to the opposite end of the arc) to the appropriate value to solve the bal-

ance equation for the arc; that is, if arci connects actorj and actork, then we must have

(2-5)

where the  terms are the elements of the topology matrix . This algorithm is applied

iteratively until all ther values are set. If the graph contains cycles, then the algorithm

will visit some nodes more than once; in this case, a consistency check is performed; if

the newly computed value for  differs from its previously reported value, inconsistency

is reported. It is easy to see that there will always be inconsistency if there exists a cycle

where the product of gains around the loop is not one. If there is no inconsistency, and

any of the  values are fractional, the terms are multiplied by the least common multiple

of the denominators to obtain the smallest integer repetition vector.

2.2.2  From the Balance Equations to the Schedule

Given an integer solution for the repetitions vector, it can be seen that if each

actor is executed the number of times specified in its element of the repetitions vector, the

graph will return to its original state, because the repetitions vector is in the null space of

the topology matrix. However, it may not be possible to find a valid schedule with this

number of iterations if the graph deadlocks. Deadlock occurs if there are too few initial

tokens in a directed cycle of the graph to permit continued execution of that cycle. One

simple algorithm for determining whether the graph deadlocks is to simulate the execu-

tion of the graph on a single processor: we execute enabled actors (source actors or actors

r jγji r k– γki=

γ Γ

r j
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with sufficient input tokens) until each actor has been executed the number of times spec-

ified in the repetitions vector, or until it is not possible to execute any actor. If we succeed

in executing each actor the correct number of times, we know that deadlock does not

occur and we also have one possible single-processor schedule.

If we wish to schedule the graph for execution on multiple processors, we then

construct the acyclic precedence graph (APG) corresponding to the dataflow graph. The

APG can be thought of as a model of the parallel execution of the dataflow graph on an

unlimited number of parallel processors. Each node in the APG corresponds to a single

execution of an actor in the original dataflow graph.

The graph is constructed as follows: first, we find the repetition vector to deter-

mine the required number of executions of each actor. All required actor executions that

can be accomplished because the actors are source nodes, or because there are sufficient

initial tokens to permit execution of the actors, are added to the structure as root notes. In

figure 2.4 below, actor A must be executed twice, and both executions can be accom-

plished immediately. Executing actors makes it possible to execute other actors, so we

add nodes corresponding to the execution of actors to the graph, adding arcs representing

data dependencies, continuing until the number of executions of each actor corresponds

to the repetition vector. In figure 2.4, the APG is completed by adding nodes for the three

executions of actor B with arcs corresponding to the data dependencies. Since precedence

A1 B1

B2

B3A2

3 2
A B

Figure 2.4 A simple regular dataflow graph and its associated acyclic precedence
graph. Numbers adjacent to arcs specify the numbers of tokens produced and con-
sumed.
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in a dataflow graph is determined solely by data dependency, arcs in an APG imply pre-

cedence as well as data communication.

A more systematic way to produce the APG is to first transform the original regu-

lar dataflow graph into a homogeneous dataflow graph, using the procedure described in

[Lee87b]. Next, arcs containing initial tokens are converted into a pair of input and output

nodes. The output node is connected to the source actor of the removed arc, and the input

node is connected to the destination actor of the removed arc. A unified algorithm for

expansion of the graph to the homogeneous form together with construction of the APG

is given in an appendix of [Sih91].

Given a specific schedule for a regular dataflow graph, memory requirements for

each arc may be determined and memory may be allocated in a static manner. This static

allocation permits the execution of the graph to be performed out of order to some extent,

much as in a tagged-token dataflow machine. For example, in figure 2.4 the executions of

actors A and B may be done in parallel wherever there are no arcs specifying a data

dependency.

When scheduling a dataflow graph for multiple processors, we may choose to

minimize themakespan, which is the time for executing a single repetition of the graph.

However, as a rule in DSP applications, the graph is repeatedly executed on a conceptu-

ally infinite input data stream, so a more reasonable objective is to minimize the iteration

period, implicitly permitting a pipelined schedule. A third alternative is to construct a

blocked schedule that executes the graphk times, for somek. Scheduling criteria are dis-

cussed extensively in [Ha92], [Sih91], and [Hoa93].

2.2.3  Comparison With Petri Net Models

Regular dataflow graphs can be considered as a special case of Petri nets, where

actors become transitions and arcs become places, and there are multiple arcs connecting

transitions and places corresponding to the number of tokens produced and consumed by



45

each actor. There is, however, an important distinction in the analysis. A Petri net model

is considered bounded if it is not possible for the number of tokens in a place to exceed

the bound; however, because we schedule the execution of regular dataflow graphs at

compile time, we do not need so strong a property; it is enough that schedules exist that

yield bounded numbers of tokens on arcs. The values of the bounds no longer depend

only on the topology of the graph; they also depend on the schedule chosen. For example,

consider the graph in figure 2.4, and assume that we wish to schedule the graph on a sin-

gle processor. If the schedule ABABB is chosen, the maximum size of the token buffer

between actors A and B is four tokens. If, on the other hand, the schedule AABBB is cho-

sen, the maximum buffer size is six tokens.1 In addition, if the graph is to be executed

repeatedly, schedules like 100A,150B are admissible, giving a much larger buffer size.

Computed, schedule-dependent bounds such as these can be turned into “topological

bounds” (bounds that are properties of the graph itself, as in bounded Petri nets) by add-

ing acknowledgment arcs, and this is the procedure normally used to prepare graphs for

execution on static dataflow machines [Den75a]. These arcs may limit parallelism; in

fact, with tagged-token dataflow machines this limitation on parallelism is usually delib-

erate, to keep the machine from saturating [Cul89].

There is an interesting connection between the condition for a regular dataflow

graph to be consistent and the condition for a Petri net to be conservative with respect to

a nonzero weight vector. The latter condition requires that for each place  (correspond-

ing in a regular dataflow graph to an arc) we can choose a fixed weight  such that the

weighted sum of tokens in the graph does not change by the execution of any transition.

The former condition (consistency of a regular dataflow graph) requires that the system

1. The latter schedule might be preferable in a compilation environment because the code to exe-
cute 2(A)3(B) would be more compact. Generation of compact looped schedules is discussed in
[Bha93a].

pi
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of equations

(2-6)

have a nontrivial solution. But the Petri new condition for a weight vector is simply

(2-7)

which is precisely the dual of the previous equation (the dual of a Petri net is formed by

replacing transitions with places and vice versa, which replaces the topology matrix by its

transpose).

Unfortunately no generally useful results (that the author is familiar with) have

yet been obtained from this observation. Some simple results can be obtained: if there are

at least as many arcs as actors, the null space of  will have a dimension at least as high

as that of , so that a consistent dataflow graph will be conservative with respect to a

weight vector for tokens  that is not all zeros. But it is possible that even so, there is no

solution for which all weights are positive, and Petri nets for which negative weights

must be assigned to some places are not considered conservative. For example, the graph

below is conservative with respect to weight vectors of the form , but is not conser-

vative:

2.2.4  Limitations of Regular Dataflow Graphs

Regular dataflow graphs successfully represent unconditionally executed

sequences of computation, and they also represent iteration successfully in situations

where the number of executions is known and independent of the data. Conditional exe-

cution and data-dependent iteration are not represented, and neither is recursion.

However, in limited circumstances regular dataflow techniques can still be used
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when there is some conditional execution or when recursion takes a simple form. In many

cases tail recursion can be transformed into a recurrence, which can be represented as

feedback paths in a dataflow graph [Lee88a]. Also, it is sometimes suitable to replace

conditional execution with conditional assignment. In conditional assignment, both alter-

natives of a conditional expression are computed, but one is discarded. This is an efficient

approach when the cost of evaluating the expressions is small. In a hard real-time envi-

ronment, it may also make sense to use conditional assignment if only one alternative of

the conditional expression is expensive to compute, since we must allow time for the

more expensive computation in order to assure that the deadline can be met. For these

reasons, and because of the expense of conditional branches in pipelined processors,

many DSP and RISC architectures have a conditional assignment operation. However, if

both alternatives are expensive, then regular dataflow techniques are no longer sufficient

for a good solution.

2.3.  EXTENDING THE REGULAR DATAFLOW MODEL

Because of the powerful techniques that are available for the analysis of dataflow

graphs, whether homogeneous or regular, and because they cannot solve all problems, it

is only natural that they have been extended in a variety of ways to solve a larger class of

problems. In comparing these models, there are a variety of considerations that might be

applied:

Expressive power. Some extended models are equivalent in expressive power to

Turing machines, which, as far as we know, means that they may represent any comput-

able function1. Others are less powerful, while still being more expressive than regular

dataflow graphs.

Compactness. A change in the properties of a model may not increase expressive

1. The assertion that no model of computation can compute a function that a Turing machine can-
not compute is equivalent to Church’s thesis [Chu32], which made similar statements about the
(equally expressive) lambda calculus.
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power but may permit much more compact representation; the generalization from homo-

geneous dataflow graphs to regular dataflow graphs is an example of this.

Ease of analysis. Some types of models are easier to analyze than others. As a

rule, ease of analysis and expressive power are in competition; many analysis questions

are, in fact, undecidable for models that are equivalent to Turing machines, since they are

equivalent to the halting problem.

Intuitive appeal. When a model is used in a particular application, it helps if the

concepts in the model are closely related to concepts in the physical system being mod-

eled.

2.3.1  Control Flow/Dataflow Hybrid Models

In a hybrid control flow/data flow model, control dependency and data depen-

dency are combined. Such models normally imply a sequential mode of computation

while permitting some freedom for re-ordering computation. A node in such a structure

may have arcs that imply the communication of data as well as arcs that model the flow

of control. These models are used widely in compilers for traditional imperative high

level languages. As a rule, a basic block in such a language is modeled as an acyclic

homogeneous dataflow graph, and this graph, in turn, is a single node in a directed graph

modeling the control flow structure. In Aho, Sethi, and Ullman [Aho86], the inner struc-

ture is called adirected acyclic graph or dag, and the outer structure is called aflow

graph. An optimizing compiler (a misnomer, but a standard one) analyzes this structure

to collect information about the program as a whole, permitting dead code elimination,

restructuring to improve performance (moving invariant code out of loops or elimination

of induction variables, for example), and allocation of program constructs to registers.

This model is an intuitive internal representation for a program written in an

imperative, sequential language (such as Fortran, C, or Pascal) because it reflects its

structure closely; the flow of control in the flow graph represents the flow of control spec-
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ified by the user. Furthermore, there are over two decades of extensive experience with

the analysis of this type of structure; chapter 10 of [Aho86] provides an extensive bibli-

ography. Assuming typical underlying primitives, the model is also Turing equivalent.

Given these advantages, we can expect this sort of structure to be used for a long time to

come. However, there are significant disadvantages, caused mainly by the close associa-

tion with the operational, imperative model of programming implied. Furthermore, the

model is inherently sequential, although analysis might be able to uncover some parallel-

ism.

The above model has two levels, with control flow at the top level and data flow

underneath. There are also modeling techniques that combine the two levels, permitting

both control flow and data flow at the same level. The dataflow/event graphs of [Whi92]

are one such model; the PFG graphical programming language [Sto88] provides a similar

capability.

The Program Dependence Web, or PDW, is a relatively new program representa-

tion for use as an intermediate representation in compilation of imperative languages

[Bal90]. This model, an extension of program dependence graphs (PDG) [Fer87] and

static single assignment (SSA) form [Cyt89], is designed to support mapping of conven-

tional imperative languages onto dataflow architectures and includes all the necessary

information to permit either a control-driven, data-driven, or demand-driven interpreta-

tion, a feature the PDG and SSA forms lack. The structure is naturally interpreted as a

dataflow graph with controlled use of dynamic dataflow actors to assure that arcs never

have more than one token, although other interpretations are also possible. It differs from

the structure we will discuss in the next section in that a greater variety of dynamic actors

are used and that initial tokens on arcs are not used.

2.3.2  Controlled Use of Dynamic Dataflow Actors

While there may be advantages to representing control flow and data flow sepa-
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rately as in the previous section, there is much to be said for a unified model in which

dataflow is used throughout. Such models utilize dynamic dataflow actors (see section

1.2.6), with the consequence that the number of tokens produced or consumed on one or

more arcs of the graph is determined only at “run time.” Once dynamic dataflow actors

are permitted, new problems arise; it is difficult to assure consistency of flow rates, and as

we shall see, certain analysis questions (such as whether the graph can be scheduled to

require bounded memory) become undecidable if no restrictions are placed on the use of

dynamic actors.

Nevertheless, dynamic actors have been in use for a long time, since the early

work on static dataflow machines. Analysis problems are avoided by restricting the con-

texts in which they appear. Thus the fundamental distinction of approaches described in

this section is that dataflow graphs are built up out of regular actors and specially

restricted clusters of actors known asschema that behave, when taken together, as regular

actors. The resulting graphs have many of the same attractive properties as graphs com-

posed only of regular actors; accordingly, Gaoet al., who advocate this approach, call

such graphswell-behaved [Gao92].

Consider the system in figure 2.5. This is an example of the standard “conditional

schema,” in which either actor 3 or actor 4 is conditionally executed based on the control
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Figure 2.5 A dataflow graph with a “conditional schema.” The numbers on the actors
identify them. We consider the circled actors (2, 3, 4, and 5) as a subsystem. All
actors other than SWITCH and SELECT are homogeneous.
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token produced by actor 7, using a data token from actor 1 as an input. The result is sent

to actor 6. We make the observation that the circled subsystem, including actors 2, 3, 4,

and 5, can itself be treated as a regular dataflow actor which, on each execution, con-

sumes a single token from each of two inputs and produces a single token on its output.

When considered as a coarse-grain dataflow actor so that the cluster as a whole becomes

an actor, we again have a regular dataflow system. Furthermore, it is easy to arrange the

scheduling so that no arc ever contains more than a single token.

Instead of using the SELECT actor, it would be possible to replace it by the non-

deterministic merge actor (which differs from SELECT in that it has no control input but

simply transfers tokens from either data input onto its data output). If used in this context,

and if executed as soon as an input token appears on either input, the graph as a whole has

deterministic behavior despite the presence of a non-deterministic actor. This property is

used, for example, in the program dependence web model of Ballanceet al. [Bal90].

In this example, actors 3 and 4 have one input and one output. We can construct

other conditional schema in which the actors corresponding to 3 and 4 havem inputs and

n outputs each, for anym and n (each actor is assumed to have the same interface),

together with a network of SWITCH and SELECT actors to route inputs appropriately.

The resulting system will then look like a homogeneous dataflow actor with  inputs

(including the control input) andn outputs. Again, with a suitable scheduling discipline it

is possible to replace the SELECT actors with non-deterministic merge actors without

loss of determinism.

Similarly, it is possible to construct well-behaved standard schemas for data-

dependent iteration. It is useful to divide data-dependent iteration into two cases: conver-

gent iteration, in which the condition for termination of the iteration is determined by the

data computed by the most recent iteration, and iteration in which the number of itera-

tions is known before the iteration starts (but not at compile time). It is usually possible to

m 1+
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exploit more parallelism in the latter case. Examples of these types of constructs will be

studied in detail in chapter 3.

2.3.3  Quasi-static Scheduling of Dynamic Constructs for Multiple Pro-

cessors

If the language of regular dataflow graphs is extended to permit the conditional

and loop schema described above, but no other uses of dynamic actors, additional com-

plications either for dynamic execution of the graph (for example, by a dataflow machine

or a simulator for such a machine) or for compile-time scheduling for a single processor

are minimal. All that is necessary is to execute, or generate code for, a conditional branch

or loop. For compile-time scheduling for parallel processors, more is required.

In [Lee88a], Lee proposed a technique calledquasi-static scheduling, in which

some actor firing decisions are made at run time, but only where absolutely necessary.

Consider the system in figure 2.6, taken from [Lee88a]. In this case, we wish to schedule

the execution of the system onto three sequential processors. The Gantt charts show the

activity of the processors for two possible outcomes: in the first Gantt chart, the control

token is TRUE, and the schedule includes the execution of the TRUE subgraph. The sec-

ond chart shows the execution of the FALSE subgraph. Lee’s key contribution was to

note that, if idle times are inserted into both schedules so that the pattern of processor

availability is the same regardless of the outcome of the conditional, static scheduling can

then proceed after the execution of the conditional construct exactly as if it were a regular

subgraph. This padding is required for fully static scheduling; if synchronization is used

for data communication between processors the padding can be eliminated. Lee proposes

a recursive structure for the scheduler that permits nested conditionals to be handled

cleanly, and Ha extends and generalizes this idea ([Ha91], [Ha92]).

Depending on whether the goal is to meet hard real-time deadlines or to minimize

the expected completion time, different scheduling strategies are appropriate. For a hard
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real-time system, it is advantageous to minimize the maximum time required; if the prob-

ability distribution of the Boolean control stream is known, it may be possible to mini-

mize the expected time to completion instead.

The same essential idea (create a schedule in which the pattern of processor avail-

ability after the execution of the dynamic construct is independent of any run-time data)

can be applied to the scheduling of data-dependent iteration. The approach described in

[Lee88a] accomplishes this task by devoting all the processors to the body of the itera-

tion, but cannot exploit any parallelism between successive iterations and is wasteful if

the body of the loop does not contain enough parallelism for one iteration to keep all pro-

cessors busy. This flaw is addressed in [Ha91], in which the number of processors

devoted to the iteration is chosen based on the probability distribution of the number of

f(•) g(•)
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CODE FOR g(•) NO-OPS

PATTERN OF AVAILABILITY

1

2

3

Figure 2.6 A dataflow graph containing the construct y:= if c then f(x) else g(x), where
f and g represent subgraphs of arbitrary complexity. We produce Gantt charts for
two schedules corresponding to two possible decisions. The schedules are padded
with no-ops so that the pattern of availability after the conditional is independent of
the decision [Lee88a].
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iterations (assumed known). The technique is further elaborated in [Ha92].

2.3.4  The Clock Calculus of the SIGNAL Language

While the approaches discussed so far have proven their usefulness in at least

some domains, there is still a difficulty: dynamic actors are singled out for special treat-

ment and not represented in the same way that regular actors are. Whether we choose to

place dataflow graphs inside a larger control flow graph as in the internal representation

of many compilers, or if we restrict the use of dynamic dataflow actors to special con-

structs and then apply special scheduling techniques, we are left with a two-level theory,

with one approach to handle the uniform data flow and another approach to handle condi-

tionals and iteration. At least for aesthetic reasons, it seems that a unified approach is

desirable.

One such approach is to focus on the streams of data connecting the dataflow

actors, rather than the actors themselves, and to associate a clock with each data stream.

Rules are then defined for deriving clocks when generating one stream from another, and

for determining conditions for two clocks to be considered compatible. In order to com-

bine two streams with a pointwise operation (for example, we wish to add together two

streams of integers to produce a third stream of integers) we require that their clocks be

the same.1 The rules for determining the properties of clocks are called theclock calcu-

lus. As a simple example, consider the following, wherex is some stream (the language

is a Lucid-inspired pseudocode):

alt := false cby not alt

x2 := x when alt

y := x + x2

Here the streamalt  is alternately false and true (it is false followed by the

inverse of itself), and thereforex2  is a downsampled version ofx. It is clear that the defi-

1. Clocks need not be exactly the same if queuing of tokens is permitted, but this is not allowed in
the SIGNAL model.
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nition of y bears a strong resemblance to the inconsistent regular dataflow graph of figure

2.3, but we would have the same type of inconsistency even ifalt  were of unknown

structure. Only ifalt  were always true wouldy be well-defined.

In SIGNAL, stream variables are considered to be signals with implicit clocks;

thus we may consider that there is a time instant associated with each element of the sig-

nal. The exact values of these time elements do not appear in the analysis; only their rela-

tive ordering. Two signals defined at the same time instants are said to have the same

clock. We are permitted to “observe” one signal at the time points corresponding to the

clock of a different, “more frequent” signal; if we do, we will find that the “less frequent”

signal is undefined at some points, which is indicated by the special symbol . We can

then define the semantics of the SIGNALwhen anddefault  operators and the effect

they have on clocks. In the statement

a3 := a1 when a2

the signala2 must be a Boolean signal, anda3 is a subsampling of thea1 signal.a3 has

a value at each instant thata1 has a value and simultaneously,a2 has a true value. Note

thata1 could have a value at a point in time wherea2 does not have a value at all (has the

“value” ). If so,a3 also does not have a value at this point. Thus we could have

xle := x <= 0

px := x when x >= 0

y := px when xle

The only times whenpx  andxle  are simultaneously defined is whenx is equal to

zero, and in all such cases,xle  is true, hencey has zero values defined only at points

whenx has zero values.

The SIGNAL default operator resembles a dataflow merge operation (except that,

as always, queuing does not occur). In

a3 := a1 default a2

the signala3 has a value at any time instant that eithera1 or a2 has a value. Ifa1 has a

⊥

⊥
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value or both have a value, the correspondinga3 value is obtained froma1. Otherwise if

a2 has a value, the correspondinga3 value is obtained froma2.

A systematic method for determining consistency of clocks and their relations is

then developed [Ben90]. We encode the state of a signal at a time instant into one of the

three values−1, 1, or 0, corresponding to whether a signal is defined and false, defined

and true, or undefined. We can then model relations between signals as equations on the

finite field , using modulo-3 arithmetic. For non-Boolean signals, we treat

them as Boolean signals where the truth value is unknown but it is known whether or not

a signal is defined. Thus if it is known that two signals have the same clock (because one

is defined in terms of the other using pointwise operators, for example) we can write

(2-8)

which is interpreted to mean that the signalsa1 anda2 have the same clock (we will use

bold face to refer to stream variables and italics to refer to the corresponding clocks). To

understand this, observe that if  is undefined (corresponding to a “clock code” of 0), so

must  be, and if  is defined (corresponding to a code of 1 or−1) then  must also

have a code of 1 or−1.

We can also produce equations that model the relations described by thewhen

anddefault  operators. There are two separate cases for each, depending on whether the

signals being downsampled or merged are Boolean or not. Consider

a3 := a1 when a2

assuming all signals are Boolean. We know that for the clocks,  is the same as

whenever  is true (equal to 1), and otherwise  is zero. The following equation mod-

els this:

(2-9)

1– 0 1, ,{ }

a1
2 a2

2=

a1

a2 a1 a2

a3 a1

a2 a3

a3 a1 a– 2 a2
2–( )=
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It can be verified that this definition for  defines the clock appropriately to

match the semantics of thewhen statement (remember that arithmetic is carried out mod-

ulo 3 and reduced to the values ). This can be verified by the truth table

method, by considering all nine combinations of values for  and .

If  is not Boolean, we only know that  is defined when  is defined and

is true, so we have

. (2-10)

For

a3 := a1 default a2

we know thata3 has a value that is the same as that ofa1 if a1 is defined, and has a value

that is the same asa2 if a1 is not defined. It can be verified by inspection or by the truth

table method that the equation

(2-11)

is correct for Boolean signals, and

(2-12)

is correct for non-Booleans.

We can now analyze the system

c := x > 0; g := x when c; y := x + g

Again, we will use italic variables to refer to the clocks of the corresponding boldface

stream variables. We have  and also , so we must

havec true at every point wherex is defined (corresponding to  whenever

) in order for the clocks to be consistent.1 In this case, the result is intuitive, but the

key is to be able to reason automatically about large systems of signals.

1. This is a different result from the dataflow equivalent which requiresc to be true always.

a3

1– 0 1, ,{ }

a2 a3

a1 a3 a1 a2
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2 a1

2 a– 2 a2
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a3 a1 1 a1
2–( ) a2+=

a3
2 a1

2 1 a1
2–( ) a2

2+=

g2 x2 c– c2–( )= g2 x2 c2 y2= = =

c– c2– 1=

x 0≠
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Given a system of signal definitions in SIGNAL, each definition implies a set of

relationships between signal clocks. All signals that are combined with pointwise opera-

tions have the same clock; furthermore, thewhen anddefault  operators cause addi-

tional equations to be added, as we have seen. The solution to this system of equations, if

it exists, results in a lattice of clock definitions in which clocks for the “less frequent” sig-

nals are subsampled versions of the clocks for “more frequent” signals in the system. We

will sometimes find that there exists a particular clock, called the “master clock,” such

that all other clocks in the system are subsampled versions of the master clock. Systems

with this property are well-defined. For other systems, there is more than one possible

definition of this “master clock”, and all definitions are “more frequent” than any signal

in the system. Such systems are underconstrained and their execution is not determinate.

The LUSTRE clock calculus resembles that of SIGNAL in many ways, but there

are some important differences that tend to make the analysis of LUSTRE systems some-

what simpler. Since there is no operator likedefault  that can produce a signal that is

more frequent than either input to the definition, every LUSTRE signal’s clock is a sub-

sampled version of some other signal, so that it is not possible for the most frequent

clock, the “master clock”, to be ill-defined. There is one additional LUSTRE operator

that can produce a more frequent version of a signal, calledcurrent , which works like a

“sample and hold” operation in signal processing. The clock of the signal

current x

is the same as that of the master clock. At the points wherex has a value, the signalcur-

rent x  has the same value, and at other points,current x  has the same value as the

most recent value ofx. If we consider the master clock to be one of the inputs to thecur-

rent  operator, we preserve the property that we only have clocks and the subsampled

versions of the clocks, so it is relatively easy to assure that only signals with the same

clock are combined in pointwise operations.
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2.3.5  Disadvantages of the SIGNAL Approach

The SIGNAL model is a powerful and useful one. However, one disadvantage to

its application is that the semantics of the language depart from dataflow in several

respects. It does not naturally model queuing behavior, for example. If a system like the

inconsistent model of the previous section

c := x > 0; g := x when c; y := x + g

were implemented from traditional dataflow actors (e.g. thewhen operation is imple-

mented by a SWITCH, the> and+ by homogeneous dataflow actors), we would obtain

an unbounded buildup of tokens on some arcs, unlessc is always true, but nevertheless,

all the streams are defined. In SIGNAL, the definition ofy is simply an error.

In this particular case, this is probably what is desired. However, in the more gen-

eral sense in which dataflow actors are completely general and in which the only restric-

tions are those required by the Kahn model to assure determinism, a buildup of tokens on

some arcs may be just fine (and only temporary), so that a model that permits arbitrary

queueing on arcs between actors is what is actually desired. Some algorithms require this

form of token buildup if there is to be any hope of implementing them; the canonical

example is a parser for a context-free grammar, which requires an unbounded pushdown

stack. It is not possible to implement such structures in SIGNAL or LUSTRE, precisely

because of the lack of queuing. It is important in such cases to determine which arcs

require unbounded memory and which do not, so that as much allocation of resources as

possible can be performed at “compile time.” Given this requirement that all actors obey

dataflow semantics, it appears that the SIGNAL model does not satisfy the requirement,

since the actor executions are so tightly synchronized that they correspond to dataflow

systems in which no more than one token is permitted on any arc. Nevertheless, the SIG-

NAL clock calculus has strongly influenced our work.

There is research on combining the reactive model used in SIGNAL and LUS-
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TRE (together with its parent language ESTEREL), in which components are tightly cou-

pled and synchronous, with a communicating sequential process approach more

reminiscent of dataflow, to form a hybrid model called “communicating reactive pro-

cesses” [Ber93]. The model relies on a careful separation of the synchronous and asyn-

chronous layers, so that it is a hybrid model, not a unification.

The next chapter presents a model that extends regular dataflow directly, creating

a single model that encompasses both regular dataflow actors and dynamic actors such as

SWITCH and SELECT.
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•

THE TOKEN FLOW MODEL

3

Everything should be as simple as possible, but not simpler.

— Albert Einstein

In the previous chapter, we introduced Lee and Messerschmitt’s synchronous

dataflow model, and demonstrated its use in compile-time scheduling of regular dataflow

graphs. As this model does not support the use of dataflow actors with data-dependent

execution, we examined several techniques that, in some sense, extend this model (or a

related model) to support data-dependent execution while still permitting some sort of

formal analysis.

We now present a model, thetoken flow model, that extends regular dataflow

graphs directly, modeling actors with token flow that is not known at compile time in

much the same way as regular dataflow actors are modeled. Regular (or synchronous,

using the terminology of [Lee87b]) actors are simply a special case of a more general

actor, which we will call aBoolean-controlled dataflow (BDF) actor. Conditions for
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graphs consisting of such actors to possess well-defined cycles, a bounded-length peri-

odic schedule, and a schedule that requires bounded memory will be discussed.

The ideas in this chapter were first presented in [Lee91b] and further elaborated in

[Buc92] and [Buc93a].

3.1.  DEFINITION OF THE MODEL

A regular dataflow actor has the property that the number of tokens produced on,

or consumed from each arc is fixed and known at “compile time.” Boolean-controlled

dataflow (BDF) actors contain the regular dataflow actors as a subset, but in addition, the

number of tokens produced or consumed on an arc is permitted to be a two-valued func-

tion of the value of acontrol token. The behavior of a conditional input for an actor (an

input that consumes different numbers of tokens depending on the control token) is deter-

mined by a second input for the same actor; this second input always consumes exactly

one token, the control token, on each execution. The behavior of a conditional output for

an actor may be determined either by an input (as for conditional inputs) or by an output;

in the latter case, the output produces a single control token whose value can be used to

determine the number of tokens produced by the conditional output. Given this definition

for actors, the Kahn condition [Kah74] is satisfied, so that all data streams produced by

the execution of BDF actors are determinate, regardless of the order in which the actors

are executed (as long as constraints imposed by the availability of tokens are satisfied).

Furthermore, a scheduler need consider only the number of tokens on an arc, plus the val-

ues of any tokens on control arcs, to schedule the execution of the actors, whether at com-

pile time or run time. Because the Kahn condition assures us that all valid executions of

the graph produce the same streams, we can be assured that the particular evaluation

order chosen by the scheduler will not matter.

To decrease the wordiness in what follows, we will use the termport to describe

either an input or an output of a dataflow actor, and also we will use the shorter phrase
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“tokens transferred by a port” instead of “tokens consumed by an input or produced by an

output”. Thus we can say that a control token transferred by a control port controls the

number of tokens transferred by a conditional port. We use “port” rather than “arc”

because a port is only one end of an arc.

3.1.1  Solving the Balance Equations for BDF Graphs

In order to extend the analysis techniques used in regular dataflow to handle BDF

actors with their conditional ports, we associate symbolic expressions with conditional

ports to express the dependency of the number of tokens transferred on the associated

control port. In figure 3.1 we see the SWITCH and SELECT actors with their associated

annotations. One possible interpretation of this figure is as follows: given a sequence ofn

actor executions of the SWITCH actor in which the proportion of TRUE Boolean tokens

consumed by the control port is , the number of tokens produced on the TRUE output

of the SWITCH actor is  and the number of tokens produced on the FALSE output is

. Other interpretations are possible: if the Boolean input stream can be modeled

as a stochastic process, then  might be considered to be the probability that a randomly

selected token from the input stream is TRUE (assuming that this is well-defined), in

which case the annotations indicate the expected number of tokens transferred by the

associated ports for a single actor execution.
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Figure 3.1 Dynamic dataflow actors annotated with the expected number of tokens pro-
duced or consumed per firing as a function of the proportion of Boolean tokens that
are TRUE.
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Several rigorous interpretations of the  are possible. The most general interpre-

tation is that the  are simply formal placeholders for unknown quantities that determine

the numbers of tokens that are produced and consumed. For a probabilistic formulation,

we can define  as the probability that a token selected from the stream  is TRUE pro-

vided that the Boolean stream is stationary in the mean, so that it does not matter how the

sampling is performed. This condition is too restrictive for most dataflow graphs. If the

stream is not stationary in the mean, but the long-term average fraction of TRUE tokens

in the stream exists as a limit, this definition could be used instead, but this assumption is

still too restrictive for our purposes. However, we will find that for most practical data-

flow graphs, we may define  as the proportion of tokens that are TRUE in a well-

defined sequence of actor firings, called acomplete cycle. As it turns out, we are at no

point dependent on knowing exact values for the ; all our manipulations will use it

symbolically.

We can now use the annotated dynamic actors to analyze BDF graphs in much the

same way that regular dataflow graphs were modelled in section 2.2 (and also [Lee87b]).

We may combine the terms for the numbers of tokens transferred by each port into a

topology matrix, and solve for the repetitions vector to determine how often the actors

should be fired. As a first example, we will apply this analysis technique to the traditional

if-then-else dataflow schema, shown in figure 3.2, in which we have assigned numbers to

the actors and the arcs. The Boolean stream  controls the SWITCH actor, and  con-

trols the SELECT actor. We obtain the following topology matrix:

pi

pi

pi bi

pi

pi

b1 b2
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(3-1)

The topology matrix is not constant as it was for regular dataflow actors, but is

instead a function of , the vector consisting of all thep variables (  and  in this

case). We wish to find an  such that

(3-2)

It turns out, for this example, that there are nontrivial solutions only if

(which fortunately is true trivially since both Boolean streams are copies of the same

stream) and the solution vector has the form

(3-3)

wherek is arbitrary. Note that the existence of this solution does not depend on the value

of . It can be interpreted to mean that, on average, for every firing of actor 1, actor 3

will fire  times and actor 4 will fire  times, which agrees with intuition. Since
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Figure 3.2 An if-then else dataflow graph. The numbers next to the arcs identify them
and do not reflect the number of tokens transferred as in other figures; all actors
other than SWITCH and SELECT are homogeneous.
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 is not, in general, an integer, it appears to make no sense to find the smallest

with integer values. Later we will see how to re-interpret repetition vectors so that the

concept of a smallest integer solution again makes sense, but for now we can use  to

find relative firing rates.

3.1.2  Strong and Weak Consistency

Because  is now a function of , the existence of nontrivial solutions may

also depend on . In [Lee91b], the termstrongly consistent is introduced to describe sys-

tems such as figure 3.2 in which nontrivial solutions exist regardless of the value of .

Systems for which solutions exist only for particular values of  are calledweakly con-

sistent. The system we just analyzed would be weakly consistent if  and  were dif-

ferent streams, for example, because of the extra requirement that  and  must be

equal.

Let’s consider a weakly consistent system that is analogous to the synchronous

language system

g := x when x > 0; y = x + g

described in section 1.4.3. As we saw, this system is inconsistent unlessx is always

greater than zero, and techniques based on the clock calculus of LUSTRE and SIGNAL

can detect this. We can model an analogous system using BDF actors as well, as shown in

figure 3.3. In the figure, the streamx is produced by actor 1 and the streamy is produced

by actor 3 (the addition operator) and consumed by actor 4. The corresponding topology

matrix is

p1 r p( )

r p( )

Γ p( ) p

p

p

p

b1 b2

p1 p2
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(3-4)

and we find that a nontrivial solution exists only ifp is 1, as expected. The same result is

obtained in SIGNAL since the streamx > 0  is defined at exactly the same points as the

streamx, so the complications from undefined values do not occur.

3.1.3  Incomplete Information and Weak Consistency

When we solved the balance equations for the if-then-else graph of figure 3.2, we

initially treated the Boolean control streams for the SWITCH and SELECT actors as two

separate streams  and , and found that a condition for strong consistency was that

the two streams have equal values for  and . In this example this is true trivially,

since the two streams are identical, but it is easy to imagine cases where streams are iden-

tical but the compiler is unable to determine this, because this identity depends on mathe-

matical properties of the actors that the compiler is unaware of or because the required

analysis is too complex. In fact, since BDF graphs are Turing-equivalent, the problem of

determining whether two Boolean streams in an arbitrary BDF graph are identical is

undecidable.1 As a result, a compiler that uses the techniques of sections 3.1.1 and 3.1.2
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Figure 3.3 An example of a weakly consistent dataflow graph. The FALSE output of
the SWITCH is not used so we ignore it.
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will sometimes falsely report that a BDF graph is weakly consistent, when it is in fact

strongly consistent.

In most cases, the compiler will be able to report a specific reason for the weak

consistency or inconsistency: in our example above, the reason might take the form

“Cannot show that .” One possibility for proceeding is to permit the user to add

assertions to the graph that would explicitly provide the missing information. It would

then be possible to generate code for checking such assertions at run time if desired.

While incomplete information can cause a false report of inconsistency or weak

consistency, the reverse is not possible: if a BDF graph is strongly consistent, then addi-

tional information about the properties and relationships between the actors and the data

streams they compute can never cause inconsistency. The effect of the additional infor-

mation is, at most, a restriction of the possibilities for the vector  to a subset of ,

wheren is the number of Boolean streams. Since strong consistency implies consistency

for any point in , restriction to a subset does not alter strong consistency.

3.1.4  The Limitations of Strong Consistency

If we interpret the  as long-term average rates, then strong consistency permits

us to assert that the rates are in balance regardless of the precise proportions of Boolean

tokens that are TRUE or FALSE. The analogous condition for regular dataflow graphs

(that there are nontrivial solutions for the balance equations) permit us to assert that, pro-

vided that deadlock does not occur, we may compute a bounded-length schedule that exe-

cutes the graph continuously in bounded memory. The fact that the schedule has

bounded-length permits us to prove that a hard real-time deadline can be met, given exe-

cution times for each of the actors. For BDF graphs, however, strong consistency is not

enough to assure either a bounded length schedule or bounded memory, because strongly

1. The Turing-equivalency of BDF graphs and related propositions are proved in section 3.4.4,
assuming appropriate primitives.

p1 p2=

p ℜn

ℜn
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consistent BDF graphs are easily constructed that have neither property.

Consider the modified if-then-else construct in figure 3.4. This example was dis-

cussed by Gaoet al. [Gao92]. The only difference between this version and the one that

we have seen before is that actors 3 and 4 now consume two tokens from their input arcs,

and produce two tokens on their output arcs, on each execution. The result is to modify

four elements in the topology matrix. The modified topology matrix is as follows:

(3-5)

Solving the modified balance equations gives

(3-6)

Since the existence of this solution does not depend on the value of , again we

have a strongly consistent system. However, if all data communication on arcs is required

to be FIFO, difficulties emerge. Consider, as did Gaoet al., what happens when actor 7

produces a single FALSE token followed by a long string of TRUE tokens, as shown in
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Figure 3.4 Modified if-then-else construct [Gao92]. Oblique numbers identify arcs;
roman numbers next to ports indicate those inputs and outputs that transfer more
than one token.
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the figure. Since the control arc of the SELECT actor is FIFO, the initial FALSE token

will “block up” its input. The single token on arc 2 will not be enough to fire actor 3.

Actor 4 will be able to fire any number of times, but the SELECT gate will be unable to

fire, since with a FALSE token on its control port it requires a token on arc 3, correspond-

ing to its FALSE input. Whenever actor 7 produces another FALSE token, the SELECT

gate will become “unblocked” because actor 3 will be able to fire. The accumulated

queue of TRUE tokens will then match up with the accumulated queue of tokens on arcs

4 and 5, and execution can continue. Since the run of TRUE tokens may be of any length,

either unbounded memory must be provided for or the system will deadlock.

If this system is executed on a tagged-token dataflow machine, however,

unbounded memory isnot required, since we may now execute actors out of order as

soon as two tokens that are destined to be passed together to the same actor are available.

In this case, we could execute the SELECT actor out of order, pairing the TRUE tokens

in the queue with the data tokens on arc 5. This is permissible since there are no data

dependencies between successive executions of actor 6, the sink actor. If, however, a self-

loop with an initial token were added to actor 6, we would then be forced to execute it

sequentially, which would again require unbounded memory.

For compile-time scheduling of BDF graphs, it would be permissible to do the

same kind of rearrangement of actor executions at compile time that can be accomplished

at run time by token matching. However, in the remainder of this discussion we will

assume that FIFO execution is required.

3.2.  ANALYSIS OF COMPLETE CYCLES OF BDF GRAPHS

We now introduce some terminology to permit us to analyze the properties of

BDF graphs in more detail.

Thestate of a BDF graph consists of all information about the graph that affects

the eligibility of actors for execution. For control arcs, we must know the number of
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tokens present, together with their values (TRUE or FALSE) and the order of their val-

ues. For other arcs, only the number of tokens is significant. Thus we might encode a

state of the system in figure 3.4 as {0, 1, 0, 1, 4, 0, 0, TFFFF}. This concept is analogous

to the concept of a marking for Petri nets.

A complete cycle of a BDF graph consists of a sequence of actor executions that

returns the graph to its original state. Clearly, a null sequence of actor executions is a

complete cycle under this definition, though trivial. We define aminimal complete cycle

to be a non-null complete cycle with no non-empty subsequence that is also a complete

cycle.

For any dataflow graph, we can ask the following questions:

• Do complete cycles even exist? If flow rates are inconsistent, it is possible that no

sequence of actor executions will return the graph to its original state.

• Does the graph deadlock?

• Is the number of actor executions required for a complete cycle bounded, regard-

less of the values of any Boolean tokens produced or consumed? This condition is

useful when there is a hard real-time deadline for execution of the graph.

• Finally, can the graph be executed with bounded memory? If so, memory can be

statically allocated.

3.2.1  Interpretation of the Balance Equations for BDF Graphs

For regular dataflow graphs, we determine the properties of complete cycles by

solving the balance equations. Since , the result of executing actors in such a way

that each actori is executed  times is that the system returns to its original state. If there

is only a trivial solution to the balance equations, we conclude that no minimal complete

cycles exist. If the balance equations have nontrivial solutions, then either the graph

deadlocks, or schedules that are bounded both in length and in memory requirements

Γr o=

r i
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exist and are easily generated [Lee87b].

We cannot perform the corresponding analysis for BDF graphs with dynamic

actors given what we have done so far since the repetition vectors are not integral given

the interpretation of the  as probabilities or long-term averages. Accordingly, we revise

our interpretation: we consider them to be the fraction of Boolean tokens on the stream

produced during a complete cycle that are TRUE (assuming for the time being that com-

plete cycles exist). Since the complete cycle must restore the graph to its original state,

the number of Boolean tokens of each type that are produced on a given stream is equal

to the number consumed. Since tokens are discrete, this means that

, (3-7)

where  is the total number of control tokens produced in the stream  during the com-

plete cycle, and  is the total number of these  tokens that are TRUE. We may then

analyze the properties of complete cycles as follows: solve the balance equations as dis-

cussed previously when we considered the  to be probabilities or averages. Then substi-

tute for the  using equation  (3-7) above, and then constrain the number of actor

executions, control tokens, and TRUE control tokens to be integral.

Let us reconsider the if-then-else and modified if-then-else examples discussed

previously. When solving the balance equations for figure 3.2, we obtained the solution

. (3-8)

One Boolean token is produced for each execution of actor 7, thus . So,

substituting equation  (3-7) for , dropping the subscript of 1 (since there is only one

Boolean stream), and substitutingn for k we have

(3-9)
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We still have an integer solution if  is 1, in which caset is either zero or 1. The

minimal complete cycle therefore has the repetition vector

(3-10)

where the variablet is 1 if a TRUE token is produced by the execution of actor 7,

and 0 if a FALSE token is produced. This solution is in accord with intuition.

Consider the modified if-then-else example in figure 3.4, in which the condition-

ally executed actors produce and consume two tokens per execution. We obtained the fol-

lowing solution for the repetition vector:

(3-11)

Substituting using equation  (3-7) for  as before, noting that this time

where  is the number of Boolean tokens in the cycle, we obtain

(3-12)

We now seek to find the smallest integer solution for this equation. We notice two

constraints for such a solution to exist: the number of TRUE tokens produced in the cycle

must be even, and also the number of FALSE tokens produced in the cycle, , must be

even. Given these constraints, and given that we have no control over the sequence of

Boolean outcomes, there is no limit to the length of the minimal cycle. In particular, if the

first Boolean token is FALSE and then a large even number of TRUE tokens are pro-

duced, the cycle will not end until another FALSE token is produced.

Finally, we consider a third example, again obtained by modifying the basic if-

then-else construct. In our original discussion, we treated the stream of control tokens for

the SWITCH and the SELECT actors as two separate Boolean streams, and showed that

the graph was strongly consistent if the corresponding quantities  and  are equal. We

n
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now modify the graph by adding an initial token to the control arc for the SELECT that

has value FALSE, as shown in figure 3.5. Now the streams are no longer identical;  is a

delayed version of . Initial tokens do not affect the topology matrix for a dataflow

graph, as it depends only on the number of tokens produced or consumed by the actors.

With a probabilistic or long-term-average interpretation, we can neglect the initial tran-

sient and still claim that this graph is strongly consistent. When computing the properties

of complete cycles, however, we require that the graph be returned to its initial state

(including the FALSE token on arc 8) and also that the proportion of TRUE tokens in

streams  and  be equal. Both conditions are met if and only if the last token pro-

duced by actor 7 in the cycle has the value FALSE. By imposing this condition, we can

set  and  equal and we obtain the same solution as for the if-then-else, with one dif-

ference: we have the extra constraint that there must be a FALSE token in the stream.

Equation (3-9) is still valid. However, since every complete cycle must now contain a

FALSE token, we may not reducen, the number of executions of actor 7, to 1, so equa-

tion  (3-10) is not valid. Instead, we have as a minimum that , and thus

(3-13)

where .
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As we shall see, proofs like the above that minimal cycles have unbounded length

are not sufficient in themselves to prove that unbounded memory is required to execute

the graph. At this point, we have merely demonstrated that unbounded time is required to

return the system to its original state (assuming each actor execution requires some time).

Proofs that the graphs given in figure 3.4 and figure 3.5 require unbounded memory

require additional techniques and are given in section 3.4.3.

3.2.2  Conditions for Bounded Cycle Length

If a minimal complete cycle exists at all, it must satisfy the balance equations and

therefore the analysis of the previous section constrains the properties of any solutions. It

is possible, however, that even though bounded solutions exist for the balance equations,

that no schedule, bounded or otherwise, exists that continually executes the graph,

because the graph deadlocks. Therefore, to complete the proof that a graph has a

bounded-length schedule, we must also demonstrate that deadlock does not occur. For-

mally, we have the following:

Theorem : a BDF graph has bounded cycle length if and only if two conditions

hold: First, there must be a bounded integer solution to the balance equations for a com-

plete cycle for any possible sequence of Boolean tokens produced in that cycle. Second, it

must be possible, for each possible sequence of Boolean tokens produced, to construct a

corresponding acyclic precedence graph (APG) for the BDF graph given the constraint

that Boolean tokens with those particular values are produced, using the techniques of

section 2.2.2.

In effect, we prove that the graph has bounded cycle length by construction: we

first determine the exact number of times each actor is to be executed, and then determine

that precedence constraints do not prevent us from executing those actors the required

number of times. By specifying the exact values of the emitted Boolean tokens, we trans-

form a BDF graph into a regular dataflow graph1 (since, given the identity of all control
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tokens the flow of all tokens is completely determined), and we may then use regular

dataflow graph techniques for constructing schedules.

Consider the if-then-else construct of figure 3.2. We have determined that there

are two possible sequences of Boolean tokens that can be produced in a minimal com-

plete cycle: a single TRUE token, or a single FALSE token. We can construct an APG for

each of those cases, given the repetition vector from equation  (3-10). These precedence

graphs appear in figure 3.6.

In most cases, there is a large amount of redundancy between the precedence

graphs produced given different assumptions about what Boolean tokens are produced.

We therefore prefer to use a more compact structure called an annotated acyclic prece-

dence graph (AAPG) to represent the full set of possible precedence graphs. As in the

APG, each node corresponds to a single execution of an actor in the original graph; the

1. There are cases where this is not strictly true; there exist graphs that have complete cycles in
which the same actor is fired twice, once with a TRUE control token and once with a FALSE con-
trol token, so that the number of tokens transferred on its arcs is not constant. It is, however,
known at “compile time” so that it is still possible to construct compile-time schedules.
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identities of Boolean tokens produced are known. The upper graph corresponds to
the production of a FALSE token, the lower graph to a TRUE token.



77

difference is that nodes may be annotated with the condition under which they fire and

arcs are labelled with the condition under which they move data. Nodes and arcs appear-

ing in all the possible APGs have no annotations; nodes and arcs appearing in only some

of the APGs (such as actors 3 and 4 in figure 3.6 and the arcs connected to them) receive

annotations indicating the Boolean token values they depend on.

The AAPG can be constructed directly, rather than by combining APGs for each

outcome. However, there is nothing new theoretically in this direct construction, other

than bookkeeping; it is conceptually equivalent to the construction of all of the possible

APGs at once.

The AAPG is a compact structure that can be taken to represent one precedence

graph for each possible outcome for the generation of any Boolean tokens. As the struc-

ture corresponding to each possible outcome is bounded, we have by construction a proof

that a bounded-length schedule for the graph exists. Thus successful construction of the

AAPG is sufficient for a bounded-length schedule. It is also necessary, for if it is not pos-

sible to construct the AAPG then the schedule is undefined for at least some Boolean out-

comes.

3.2.3  Graphs With Data-Dependent Iteration

If a graph has a bounded-length schedule, it is guaranteed that it can be scheduled

to require bounded memory, because the buffer sizes return to their initial state at the end

of each cycle, the number of actor firings in the cycle is bounded, and the number of

tokens generated by the firing of an actor is bounded. However, the reverse is not true;

dataflow graphs that require bounded memory may nevertheless have cycles that are

unbounded in length. Graphs corresponding to data-dependent iteration, where the num-

ber of times an actor is executed depends on the data itself and cannot be bounded at

compile time, fall into this category.

Consider the graph in figure 3.7. It would correspond to a type of if-then-else con-
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struct except for one feature: actor 5 requires two tokens per execution. Lettingn be the

number of Boolean tokens per cycle and lettingt be the number of TRUE tokens as

before, we find by inspection that the solution vector for the graph is

. (3-14)

Investigating the properties of minimum integer solutions of this vector, we find

that a complete cycle requires that the number of FALSE tokens generated in the cycle be

even. If a TRUE token is generated first, we can immediately complete the cycle; how-

ever, if a FALSE token is generated, the cycle does not complete until we have a second

FALSE token. At this point, it looks very much like the example from [Gao92] in figure

3.4. There is an important difference, however.

Consider the subsystem consisting of the actors enclosed by the grey curve in fig-

ure 3.7. Let us assume that we are given the problem of computing a separate schedule

for this subsystem, excluding actor 5. Our rule for constructing schedules for discon-

nected subsystems is this: we will assume that any number of tokens are available from

any disconnected input ports, and that we can write any number of tokens to disconnected

output ports. Our desire is that the subsystem as a whole, with its internal schedule, will
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resemble a BDF actor from the outside1. Given this rule we have the following repetition

vector for the subsystem: . The corresponding schedule might, for instance,

execute actor 1, then 2, then 3, and then optionally 4 if a TRUE token was produced.

Notice that the schedule has bounded length, and therefore has bounded memory.

If, however, we try to treat the cluster as a whole as a single actor, we have a difficulty: if

the above schedule is executed, the cluster may or may not produce a token on its output

(the input to actor 5). Consider the following solution: let us repeatedly execute the

schedule until a token is produced on the FALSE output of the SWITCH actor. We have

now enclosed the schedule in a do-while loop. The resulting looped schedule produces a

cluster that, when executed, always emits one token; it is a homogeneous dataflow actor.

We can then compute a new schedule at the top level that is also bounded in length. The

resulting schedule, assuming a sequential processor, might look like the following (writ-

ten in a C-like pseudocode):

repeat 2 times {

do {

actor 1;

b = actor 2;

actor 3;

if (b) actor 4;

} while (b);

};

actor 5;

We notice the following: if we can divide the dataflow graph into clusters in such a way

that each cluster has a bounded-length schedule, and the top-level graph also has a

bounded-length schedule, and we permit the introduction of do-while loops of the type

1. To actually achieve this desire (that clusters resemble a BDF actor from the outside) requires
some additional conditions that will be discussed in detail in section 3.3.3.

1 1 1 t
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shown here, it then follows that the graph can be scheduled in bounded memory.

3.2.4  Proof of Bounded Memory by Use of a Preamble

Another technique that may be used to prove that some graphs have a bounded-

memory schedule is by use of a preamble. This technique is particularly useful for graphs

with initial Boolean tokens on control arcs. In many cases, if another state is reachable

from the initial state by a bounded number of actor executions, and the new state has no

Boolean tokens, it is possible to show that all minimal cycles starting from the new state

are bounded in length, so that the graph can be scheduled in bounded memory. Consider

the graph in figure 3.8. This graph implements a do-while loop. Since there is an initial

FALSE token on the control arc for the SELECT actor we know immediately that the

minimal cycle length is unbounded; all cycles must end with a FALSE token on the Bool-

ean stream produced by actor 3 to replace this token, but there is no limit to the number of

consecutive TRUE tokens that may be produced. As we shall see, it is possible to apply a

clustering technique to this graph, although another technique we have not yet discussed

(state enumeration) is required as well. However, there is another possibility. Consider

what happens if actor 1 is executed, followed by executing actor 2 (the SELECT actor).
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The resulting system is shown below in figure 3.9. There is no longer a skew between the

Boolean streams  and , and therefore no longer a constraint that any Boolean

sequence must end with a particular value. Lettingn andt have their usual interpretations,

we find that cycles have the repetition vector . As there are no

other constraints, for minimal cycles we have  andt is 0 or 1. We have bounded

length cycles and therefore bounded memory. The following pseudocode represents a

schedule that executes this graph “forever” using a preamble:

1; SELECT;

do forever {

3; SWITCH;

if (control token from 3 is FALSE) { 5; 1; }

SELECT;

}

What is the relationship between the bounded-length cycles of figure 3.9 and the

unbounded-length cycles of figure 3.8? We notice that minimal cycles for figure 3.9 con-

tain only a single production and a single consumption of a Boolean token, while mini-

mal cycles for figure 3.8 produce and consume any number of TRUE tokens and a single

FALSE token. Therefore the relation between the two notions of cycles corresponds to
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the addition of a do-while loop. Repetition of a bounded-length schedule that returns the

number of tokens to the same value each time clearly keeps memory bounded, no matter

how many times the schedule is repeated.

For the preamble approach described to be feasible, three conditions must hold:

there must be initial Boolean tokens in the graph, and it must be possible to execute a

bounded number of the actors in such a way as to eliminate these tokens (one implemen-

tation we have experimented with simulates the dynamic execution of the graph with all

actors that produce Boolean tokens disabled, until either deadlock occurs or all Boolean

tokens are eliminated). Finally, the resulting graph must have a bounded length schedule.

3.3.  AUTOMATIC CLUSTERING OF DATAFLOW GRAPHS

As we have shown, one way to demonstrate that a BDF graph can be scheduled in

bounded memory is to cluster it and show that each of the clusters has a bounded-length

schedule; where necessary, subclusters are then executed repeatedly to obtain the full

schedule, which then contains data-dependent iteration. In order to make this approach

feasible, we require algorithms to perform the clustering.

The structure obtained by performing this clustering resembles the hierarchical

“well-behaved dataflow graphs” of Gaoet al. [Gao92]. In Gao’s work, it is demonstrated

that certain standard constructs corresponding to conditionals and data dependent itera-

tion are “well-behaved” in the sense that, if the construct is treated as a cluster, it can be

regarded from the outside as a single (coarse grained and composite) regular dataflow

actor. A style of programming is advocated in which graphs are built up hierarchically

out of these constructs. Given a graph constructed with this technique, our clustering

algorithm will find the constructs, and in that sense it is precisely the reverse of Gao’s

approach. Given an unstructured dataflow graph, we cluster it to find structure within it.

The technique is partially applicable even to graphs that cannot be scheduled with
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bounded memory, since even such graphs will, as a rule, contain many arcs and sub-

graphs that can be scheduled to use bounded memory, permitting memory to be allocated

at compile time for most arcs.

3.3.1  Previous Research on Clustering of Dataflow Graphs

There have been three principal motivations for clustering of dataflow graphs.

First, to improve performance on dataflow machines, it has been found useful to collect

and group those actors that can be executed sequentially and treat the combined cluster as

a unit; such units are sometimes referred to asthreadsbecause of their resemblance to

communicating sequential processes (the threads can have state because of internal

tokens within the cluster); the termgrains is used in [Gra90]. The need for synchroniza-

tion is thereby reduced. The compiler is responsible for rearranging and grouping the

dataflow graph into clusters to accomplish this. As a rule, code for a thread is generated at

compile time, and the dataflow machine dynamically selects which thread to execute

depending on the availability of tokens. This approach has been used in the Epsilon-2

[Gra90] and EM-4 [Sat92] hybrid dataflow architectures, and in the Monsoon project

[Tra91].

Second, clustering is used to partition dataflow graphs for scheduling on multiple

processors when static assignment is used (see section 2.1). In many ways this resembles

the process for collecting actors into threads for dynamic execution by a hybrid token

flow machine; in either case we can consider the resulting clusters to be communicating

sequential processes. A comparison of several techniques for solving this clustering prob-

lem can be found in [Ger92]; a more thorough treatment of several specific techniques

appears in [Sih91] along with many references to the literature.

Finally, clustering has been used to determine the loop structure of regular data-

flow graphs for the purpose of generating compact code for a single sequential processor.

This work has taken place primarily in the context of research on the Gabriel [Bie90] and
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Ptolemy [Buc91] systems with the goal of improving code generation for programmable

DSP devices. Some of this work is described in [How90] and [Bha93a]; related work

with a different optimality criterion appears in [Rit93]. The problem is analyzed in con-

siderably more detail in [Bha93b] and necessary and sufficient conditions are given for a

regular dataflow graph to possess a completely clustered form called asingle appearance

schedule. Single appearance schedules are defined and discussed in more detail in the

next section.

3.3.2  Generating Looped Schedules for Regular Dataflow Graphs

The techniques we shall develop for clustering BDF graphs are formed by extend-

ing solutions to the corresponding problem for regular dataflow graphs. We will therefore

discuss procedures for producing looped schedules for regular dataflow graphs in detail.

To motivate the problem, consider the following simple dataflow graph:

Assume that we wish to schedule this graph to execute on a single sequential processor. If

our criterion is to minimize the memory needed for the data buffer between the actors, we

might choose the schedule ABABB, which requires a buffer capable of storing four data

tokens. An alternative that normally leads to more compact code is to choose the sched-

ule (2A),(3B) instead, although now the buffer requires six tokens. This form of schedule,

with the number of repetitions preceding each sub-schedule, is known as a looped sched-

ule1; if the looped schedule contains only one appearance of each actor, it is called asin-

gle appearance schedule. For the graph in figure 3.10, one possible single appearance

schedule is A,10(B,(10C),D),E.

1. It appears that we have used the term “looped schedule” in a different sense in section 3.2.3;
however, we will soon produce a unified framework that combines integer repetition factors and
do-while loops into one unifying structure.

3 2
A B
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A single appearance schedule (if such a schedule exists) is the goal of the looped

schedule generation problem. There are regular dataflow graphs that do not have single

appearance schedules; they inevitably contain feedback loops of a special form called a

tightly interdependent component in [Bha93a]. Consider, for example, the graph in figure

3.11. For this graph, which has one initial token on each arc, we must execute ABA.

We now discuss an algorithm for generating looped schedules that differs signifi-

cantly from either How’s [How90] or Bhattacharyya’s [Bha93a],[Bha93b] algorithm.

This algorithm is designed to be fast and to be generalizable to BDF graphs; there are,

however, some graphs that can be looped successfully by Bhattacharyya’s algorithm that

are not handled successfully by this approach.1

For the purposes of this discussion, we say that two actors areadjacent if there is

an arc that connects them. With respect to this arc, we call the actor that produces tokens

on the arc thesource actor and the actor that consumes tokens from the arc thedestina-

tion actor. Two adjacent actors have thesame repetition rate if the number of tokens the

source actor produces on an arc is always equal to the number of tokens the destination

actor consumes from the arc. Finally, we will call an arc afeedforward arcif it is not part

1. Accordingly, the implementation in Ptolemy [Buc93], [Pin93] uses this algorithm as a first pass,
applying the more general (but slower) algorithm of [Bha93a] as a second pass if the graph is not
completely clustered.

A B C D E
10 1 10 1 1 10 1 10

Figure 3.10 A graph that has a nicely nested single appearance schedule.

1 2
A B

21

Figure 3.11 A simple graph that lacks a single appearance schedule.



86

of a directed cycle of arcs, or equivalently if there is no directed path of arcs from the des-

tination actor to the source actor. An arc that is not a feedforward arc is called afeedback

arc.

We will assume that the graph is connected and possesses an acyclic precedence

graph (APG), implying that there are nontrivial solutions to the balance equations and

that deadlock does not occur. If this is true, then we can assure that certain problematic

situations do not occur — for example, we will never have a pair of adjacent actors that

are “the same repetition rate” with respect to one arc that connects them, but not with

respect to another connecting arc (this would lead to inconsistency). We would also never

have arcs connecting the actors in both directions, with no initial tokens on any arc (this

would be a delay-free loop and would cause a deadlock). It is possible to drop these

assumptions and detect these conditions as errors with slight modifications to the algo-

rithm; these modifications insert extra checks before a pair of actors is combined into a

single cluster to test for deadlock or inconsistency.

Our algorithm consists of two alternating phases: a merge pass and a loop pass.

The merge pass attempts, as much as possible, to combine adjacent actors that have the

same repetition rate into clusters. We must assure that no merge operation results in dead-

lock. In figure 3.12, for example, we cannot merge A and B into one cluster because the

new cluster and actor C would then form a delay-free loop.

The loop pass may transform a cluster by adding a loop factor, corresponding to

repetition of that cluster some number of times. These loop factors are chosen to cause

1 1
A B D

C

21

1

1 1
1

Figure 3.12 This example graph is used to help explain the loop pass.



87

the cluster to match the repetition rate of one or more adjacent clusters. The loop pass

must also be designed to avoid deadlock, as we shall see. Loop passes and merge passes

are alternated until no more transformations on the graph are possible.

The merge pass will combine an actor with an adjacent actor under the following

conditions: if the actors are of the same repetition rate and are connected by an arc that

has no initial tokens, the actors are always merged unless there is a directed path that

starts at the source actor, passes through at least one actor that is not in the pair of candi-

dates to be merged, and ends in the destination actor. Given the graph in figure 3.12, A

and B may not be merged because of the path A, C, B. However, A and C may be

merged, and the resulting cluster may be merged with B. If the only arc (or arcs) connect-

ing the actors has one or more initial tokens, we may complete the merge given the above

conditions (no indirect path) only if the connecting arc is a feedforward arc. Finally, if

there are arcs of both kinds (with and without initial tokens) connecting the actors, we

may ignore the presence of the arcs with initial tokens and use the arcs without initial

tokens to complete the merge.

The loop pass introduces looping for the purpose of matching rates of adjacent

clusters. If a loop factor ofn is applied to a cluster, then each of its ports transfersn times

as many tokens per cluster execution. Unrestricted looping may also introduce deadlock,

for example, adding a loop factor of 2 to actor A in figure 3.11 can cause deadlock. We

therefore must avoid this. It is also desirable for the generated loops to nest; in figure 3.10

we would not want to begin by looping actor B 10 times to match the rate of actor A,

because we would then not wind up with A,10(B,(10C),D),E but rather something like

A,(10B),(100C),(10D),E, and the latter schedule requires considerably more memory to

store tokens on arcs.1

1. In [Rit93], the single appearance schedule problem is attacked with a different optimality crite-
rion to formminimum activation schedules; with this criterion the latter schedule is preferred.
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The loop pass has two phases: the integral loop pass (so called because it only

applies to integral rate changes, corresponding to arcs where the number of tokens trans-

ferred by one neighbor evenly divides the number of tokens transferred by another neigh-

bor) and the nonintegral loop pass (which will attempt to add loop structure to more

general graphs). To understand why we separate these cases, consider the following por-

tion of a dataflow graph, where A and B are actors or clusters:

If M evenly divides N, we could add a loop around actor A to permit a later merge

operation; similarly, if N evenly divides M, we could loop B. If the ratio of the smaller to

the larger value is not an integer, however, we must loop both clusters, and it turns out

that the conditions for making this a safe operation are considerably more restrictive.

Integral rate changes may be produced by adding a loop factor to a single actor or

cluster. A cluster will not be looped if it is connected to a cluster at a different rate by an

arc with initial tokens that is not a feedforward arc. To see why this rule is needed, see

figure 3.11; looping actor A in that graph would introduce deadlock. Also, to make sure

that the looping will nest properly, we will not loop a cluster if it is connected to a peer

that “should loop first” (that is, would match the rate of this cluster if it were looped).

Thus it would be forbidden to loop actor B in figure 3.10, since C should be looped first.

The choice of loop factor corresponds to a choice of a peer actor for a subsequent merge;

if this merge would not be permitted (because of the potential for introducing deadlock)

neither would the loop be permitted.

The simple nonintegral loop pass described here is restricted to graphs that either

have only two clusters or have a tree structure (only feedforward arcs). In essence, it

applies a loop factor to every cluster so that all rates in the graph will match. We do not

M N
A B
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attempt to handle more complex cases here; the result is that some graphs are not com-

pletely clustered by this algorithm. Nevertheless, most common cases are handled.

3.3.3  Extension to BDF Graphs

We now consider the extension of the above approach to BDF graphs. Clearly, the

rules for merging the regular actors that make up the graph may proceed unchanged;

doing this for these actors and leaving the resulting clusters for dynamic execution resem-

bles the approach taken by [Tra91] to some degree. To go beyond this, we consider the

meaning of adding loop factors like  and  to a cluster in a BDF graph, where  is the

rate parameter corresponding to the fraction of values in a Boolean stream that are

TRUE. We shall interpret these “loop factors” as “execute this cluster only if the token

from  is TRUE” or “repeatedly execute this cluster until a TRUE token from the stream

 is obtained.” These interpretations are easier to understand when  is interpreted as ,

the number of TRUE tokens produced or consumed on the Boolean stream, divided by

, the total number of tokens produced or consumed on the stream. The point is that we

can treat the introduction of conditionals and of data-dependent iteration loops with Bool-

ean termination conditions within the same framework as the introduction of iteration in

regular dataflow graphs.

We are now ready to discuss the extension of the algorithm described in section

3.3.2 to BDF graphs. There are extra considerations to be taken into account: we require

that each cluster produced obey BDF semantics. This means that each port of the cluster,

like the ports of any BDF actor, must transfer either a fixed number of tokens or a number

of tokens that depends on a token transferred on a control arc of that cluster, and that con-

ditional input arcs be controlled by input control arcs.

This means, for example, that we may be forbidden to merge a pair of adjacent

actors because a control arc would be buried, so that the external behavior of the cluster

pi
1
pi
---- pi
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bi pi ti
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would depend upon an invisible control signal (it is permissible to hide a control arc

within a cluster as long as no arc that it controls is visible outside the cluster). We may

also choose, when merging a pair of clusters connected by a Boolean control arc with ini-

tial Boolean tokens, to have the control arc appear as a self-loop in the merged cluster. In

addition, we permit certain graph transformations that correspond to the combination of a

merge operation and a loop operation; this sort of transformation is required when the

result of the merge would bury a control arc. Finally, when the loop pass adds an “if” con-

dition to a cluster, it is normally necessary to add an arc that passes a copy of the Boolean

control stream to that cluster to preserve BDF semantics.

We will now demonstrate the above points by applying the clustering algorithm to

a variety of BDF graphs. In the figures showing partially constructed graphs, we will

indicate conditional ports by associating the labels “T” and “F” with them and the associ-

ated Boolean control streams by labels such as  or (if there is only one stream) . Ports

with no label can be assumed to be homogeneous (such ports transfer a single token).

Consider yet again the canonical if-then-else construct from figure 3.2, repeated below

for convenience:

We may clearly merge actors 1 and 2; we may also merge actors 5 and 6. Exploiting the

fact that all outputs of the fork have the same value, we may merge actor 7 into the cluster

formed by merging actors 1 and 2 as well (we must use this fact or else the clustered

graph would not contain a valid control stream for the conditional outputs of the switch).
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Our result now looks like this:

The control input for the SWITCH actor is now a control output for the cluster.

Note that while the two clusters have the same rate, we cannot merge them because that

would create delay-free loops involving actors 3 and 4. Therefore the first merge pass is

complete. The loop pass can now convert actors 3 and 4, which unconditionally consume

and produce one token, into conditional actors that match the interfaces of their neigh-

bors. We may prepare to merge them either with the cluster containing the SWITCH or

the cluster containing the SELECT. Let’s suppose the former is done. For the new, condi-

tional versions of actors 3 and 4 to be BDF actors, they require control inputs. We obtain

those control inputs by adding arcs that conceptually transmit a copy of the Boolean con-

trol stream to the new actors. Our new graph looks like this:

Actor 3 has now been replaced by a cluster with the following semantics: consume a con-

trol token; if it is FALSE, consume a data token, execute actor 3 using that token and out-

put the result, otherwise do nothing. Actor 4 has been replaced by a similar conditional.

At this point, all adjacent actors have matching rates so all four remaining clusters may
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be merged into a single cluster (at this point the control arc may be buried as it has no

consequences visible outside the cluster). The clustering algorithm is complete.

It only remains to show that each cluster has a bounded-length schedule. There

are three such schedules to consider (other than the trivial clusters containing only one

actor): the cluster containing actors 1, 2, and 7; the cluster containing actors 5 and 6, and

the top-level cluster containing four clusters. For the first two clusters, we note that no

within-cluster arc has any data dependency and that all connections are at the same repe-

tition rate; this condition suffices to assure that the schedule is bounded in length because

the problem is equivalent to the scheduling of a regular dataflow graph. For the top-level

cluster, some data transfers are conditional, however, the conditionals have the property

that the repetition rates always match (because the algorithm was designed to assure this).

As a result, we can construct a data-independent schedule for the cluster, by scheduling it

as if the data transfers were unconditional rather than conditional (that is, as if all arcs

labeled “T” and “F” always transferred a token). When clusters have this property, we

know immediately that the graph can be scheduled in bounded memory, and furthermore,

we may use regular dataflow scheduling techniques to produce code for a single proces-

sor. Conditionals arise only in the places where we deliberately added them to cause rep-

etition rates to match.

For our second example, let us consider figure 3.7, repeated below.

In this graph, we may merge actors 1 and 3. We are forbidden, however, from
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merging actor 2 with the resulting cluster, since this would “bury a control arc” — the

control signal that determines which output gets data on the SWITCH actor would be

hidden and we would not have a BDF actor. We can then add an “if” condition to actor 4

to cause its rate to match that of the SWITCH actor, but we cannot do the same to actor 5,

since the latter actor requires two tokens per iteration. This yields the following graph:

After merging the conditionalized actor 4 with the cluster formed by actors 1 and

3, we have

As we saw when we discussed this example earlier, we wish to introduce a do-while loop,

repeatedly executing the new cluster until a FALSE token is produced. To permit this

while preserving the BDF property of each cluster at each step, we must permit the merge

operation (of actor 2 with the cluster it is attached to) and the loop operation (that intro-

duces the do-while loop) to occur in one step. This operation is permissible when all out-

puts of the cluster would be conditional without the do-while, and would depend on a

condition that appears only inside the cluster. The effect of the do-while is to make condi-

tional ports unconditional. After the merge and loop, we now have
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which is a regular dataflow graph at the top level; furthermore, we have a data-indepen-

dent schedule at all levels. Again, the only conditional operations are those we introduced

to cause the rates to match.

3.3.4  Handling Initial Boolean Tokens

When initial Boolean tokens are present, other considerations often arise. To illus-

trate, we will now apply the clustering algorithm to the do-while construct of figure 3.8,

which we repeat below. We will not use the preamble approach, but will find a clustering

that naturally reflects the control structure.

First, we merge the SELECT actor and actor 3. Because of the rule that we must keep

control arcs visible, the arc with the initial delay on it becomes a self-loop of the cluster.

We now have

We may now merge the SWITCH actor with the cluster we just formed, since the

rates match. But there is one potential difficulty: the arc labelled “T” on the SWITCH

actor is controlled by a different Boolean stream than the arc labelled “T” on the cluster
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(corresponding to the SELECT). We apply the following rule: for any arc with a potential

rate mismatch such as this, we turn it into a self-loop rather than an internal arc when we

perform the merge. This rule assures that within any cluster, all rates will match so that

the cluster will always have a data-independent schedule which is bounded in length, so

that only the top level of the graph retains any data dependent behavior. We can therefore

always use the simpler techniques applicable to regular dataflow scheduling within clus-

ters.

Our new system is

The labelling of conditional ports has been changed; T1 indicates that the port is

controlled by Boolean stream  and T2 indicates that the port is controlled by Boolean

stream . It would now be possible to add conditionals to actors 1 and 5 and merge them

into the cluster (though it turns out that this is not desirable). If we do, however, we are

left with a single actor with two external self-loops. The techniques we have developed

so far do not permit us to prove that the resulting structure has a bounded-memory sched-

ule.

For graphs with self-loops of this type, we recall that a complete cycle requires

that the graph return to its original state, which includes the value of any initial Boolean

control tokens. It is therefore natural to consider the following technique: consider the

application of a do-while loop around the cluster with the self-loop, in which the cluster

is repeatedly executed until a new Boolean token of the same type is produced. We must
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assure that two properties hold true: that the looped cluster possesses BDF semantics, and

that the number of tokens on any self-loops remains bounded. If we apply this technique

in this case, we find that the looped cluster consumes exactly one token from actor 1 and

produces exactly one token for actor 5 to consume. Furthermore, by tracing execution we

find that at most one token appears on the arc connecting T2 with T1.

3.4.  STATE SPACE ENUMERATION

In the last example, when we verified that the introduction of the do-while loop

was legitimate, we implicitly did a very simple form of state space enumeration, a pro-

cess that corresponds directly to the construction of the reachability graph for Petri nets.

Let us return to the previous example and treat it from a state space perspective. As it

turns out, there are only two states for the cluster with the self-loop: in the initial state,

there is a FALSE token on the control arc and the data feedback arc is empty. This token

will be consumed and new tokens will be produced when the cluster executes. There are

two possibilities: either a FALSE or a TRUE token will be produced on stream . If a

FALSE token is produced, no token will be produced on output T2 and the state will

remain the same; otherwise, a single data token will appear on output T2. Thus there are

two reachable states, as shown in figure 3.13. Similarly, by considering the two possibili-

ties that are reachable from the TRUE state (state (b) in figure 3.13), we find that we

b2
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Figure 3.13 Reachable states for the data-dependent iteration cluster. State (a) is the
initial state; state (b) occurs if a TRUE token is produced. From either initial state,
either state is reachable as the next state.
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obtain the same two states again. We are thus assured that there is never more than one

token on either visible arc. Bounds on other arcs may be obtained from the schedules for

the inner clusters.

It is possible to apply a state space searching technique to the original graph,

without performing any clustering. The main advantage of clustering is that the size of

the state space is vastly reduced. As for Petri nets, if we can demonstrate that there are a

finite number of reachable states, it follows that the memory required for arcs is bounded.

There are some significant differences between the state space search for BDF

graphs and for Petri nets. First, consider the following trivial regular dataflow graph:

Interpreted as a Petri net (actors are transitions, the token storage of the arc is a place),

this graph’s set of reachable states is unbounded, because actor A may fire any number of

times before actor B is fired. Interpreted as a regular (or BDF) dataflow graph, the graph

has a schedule that is bounded in both schedule length and in memory, because we are

permitted to choose the schedule AB for the graph and to avoid executing actor A a sec-

ond time before the token produced from the first execution is consumed. Thus for the

state space search to have a meaning, we must identify a set of rules for actor execution;

these rules should be defined in such a way as to avoid ever putting more tokens on an arc

than necessary.

3.4.1  The State Space Traversal Algorithm

Let us consider an algorithm that explores the state space of the graph by simulat-

ing its execution. By analogy with the reachability tree algorithm for Petri nets first given

in [Kar69], we will construct a tree of reachable states. Each state will be represented by

a node of the tree, with the initial state corresponding to the root node. For each node

A B
1 1
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there may be multiple possibilities as to which actor to execute next, and as to the value

(TRUE of FALSE) of any Boolean tokens produced by actor executions; each of these

correspond to a new node of the tree that is a child of the initial state. As for the Petri net

reachability tree construction, when a state that has already been reached is re-visited it

will have no children. If the state space is finite, this procedure will terminate when the

state space has been completely matched. If the state space is unbounded, the procedure

as described so far will not terminate. We will describe a procedure to terminate the

search for some such cases shortly.

To explain the rules for simulating actor execution, we require the following defi-

nitions: we define arunnable actor as one that has sufficient tokens on all its input arcs to

execute. We say that an actordemands input from an arc if it requires one or more addi-

tional tokens on that arc to be able to fire. For conditional inputs, we do not say that input

is demanded unless we know that a token will be required on that arc; for example, for a

SELECT actor, if there is no token on the control input, the actor is not demanding input

from either its TRUE data input or its FALSE data input. Finally, we define adeferrable

actor as a runnable actor that has one or more output arcs, but no other actor demands

input from any of these arcs (intuitively, an actor is deferrable if it has already produced

enough data to supply the needs of all its downstream actors). For the purpose of deter-

mining whether an actor is deferrable, self loops are ignored. Actors with no output arcs

other than self loops are never deferrable.

There are three possibilities at any given state that the algorithm must consider.

First, it is possible that no actors are runnable at all. If so, then the graph deadlocks upon

reaching this state (there are no successor states). The second possibility is that there are

n runnable actors with , but all the runnable actors are deferrable. In this case we

generaten child nodes, each obtained by executing the  runnable actor, representing

then possible next states. The final possibility is that some number  of the runnable

n 0>

nth

m n≤
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actors are not deferrable. If so, we only create child nodes corresponding to the states

generated by executing each of them non-deferrable actors. The rationale is that we

never execute the deferrable actors unless the only runnable actors are deferrable. When

executing an actor produces a token on a Boolean control arc, we generate two child

nodes; there are two possible output states, one corresponding to the production of a

TRUE token and one corresponding to the production of a FALSE token. Generation of

child nodes terminates when a previously visited state is re-created.

This algorithm can generate a very large number of states. It is possible to reduce

the number of states generated considerably by imposing additional constraints on the

execution order (doing so is safe only if the same restrictions will apply to the scheduler).

Because each Boolean token generated by an actor execution guarantees at least two suc-

cessor states, one useful heuristic is to defer the execution of any actor that produces

Boolean tokens as long as there are runnable, nondeferrable actors that do not produce

Booleans. We may also modify the definition of a deferrable actor to specify that

demands for input from actors that are themselves deferrable do not prevent an actor from

being deferred; this results in a strictly demand-driven model of execution. As long as the

same rules are applied in the construction of schedules or in the operation of a dynamic

scheduling algorithm as are used in the construction of the reachability tree, the bounds

determined by examining the nodes of the tree will be correct regardless of the details of

the execution rules.

3.4.2  Proving That a BDF Graph Requires Unbounded Memory

We now consider how to cause the above algorithm to terminate on graphs for

which the state space is unbounded. One simple heuristic is to terminate execution if a

bound on the capacity of an arc is exceeded. The bound might be a constant for all

graphs; another reasonable heuristic is to have the bound for a particular arc be some

multiple of the maximum of the number of tokens written to the arc and the number of
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tokens consumed from the arc by its source and destination actors (the reason for this

heuristic is to preserve roughly equivalent behavior as the numbers of tokens produced

and consumed are scaled upward). This sort of technique is used in the Ptolemy dynamic

dataflow simulator (which supports a more general model of dataflow actor than

described here).

A simple bound on arc length has the weakness that it will sometimes complain

about graphs that are actually bounded in memory use (because the threshold is set too

low); furthermore, if the memory requirement exceeds the bound, this is not a proof that

the graph is in fact unbounded. It would be desirable to have a technique that easily

proves that the graphs shown in figure 3.4 and in figure 3.5 require unbounded memory.

We use the reachability graph algorithm for Petri nets (as described in section 1.2.2) as a

clue for how to proceed. What we require is a way to produce the equivalent of theω

places that appear in the reachability graph structure for a Petri net.

The essential feature of an unbounded Petri net that produces nodes labelled with

ω in the reachability graph is the existence of a transition firing sequence that has two

properties: it can be repeated indefinitely, and it results in a net increase in the number of

tokens in at least one place and a net decrease in none. To apply these techniques to BDF

graphs, we first require a partial ordering corresponding to the partial ordering on mark-

ings defined in section 1.2.2. We define this ordering as follows: let  represent the state

of a BDF graph. This state consists of a number (the number of tokens) for each ordinary

arc and a sequence of TRUE and FALSE Boolean values for each control arc. Given two

states  and , we say that  if and only if the following conditions hold: for all

ordinary arcs,  has at least as many tokens as , and for all control arcs, the sequence

of tokens in state  is a prefix of the corresponding sequence of tokens in state . That

is, given  we can produce  by adding tokens of the correct type in a FIFO manner. We

also define a second relation  that is true if and only if  and  and  are dis-
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tinct states.

It would now appear that we could use the procedure described for Petri nets in

[Pet81] to construct the reachability tree for BDF graphs, replacing the  relation used for

Petri net markings with the one we have described for BDF graph states, but there is a

catch. For Petri nets, any enabled actor may fire, so that given  there is no reason

we could not repeat the same execution sequence that moved us from  to . For BDF

graphs, however, actors that were not deferrable in the state  may become deferrable in

. For example, consider the simple regular dataflow graph

Since there is only one arc and it is not a control arc, the state of the graph is a sca-

lar and there are three states, corresponding to 0, 1, or 2 tokens on the arc. Using the num-

ber of tokens as the state name, state 1 is reachable from state 0, and state 2 is reachable

from state 1. By analogy to the Petri net reachability graph construction, we might argue

that we could repeat the sequence of actor executions (execute actor A) that got us from

state 0 to state 1 indefinitely and therefore this graph is unbounded. This is prevented by

the rule for deferrable actors, however. Since actor A becomes deferrable in state 2, it is

not possible to produce more than two tokens on the arc, and the system only has three

distinct states.

We therefore define a new operator on states, which returns a vector with an inte-

ger value for each arc. The value for an arc represents the number of tokens demanded on

that arc, using the criterion discussed earlier: the number of tokens that must be added to

satisfy the requirements of the actor that consumes from the arc. If these requirements are

unknown because the arc is conditional and there are no tokens on the corresponding con-

trol arc, the number demanded is zero. We write this operator as  and refer to it as

µ' µ≥

µ µ'

µ

µ'

1 2
A B
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the demand vector for state .

If , then the set of runnable actors in state  and the set of runna-

ble actors in state , as well as the set of deferrable actors, is exactly the same. This is

because the demand vector completely determines this information. What we require is a

sufficient condition for showing that we can indefinitely repeat the firing sequence that

moves us from state  to state . The following conditions are sufficient:

•  must be reachable from ,

• ,

•  (the demand vectors in both states are the same),

• an additional requirement on intermediate states between  and  must be satis-

fied.

The fourth condition is as follows: consider all the intermediate states between

(but not including)  and  (on any path). Let us name these states . If,

starting at state , we repeat the same actor executions (and assume the same results for

any generated Boolean tokens) we obtain new states . If, for eachi, we have

 and also , it follows that we can repeat the execution sequence

endlessly and therefore all arcs that increase in length between the two states are

unbounded. Note that if there are no intermediate states, because state  is directly

reachable from state , then the first three conditions are sufficient.

Given these conditions, we can now define the state reachability tree construction

algorithm as follows, using terminology borrowed from [Pet81]. We will use theω label

to indicate an ordinary arc with an unbounded number of tokens, corresponding to

[Pet81]; we require a new notation for unbounded sequences. Because we must be able to

compute the partial order relationship, we will represent unbounded sequences by a pre-
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fix, followed by a sequence of tokens that may be repeated an indefinite number of times,

followed by an asterisk. For example, a state might be labelled as {ω,0,F(T)*}, indicating

that the control arc has a single FALSE token followed by an indefinitely long sequence

of TRUE tokens.

Let a frontier noderefer to a node that has not yet been processed by the algo-

rithm. Initially, the tree has one frontier node, the root, corresponding to the initial state.

For each node, we record the number of tokens stored on each ordinary arc and the

sequence of Boolean tokens on each control arc. We also store , the demand vector

for the state. The processing is as follows:

If there exists another nodey in the tree that has the same marking as the current

nodex, we stop;x is a duplicate node. If there are no runnable actors in statex, we stop;x

is a deadlock state (a terminal node in the terminology of [Pet81]). Otherwise there will

be successor states, which will correspond to child nodes in the tree.

We now compute all of the successor states and add a child node for each, follow-

ing the rules described in section 3.4.1 for determining which actors to run. Consider a

particular state and a particular actor to be fired, with particular Boolean outcomes. If the

number or sequence corresponding to an arc in statex does not have anω symbol or an

asterisk corresponding to an indefinite number of tokens, the appropriate number of

tokens is simply added or removed. If an ordinary arc has anω symbol, the correspond-

ing arc in the successor state also has anω symbol. If Boolean tokens are added to an arc

that has an indefinitely repeated sequence, the added tokens are ignored (we pretend that

there are so many tokens that the “tail end” is never reached). If the actor execution con-

sumes tokens from the beginning of a Boolean arc with a repeated sequence, we represent

this in the next state by removing the appropriate number of tokens from the stream.

Finally, if for any of the newly created states , we can find another state  on

the path from the root such that , , and the corresponding rela-

D µ( )

µ' µ

µ' µ> D µ'( ) D µ( )=
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tions for intermediate states hold as described on page 102, we replace the new state as

follows: all non-control arcs that gained tokens get aω in their representation, and for

control arcs, the marking is represented by putting the sequence of tokens added by going

from  to  in parentheses and adding the asterisk. For example, if we go from F to FT,

we change the FT to F(T)*.

Just as does the reachability tree for a Petri net, this BDF reachability tree struc-

ture we have defined loses information, as it does not represent the reachability set (to use

the terminology of [Pet81]). In states with multipleω labels we discard any relationship

between them, and we also discard suffixes added to states with infinite Boolean

sequences. If there are no nodes with aω or indefinitely repeated Boolean sequence,

however, the reachability tree specifies the state space and allowed transitions completely

and the BDF graph is bounded.

For Petri nets, it is proved in [Kar69] and in [Hac74] that the reachability tree is

always bounded in size, so that the construction algorithm is a true algorithm. Is the same

true for the BDF reachability tree? Unfortunately, no. The essence of the proof in [Hac74]

is to show that no infinite path of nodes starting at the root can exist. In essence, what is

shown is that any such path must contain an infinite non-decreasing subsequence of states

such that . Since for each pair of states such that , the algorithm

replaces at least one place in  byω, and since the number of places is bounded, we

quickly reach a marking where every element isω, meaning that the infinite non-decreas-

ing sequence must have repeated states, which is not permitted. However, since for con-

trol arcs we record the sequence of tokens and not just their number, we can have infinite

sequences of states in which the number of tokens on a Boolean arc continually increases,

but in which no state’s marking is a prefix of any other state’s marking. For example, F,

TF, TTF,... is such a sequence. The consequence is that the techniques used in [Hac74]

cannot be used to prove that the reachability tree construction is bounded. This means

µ µ'

µ0 µ1 µ2…≤ ≤ µ µ'≤

µ'
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that we may still require heuristics such as a bound on arc capacity to make the state tra-

versal algorithm terminate.

As with Petri nets, we can convert the BDF reachability tree into a reachability

graph by replacing duplicate frontier nodes with arrows pointing to the previously gener-

ated copy of the node.

3.4.3  Combining Clustering and State Space Traversal

Clustering and state space traversal are best applied in combination. Graphs cor-

responding to the dataflow schema of Dennis [Den75a] or Gao [Gao92] are clustered

readily; the only state space traversal needed is the simple two-state space corresponding

to the node with the self-loop (see the beginning of section 3.4 for a discussion), and this

is easily handled as a special case and does not require the full algorithm we have

described. More irregular dataflow graphs, or graphs that do in fact require unbounded

memory, may only be partially clusterable.

Let us again consider the graph in figure 3.5, repeated for convenience below:

If we apply the clustering algorithm, this graph is reduced to the following structure

(where as before, the label T1 on a port indicates that a token is transferred only if a
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TRUE token appears in the corresponding position on stream ):

This choice of clusters is not unique, by the way; we have chosen to combine actors 3 and

4 with the cluster containing the SWITCH actor, but we could equally well have grouped

them with the SELECT actor, resulting in the same top-level pattern of clusters but with

different cluster contents.

Since we can cluster no further, we now apply the state enumeration algorithm to

this graph. The initial state is {0,0,F}, which we will call . There are two possible suc-

cessor states: , corresponding to {0,1,FT}, and , corresponding to {1,0,FF}. We

note that  and also  (the sink cluster demands a

token on its F2 input). Since there are no intermediate states, we have all that we need:

arcs 1 and 3 are unbounded, and the transition that makes the arcs grow indefinitely cor-

responds to the production of a TRUE output by the first cluster. The complete reachabil-

ity graph for this figure is

and we see that arc 2 is bounded (never has more than a single token).

b1
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The reachability graph omits some information, just as does the corresponding

structure for a Petri net. Given two arcs withω values, for example, the graph does not

specify any relationship between them (though they might always have the same number

of tokens). Also, given a Boolean arc with a description like (T)*, we pretend that the

effect of adding tokens, whether TRUE or FALSE, does not change the description of the

arc. Loosely, there are so many T’s that we will never reach the end to see what is

beyond. In many cases this substantially reduces the size of the graph.

However, it is possible to use a similar notation to record the entire set of reach-

able states if that is what we require. What is missing in the above is that the number of

tokens on the first arc equals the number of TRUE tokens on the third arc in all of the

states; also, suffixes are dropped in the Boolean sequence on some nodes of the graph.

The following figure represents the complete state space of the graph:

In this figure, arcs labelled with assignments to the variablen reflect the value that

variable has when the arc is traversed. It is clear from this diagram that the network is

“live” in the sense that every state is reachable from every other state, something that is

not clear from the previous figure.

The example given in figure 3.4 can be proven unbounded in a similar way. In this

case, the result of clustering is the graph shown in figure 3.14.

This system has a considerably larger number of states. However, since we know

that sequences such as FTTTT... are the troublesome ones, we can use this fact to quickly

0,0,F
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construct a proof of unboundedness. We find that there are states {2,0,1,0,FTT} and

{3,0,1,0,FTTT} that satisfy the conditions for a proof of unboundedness: the second is

reachable from the first in a single step, the demand vectors are the same and the partial

order relationship holds. We therefore know that arcs 1 and 5 are unbounded. Similarly,

by reversing TRUE and FALSE we find the states {1,0,2,0,TFF} and {1,0,3,0,TFFF}

with the same properties, so that arc 3 is also unbounded. Note that our definition of

“deferrable” prevents actors 3 and 4 from being executed until their output is demanded,

therefore only two tokens are needed on their output arcs, arcs 2 and 4. In fact, if a

demand-driven evaluation technique is used, any arc whose source actor has only one

output is always bounded, since the source actor will not be executed if the number of

tokens on the arc is sufficient to satisfy the demand of the destination actor.

It is not necessarily an error for an algorithm that is represented as a dataflow

graph to require unbounded memory. As a simple example, a recognizer for a context-

free grammar requires an unbounded pushdown stack. But even systems that require

unbounded memory normally require this memory for a small subset of the arcs that

make up the entire graph. The combination of clustering and state traversal discussed

here permits such arcs to be isolated, so that a code generation model need supply

dynamic memory allocation for tokens only where needed. For example, in the above fig-

ure actors 3 and 4 might represent arbitrary clusters with internal bounded-memory
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Figure 3.14 Result of applying the clustering algorithm to figure 3.4. As before, italic
numbers identify arcs; non-italic numbers adjacent to inputs and outputs give the
number of tokens transferred by that port.
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schedules.

3.4.4  Undecidability of the Bounded Memory Problem for BDF Graphs

We have supplied techniques for determining that some BDF graphs can be

scheduled with bounded memory, and techniques for showing that others require

unbounded memory. However, there are also graphs that fall “between the cracks,” not

responding to any of the techniques described so far. Is it conceivable that further

research will provide a complete decision procedure? The answer is no, as we shall show,

using the following reasoning:

• A small set of BDF actors has equivalent computational capability to a universal

Turing machine, in fact, a universal Turing machine (UTM) can be built from this

small set of actors.

• If a decision procedure exists for determining whether a BDF graph has a

bounded-memory schedule, it would then be possible to determine whether a Tur-

ing machine accesses a bounded or unbounded length on its tape. The latter prob-

lem is undecidable (equivalent to the halting problem).

• As a simpler alternative to building a UTM, it is possible to demonstrate the Tur-

ing equivalence of the BDF model using partial recursive function theory.

We now provide an outline for the construction of a two-tape universal Turing

machine from BDF actors.1 The building block for the data tape is a stack with the prop-

erty that, if “popped” when empty, a “fill symbol” (corresponding to the blank tape sym-

bol of the UTM) is returned. One such stack represents the tape to the right of the “head”

of the UTM, and another represents the tape to the left of the “head.” The tape head can

be shifted in one direction or the other by popping a token from one stack and pushing it

1. We will not give the full construction, which is about as interesting as the result of the tradi-
tional assignment that a student build a computer out of NAND gates, but will just present enough
to demonstrate the main design problems and show that it can indeed be done.
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onto the other stack. To implement a stack using BDF, we have a bit of a problem: data-

flow arcs work like queues, not stacks. If we “push” onto the stack by adding a token to a

queue, to “pop” the stack it is required to circulate the entire queue around and extract the

last token. This is most easily accomplished if an integer-valued token is kept that gives

the count of tokens on the stack.

The program for the UTM consists of a set of quintuples: current state, current

tape symbol, new state, new tape symbol, and action (e.g. shift left, shift right, halt).

These reside on a set of five self-loop arcs. To determine the action, the controller block

reads the current state and tape symbol, circulates the “program” around until a match is

found, and generates the next state, tape symbol, and action.

To implement the UTM, we require the SWITCH and SELECT actors, together

with actors for performing addition, subtraction, and comparison on the integers, plus a

source actor that produces constant stream of integer-valued tokens and a fork actor.

It is perhaps easier to show that BDF graphs (using the same simple set of actors

described above) suffice to compute any partial recursive function. To define the set of

partial recursive functions, we first define a smaller set of functions, the set of primitive

recursive functions. This set of recursively generated functions is defined to include the

following functions on the nonnegative integers [Boo89]:

• The zero function, .

• The successor function, .

• For any integersM andN such that , the identity function ofN arguments,

which returns the  argument: .

• Any function that can be expressed in terms of other primitive recursive functions

using function composition.

• Any function that can be defined in terms of two other primitive recursive func-
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tions f andg using the operation ofprimitive recursion, which is defined as fol-

lows:

(3-15)

(3-16)

This operation defines functions by mathematical induction on the last argument. It is

easy to see that addition can be defined using  forf and the composition ofs and

for g. Similarly, by applying primitive recursion we may obtain multiplication from addi-

tion and exponentiation from multiplication.

The set of primitive recursive functions, together with the operation of minimiza-

tion

 = {The least value ofy such that } (3-17)

(wherex andy are integers), as well as composition and primitive recursion over previ-

ously defined functions, generate the set of all partial recursive functions.

Any computational procedure that computes all such functions is Turing equiva-

lent. In order to compute all partial recursive functions, it suffices (as is shown in

[Den78]) to be able to support arithmetic on arbitrarily large nonnegative integers

together with a loop construct controlled by a predicate (such as “less than”). The small

set of BDF actors described earlier in this section suffices to do this, therefore the BDF

model is Turing equivalent.

Theorem : the problem of deciding whether a BDF graph can be scheduled with

bounded memory is undecidable. To show that Turing equivalence of the BDF model

implies that the bounded memory decision problem is undecidable, it is sufficient to show

that given a bounded memory decision algorithm, we could then solve the halting prob-

lem. Assume we have an algorithm A that can determine whether a UTM uses only a

bounded length of its tape with a given program and input. If we apply algorithm A and

h x1 … xN 1– 0, , ,( ) f x1 … xN 1–, ,( )=

h x1 … xN 1– s xN( ), , ,( ) g x1 … xN h x1 … xN, ,( ), , ,( )=
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find that an unbounded length of tape is used, we know that the program does not halt. If

a bounded length of tape is used and that bound is less than or equal toN, we know that

the system has no more than  states, whereS is the number of distinct state symbols.

We execute the system this number of times and see if there is a loop (a repeated state). If

there is, we know the system will not halt; otherwise it must have halted (since all possi-

ble states have been visited). Since algorithm A solves the halting problem but the halting

problem is undecidable, it follows that algorithm A does not exist.

Theorem : it is not possible in general to prove that two Boolean streams in a

BDF graph have identical values, thus the problem of determining that a BDF graph is

strongly consistent is undecidable. To demonstrate this, we assume we have a procedure

that determines that two Boolean streams are identically valued, and consider a UTM

constructed out of BDF actors. We now construct a Boolean stream whose  value is

TRUE if the UTM has not halted aftern steps and is FALSE otherwise. We construct a

second Boolean stream that is always FALSE. If we had a decision procedure that could

tell whether these two streams were identical, we would have a tool for solving the halt-

ing problem, which is impossible.

In the discussions above we have used, in addition to Boolean tokens, arbitrarily

large integer-valued tokens. The state traversal algorithm we have described discards

information on arcs with token values that are not Boolean. However, we could equally

well construct BDF graphs in which FALSE is treated as the Turing-machine “blank

token”, TRUE is treated as the Turing-machine “tally” token, and the integern is repre-

sented as  consecutive TRUE tokens. All arcs would then have Boolean tokens and

the state as represented in the algorithm of section 3.4.3 would represent all the informa-

tion about the system. It therefore follows that the state traversal algorithm does not ter-

minate for at least some graphs (without a heuristic to cut off search).
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3.5.  SUMMARY

This chapter has presented a variety of techniques for the analysis of BDF graphs.

Each is by necessity only partially applicable, owing to the Turing-completeness of the

model which implies that many analysis questions are undecidable. However, by apply-

ing the techniques, we may divide the set of all BDF graphs into three categories.

The first category includes those graphs with bounded-length schedules. This cat-

egory includes the set of all regular dataflow graphs, and it also includes constructs of the

if-then-else form. The fact that the schedule is of bounded length may (depending on the

semantics of execution of a minimal complete cycle) permit us to establish that hard real-

time deadlines are successfully met, given execution times for each actor. Parallel sched-

uling techniques that apply to regular dataflow graphs are not difficult to extend to this

type of graph, particularly if a minimax scheduling criterion is applied (make the worst

case run as rapidly as possible).

The second category, a superset of the first, includes all graphs that may be proven

to have bounded memory by clustering and state enumeration. Such graphs may express

data-dependent iteration as well as conditional execution. Because of the undecidability

of the bounded-memory problem, the boundary of this category is not computable and

depends on the particular clustering technique used; there is still considerable room for

improvement in BDF clustering algorithms.

The third category of BDF graphs are those that are not completely clusterable,

and either we can prove that unbounded memory is required or we are unable to prove

that the state enumeration algorithm will complete without a heuristic bound. For such

graphs, it is possible to construct static schedules for the clusters, but dynamic scheduling

of clusters, plus some degree of dynamic memory allocation, is needed to execute such

graphs.
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IMPLEMENTATION IN PTOLEMY

4

I would rather write programs that write programs than write pro-

grams.

— Anon. (graffiti from Stanford CS department quoted in [Flo79])

This chapter discusses implementation of Boolean-controlled dataflow graph

analysis, clustering, scheduling, and code generation using the algorithms described in

the previous chapter together with earlier work described in [Pin93]. The Ptolemy frame-

work for heterogeneous simulation and software prototyping was used [Buc93]. We will

first discuss the relevant features of the Ptolemy system in detail and then describe the

features of the BDF implementation.

4.1.  PTOLEMY

Ptolemy is an environment for simulation, prototyping, and software synthesis for

heterogeneous systems. It uses modern object-oriented software technology to model

each subsystem in a natural and efficient manner, and to integrate these subsystems into a
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whole. The objectives of Ptolemy encompass practically all aspects of designing signal

processing and communications systems, ranging from algorithms and communication

strategies, through simulation, hardware and software design, parallel computing, and

generation of real-time prototypes.

Ptolemy is the third in a series of design environment tools developed at the Uni-

versity of California, Berkeley; its ancestors are Blosim [Mes84] and Gabriel [Bie90].

Blosim’s primary focus was on algorithm development for digital signal processing; it

used a general dynamic dataflow model of computation. Gabriel was designed to support

real-time prototyping on parallel processors, and in addition to its use as a simulation

tool, was capable of code generation for one or for multiple programmable digital signal

processors. Gabriel’s code generation abilities could be used only for algorithms with

deterministic control flow that could be described by regular dataflow graphs. This

restriction permitted the development of several automated scheduling and code genera-

tion schemes [Bha91][Lee87a][Sih91].

Unlike its predecessors, Ptolemy is not restricted to a single underlying model of

computation. Instead, as a heterogenous system, Ptolemy is designed to support many

different computational models and to permit them to be interfaced cleanly. For example,

a Ptolemy simulation may contain a portion that uses a discrete-event model, another por-

tion that uses a regular dataflow model, and a third portion that uses a gate-level logic

simulation model. Some parts of the application might be simulated within the worksta-

tion running the Ptolemy process, while other parts might consist of synthesized DSP

code running on an attached processor.

Ptolemy relies heavily on the principles of object-oriented programming to permit

distinct computational models to be seamlessly integrated. In [Boo91], Booch defines

object-oriented programming as follows:

Object-oriented programming is a method of implementation in which
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programs are organized as cooperative collections of objects, each of
which represents an instance of some class, and whose classes are all
members of a hierarchy of classes united via inheritance relationships.

In Ptolemy, different computational models can be seamlessly integrated because

the objects that implement them are inherited from common base classes and therefore

provide the same interface, while the derived classes implement the specific behavior

required for implementing specific computational models.

While it is not fundamental to Ptolemy, the graphical user interface deals with

descriptions of systems represented as block diagrams (a text interface is also available).

It is therefore convenient to think of the basic module in Ptolemy as a block, and in fact

all actors in Ptolemy are members of classes derived from the classBlock . An atomic

block is called astar (and is, in fact, an instance of a class derived from the classStar ).

The classGalaxy  represents a hierarchical block (a block that contains other blocks).

The outermost block, which contains the entire application together with means for con-

trolling its execution, is an instance of the classUniverse . The entity that controls the

order of execution of the blocks is thescheduler; some schedulers determine the entire

order of execution of blocks at compile time; others do some of the work at compile time

and some of the work at run time. Another important class isTarget ; target objects

model or specify the behavior of the target of execution for code generation applications

and may also provide parameters that control a simulation. The combination of a sched-

uler, a set of blocks, and other support classes that conform to a particular model of com-

putation is called adomain. Different models of computation (time-driven, event-driven,

etc.) can be built on top of Ptolemy by simply substituting different domains. Two or

more simulation environments built on top of Ptolemy may be combined into a single

environment, thus enabling the user to perform heterogeneous simulations of large sys-

tems that combine different computational models.

New domains are easily added to Ptolemy, including domains that do not conform



117

to the block/scheduler model described above. In addition, new blocks and domains may

be added to a running Ptolemy system by means of incremental linking. The basic inter-

faces that glue the system together form the Ptolemy kernel, described in detail in

[Buc93c]. While Ptolemy was first conceived of for simulations, it also subsumes and

extends the multiprocessor code generation capabilities of Gabriel. When these capabili-

ties are added to Ptolemy’s multi-paradigm simulation capabilities, a powerful platform

for hardware-software co-design results [Kal92][Pin93].

4.1.1  Example of a Mixed-Domain Simulation

Consider the system in figure 4.1. This is a simulation model in which com-

pressed speech is transported on a broadband packet network. The simulation requires a

combination of signal processing (including compression, silence detection, and recon-

struction) and queueing (packet assembly, disassembly, and transport).

The simulation naturally divides into two pieces, the signal processing (the com-

pression, silence detection, and decompression) which is naturally modeled with a time-

driven synchronous model (the SDF domain, corresponding to regular dataflow), and the

network simulation (packet assembly, switching, queuing, and disassembly), where a

model that only takes into account changes in system state is appropriate. Here the DE

(discrete-event) domain may be used. Since neither model is preferred by Ptolemy, it is

compress
packet

assembly network
packet

disassembly
and buffer

decompress

silence
detection

TIME-DRIVEN TIME-DRIVENEVENT-DRIVEN

Figure 4.1 A packet speech system simulation. The signal processing portions of the
algorithm (compression, silence detection) suit a time-driven model, while packet
assembly, disassembly and transport are best modelled using a discrete-event sim-
ulation model. Figure from [Ha92].
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possible to design the simulation with either domain at the top level.

To connect the two domains together, a concept known as awormhole is intro-

duced. A wormhole (from astronomy and cosmology) is a theoretical object that connects

two regions of space, or even two distinct “universes”. In some speculative cosmological

models, such as the original inflation model of Guth, distinct laws of physics may operate

in the two connected “universes” (corresponding to symmetry breaking in different

“directions”), and these separate regions are called domains.1 Accordingly, we adopted

these terms for use in describing related terms in Ptolemy (Ptolemy is named after a

famous astronomer because of the use of astronomical terms in the system). Briefly, a

wormhole is an object that appears to be a star belonging to one domain from the outside,

but on the inside, contains a galaxy, scheduler, and target object appropriate for a differ-

ent domain.

4.1.2  The Organization of Ptolemy

In Ptolemy, every functional block is derived from the basic classBlock . A block

may contain one or more inputs and outputs known asportholes, which are objects

derived from classPortHole . Portholes permit blocks to connect to other blocks and

permit messages to be transmitted between them; these messages are objects derived

from classParticle . The basic atomic actor,Star , and the basic composite actor,

Galaxy , are both derived from classBlock .

The link between two connected portholes is implemented by the classGeode-

sic . The classPlasma  implements a pre-allocated pool ofParticle  objects to avoid

expensive particle allocation and de-allocation at run time. The connection between

Blocks in a typical simulation model is shown in figure 4.2.

For each domain, there is a corresponding star class and porthole class; for exam-

1. Interested readers are referred to Hawking ([Haw88]) for a description of these theories that is
accessible to the non-physicist. It should be noted that Ptolemy does not attempt to be “astrophys-
ically correct” in the use of these terms; they are only suggestive.
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ple, for the hypothetical domainXX we would haveXXStar  andXXPortHole . Thus

actors belonging to the SDF domain are derived from classSDFStar  and actors belong-

ing to the DE domain are derived from classDEStar . Each of these classes is in turn

derived from classStar . We do not require a different derived type of galaxy for each

domain; the domain of a galaxy is determined by the objects it contains and for most pur-

pose theGalaxy  class merely serves as a means for introducing hierarchy.

Wormhole objects are implemented using multiple inheritance, meaning that there

is more than one base class for the object and that it implements the interface required for

each of the base classes. For example, an object of classSDFWormhole is multiply inher-

ited from classSDFStar  and classWormhole ; and in generalXXWormhole is derived

from classXXStar  and theWormhole  class. The Wormhole class cannot be used alone;

it has a scheduler, a target object, and a galaxy, all of which correspond to the “inside” of

the wormhole. A portion of the class inheritance hierarchy is shown in figure 4.3.

The class of the wormhole object (e.g.SDFWormhole) corresponds to the outer

domain of the wormhole object since the class of an object determines its external inter-

face; the inner domain of the wormhole is determined by the types of objects it contains.

PortHole PortHole

Block
•  initialize()
•  setup()
•  go()
•  wrapup()
•  clone()

PortHole
•  initialize()
•  receiveData()
•  sendData()

PortHole PortHole

Geodesic

Plasma

Geodesic
•  initialize()
•  numInit()
•  setSourcePort()
•  setDestPort()

Particle
•  type()
•  print()
•  operator << ()
•  clone()

Particle

Block Block

Figure 4.2 Block objects in Ptolemy send and receive data encapsulated in Particles
to the outside world through Portholes. Buffering is handled by the Geodesic;
recovery of used Particles is handled by the Plasma (from [Buc93b])
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The principle that a wormhole looks like a star from the outside must be remembered by

the wormhole designer and is the key to permitting differing domains to interface cleanly.

From the graphical interface, the user creates wormholes by causing an instance of a gal-

axy belonging to one domain to appear as a member of a galaxy or universe of another

domain; this means that to the casual user, domain boundaries look much like galaxy

boundaries.

The portholes of a wormhole object are special because they perform a conver-

sion function on messages traversing the domain boundary. Because of this difference,

the boundary between the input and output of a wormhole is implemented by a special

object known as anevent horizon.1 The conversions required at the event horizon are

domain-specific. One possible approach to interfacing different domains would be to pro-

vide a separate type of event horizon for each pair of domains interfaced. Unfortunately,

as new domains are added the expense of this technique would grow as the square of the

number of domains. Instead, our approach is to convert particles crossing domain bound-

aries to a “universal” representation, and thereby implement objects that convert signals

from each domain to and from this representation. This requires 2N conversion methods

1. For a black hole, an event horizon is the boundary of the region from which nothing, even light,
can escape. It is arguable that the terms “event horizon” and “wormhole” in Ptolemy should be
reversed.

Block Runnable

Galaxy

Universe

Star

Wormhole

XXStar

XXWormhole
XXUniverse

Figure 4.3 A portion of the inheritance hierarchy for blocks and wormholes in the hypo-
thetical domain XX.
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instead of  methods, one to convert from each domain to the universal representation,

and one to convert from the universal representation to each domain-specific representa-

tion. We cannot guarantee that this approach will be successful for all possible domains,

so it may still be considered experimental.

Event horizon objects are implemented using multiple inheritance in much the

same way as wormholes are. For the domainXX, we have the classesXXtoUniversal

and XXfromUniversal . The former is derived from the classesXXPortHole  and

ToEventHorizon ; the latter is derived fromXXPortHole  andFromEventHorizon .

ToEventHorizon  andFromEventHorizon , in turn, are derived fromEventHori-

zon . The wormhole object contains a pair of event horizon objects for each connection

that traverses the wormhole boundary, one to convert from the inner domain to the uni-

versal representation and one to convert from this representation to that of the outer

domain (for connections travelling in the opposite direction, the event horizon objects are

arranged to perform the reverse conversion).

Conversions commonly needed at wormhole boundaries include the generation,

removal, or conversion of time stamps associated withParticle  objects. It may also be

N2

XXUniverse

XXWormhole

XXDomain

YYDomain

YYtoUniversalXXfromUniversal

YYfromUniversalXXtoUniversal

E
ve

nt
H

or
iz

on

Scheduler

Scheduler

Particles

Particles

Figure 4.4 The event horizon interfaces two domains and converts particles from the
representation required in one domain to that used in another.
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necessary to transmit data to a different process or processor; in this case, methods of the

Target  object associated with the wormhole are used to perform the inter-process or

inter-processor communication. A detailed discussion of the wormhole/event horizon

interface may be found in [Buc93b].

Ptolemy simulations execute under the control ofschedulers. The top-level uni-

verse object contains a scheduler; so do any wormholes the simulation contains. In some

domains (such as SDF), the entire order in which blocks are to be executed may be deter-

mined by the scheduler’s setup method; in other cases (such as DE), the scheduler’s oper-

ation is highly dynamic, and the order of execution is determined at run time. For code

generation models, an object derived from the classTarget  represents the target of code

generation. The scheduler acts as the slave of the target object and is used to determine

the order of actor executions, while the target controls such operations as downloading

code, and required inter-process or inter-processor communication, and so forth. In simu-

lation domains, the target is still present but mostly passes commands on to the scheduler

(it may, however, be used to select among several schedulers or to pass parameters that

control the scheduler’s operation).

4.1.3  Code Generation in Ptolemy: Motivation

Practical signal processing systems today are rarely implemented without some

form of software or firmware, even at the ASIC (application-specific integrated circuit)

level. Programmable digital signal processing chips (PDSPs) form the heart of many

implementations. For tasks that are computationally demanding, even the fastest PDSPs

are not sufficiently powerful, so some custom circuitry is often required. A new imple-

mentation technology that is now available from several major manufacturers of PDSPs

is DSP cores. A DSP core is a programmable architecture that forms only a portion of a

single integrated circuit, unlike standard PDSP chips that are separate components. Thus

a designer can produce an ASIC that is equivalent in function to a circuit board contain-
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ing a standard PDSP chip and custom circuitry. Such devices are already being used

extensively for digital cellular telephony [Pin93].

The task of designing an ASIC that uses a DSP core resembles the problem of

designing a circuit board; it requires a mixed hardware and software design. Thus any

complete system design methodology for DSP applications must include software syn-

thesis; and accordingly commercial manufactures of DSP development environments,

such as Comdisco Systems, Mentor Graphics, and CADIS, have recently added such

capabilities [Pow92][Rab91][Des93].

It is desirable to be able to simulate the software and the hardware portions of the

system together, and to cleanly support heterogeneity since the design styles and model-

ling for the different portions of the system can be expected to be very different. Ptolemy

was designed from the beginning to support this kind of heterogeneity.

It is, of course, possible to program PDSPs in a high level language such as C,

however, features of most PDSPs are not well-modeled by C or other conventional high

level languages, so that code produced by most C compilers has not been satisfactory to

many designers. More specialized DSP languages such as Silage, an applicative language

with fairly simple semantics, have also been used, for example in the DSPStation applica-

tion from Mentor Graphics [Gen90]. In Ptolemy we use a third alternative, one adopted

from the Gabriel system. In this model, actors generate small pieces of hand-written

assembly language corresponding to functional operators. Actors may be fine-grain or

coarse-grain, and may possess state (actors with state place extra constraints on the

scheduler but are otherwise cleanly handled). There are two phases to code generation

under Ptolemy (or Gabriel): scheduling and synthesis. The scheduler possibly partitions

the actors for parallel execution and determines their order. The synthesis phase stitches

the hand-written code segments (which may be assembly language, a higher level lan-

guage, or a mixture) together. This technique has been commercialized by Comdisco (see
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[Pow82]), CADIS, and others, although there are important differences between their

techniques and ours; for a detailed discussion, see [Pin93].

4.1.4  Targets and Code Generation

The Target  class was first conceived of to model the environment for which

code is to be generated by Ptolemy, and it is theTarget  that ultimately controls the exe-

cution of any Ptolemy process, whether it involves simulation, code generation, or a com-

bination of both.

For code generation applications, theTarget  defines how the generated code

will be collected, specifies and allocates resources such as memory, and defines code nec-

essary for proper initialization of the platform. TheTarget  will also specify how to

compile and run the generated code. Optionally, it may also define wormholes. ATar-

get  may represent a single processor or multiple processors; in the latter case, the inter-

connection network is also specified.

All code generation targets are derived from the base classCGTarget , which

defines methods for generating, displaying, compiling, and executing code (as is standard

in object-oriented design, derived classes may accept these default methods or replace

them with domain-specific methods, as appropriate). There are derived classesAsmTar-

get  for assembly language code generation (which adds methods for the allocation of

physical memory) andHLLTarget , the base class for synthesis of high-level-language

code (such as C). Targets for the generation of a specific kind of assembly language

would be derived fromAsmTarget , (e.g.CG56Target  permits the generation of assem-

bly language code for the Motorola 56000), and targets for the generation of a specific

high-level language would be derived fromHLLTarget  (e.g.CGCTarget  for C code).

In code generation applications, rather than computing particular results, stars are

designed instead to produce code that computes these results. Schedulers are responsible

for determining the order in which these actors will be executed, and Targets collect,
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download, and execute the resulting code. In the current implementation, stars always

communicate through memory, and memory buffers are allocated for each arc. Future

implementations will permit assembly language stars to communicate through registers

instead. To reduce the number of copy operations, Ptolemy supports a “fork buffer”

mechanism that permits the input and all the outputs of a FORK actor to share the same

buffer, and an “embedded buffer” mechanism that, in some cases, permits actors such as

DOWNSAMPLE to be implemented without any code (the output arc of the actor corre-

sponds to one memory location inside the buffer for the input arc).

Code generation from regular dataflow graphs in Ptolemy is described in detail in

[Pin93].

4.1.5  Dynamic Dataflow In Ptolemy: Existing Implementation

Ptolemy contains both an SDF domain, which is restricted to regular dataflow,

and a DDF domain, which permits any type of dynamic dataflow actor. Since an SDF

actor is a special case of a DDF actor, the implementation uses a common base class,

DataFlowStar , and the DDF scheduler is able to execute any actor that is a member of

this class.

Given a dataflow application that contains some data-dependent decision-making,

and given the greater efficiency that can be achieved with SDF, one approach that natu-

rally suggests itself is to group, as much as possible, those portions of the dataflow graph

that are regular into separate wormholes, so that large portions of the graph can be sched-

uled statically. One way to do this is to ask the user to do it manually, by grouping sub-

systems together in galaxies and marking all the galaxies that contain only regular actors

as SDF. By means of nesting, in which DDF and SDF domains are alternated, the amount

of run-time scheduling required can be reduced considerably. This was the first approach

taken in Ptolemy’s development. As a simple example of this approach, consider the fol-

lowing Ptolemy program, intended to suggest the path taken by a moth. At the top level,
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we generate a random sequence of direction vectors, with the following program, which

is a regular (actually homogeneous) dataflow graph:

All of the actors except for “drawline” are primitive actors. The “drawline” actor

accepts a length value, which is converted to an integer, and a “unit vector”, supplied by

the inputs “xinc” and “yinc”. This actor, when executed, will add “length” points to the

graph, using the vector (xinc,yinc) as the offset between points. If we expand the “draw-

line” actor we see the following:

Here the “Repeater” actors are not regular dataflow actors. The bottom input, an

integer, specifies the number of output tokens produced; each output token is a copy of

the input token1. The number of tokens to be produced on the output arc of this actor is

not known until the graph is executed. The “displayline” actor adds a single line to the

1. The Repeater actor is not a BDF actor as the number of tokens produced depends on an integer-
valued control token; extension of the BDF model to support such actors directly is discussed in
Chapter 5. It is possible, however, to represent a Repeater actor using a do-while loop of BDF
actors.
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graph, given the X and Y coordinates of the relative motion from the input vector.

Finally, the interior of the “displayline” actor appears as follows:

This graph is, once again, a regular (homogeneous) dataflow graph. The “Integra-

tor” actors form a running sum of their inputs, and the “XYgraph” actor adds each input

pair to the graph. By setting the domain of the innermost and outermost levels to “SDF”

and the domain of the “drawline” galaxy to “DDF”, Ptolemy constructs wormholes in

such a way that dynamic scheduling is only required to run “drawline”; otherwise, static

scheduling is used.

It is also possible to apply clustering methods to group adjacent regular actors

together, effectively creating the same type of partitioning we might otherwise require the

user to perform. We then have several choices about what to do with the clusters and

dynamic actors that remain. One possibility is to simply execute them completely dynam-

ically using a general dynamic dataflow scheduler, while using a schedule generated at

compile time for each cluster. This is reminiscent of the hybrid dataflow techniques dis-

cussed in section 2.3. Another is to attempt to recognize certain standard “dynamic con-

structs” such as if-then-else (or the more general case statement) and do-while and treat

them specially. If the entire graph can be so classified, it is then possible to generate code

using Lee’s quasi-static scheduling idea [Lee88a]. This approach is explored in detail in

[Ha92]. In Ha’s work, rather than finding constructs by means of the token-flow analysis

and clustering techniques of chapter 3, a more limited pattern-recognition approach was

Integrator

Integrator

XYgraph

xoff

yoff
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used. This approach is sufficient in many cases to recognize the constructs, especially in

graphs where there is very little use of dynamic actors.

4.2.  SUPPORTING BDF IN PTOLEMY

We now describe the implementation of Boolean-controlled dataflow (BDF)

under Ptolemy. Adding the new domain required some re-thinking of the Ptolemy class

hierarchy to permit better sharing of code between SDF, BDF, and DDF domains and to

simplify use of the BDF model for code generation.

The design goals for the project were as follows: we wanted to support BDF mod-

els of execution both for simulation and for code generation. The simulation model

should be able to generate clusters of actors that are scheduled statically, and, if clustering

cannot completely succeed, execute the resulting clusters dynamically, as described in

section 3.4.3. It should be possible to use BDF simulation actors under the existing DDF

scheduler, as well as existing SDF simulation actors under the BDF scheduler. All single-

processor code generation targets should be able to support BDF code generation actors

and constructs. We did not address parallel scheduling of BDF actors in this project; that

is an area for future research.

So that the new actors fit conveniently into the existing design, we clearly wish

for BDFStar  to be derived fromDataFlowStar ; this means that the DDF scheduler can

execute BDF stars as well (as it should, since BDF actors form a subset of dynamic data-

flow actors). However, we wish to have a BDF scheduler successfully execute objects of

classBDFStar  as well asSDFStar , but notDDFStar . Given this consideration, one pos-

sibility would be to introduce a common base class forBDFStar  andSDFStar . How-

ever, the situation becomes more complex when code generation stars are also

considered. Under the initial Ptolemy implementation, stars that generate assembly lan-

guage code for the Motorola 56000 DSP chip using regular dataflow semantics form the

CG56 domain and are derived fromCG56Star , andCG56Star  was derived fromSDF-
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Star  (indirectly). How should dynamic actors for the 56000 be implemented? Should

they form a separate domain and be derived fromBDFStar ? This would require large

amounts of code duplication and other difficulties in implementing the portions of the

code and behavior common to all stars that generate the same language, although it might

be possible to resolve with multiple inheritance. Unfortunately, because of some inconve-

nient features of the C++ language, this type of solution was considered too expensive

and complex, and was rejected.1

We therefore changed the class hierarchy so that all code generation stars are

derived fromDataFlowStar  but not fromSDFStar . The classDataFlowStar  has a

virtual functionisSDF()  which returns TRUE if the object on which it is called obeys

SDF (regular dataflow) semantics and FALSE if it does not. The default implementation

of methods inDataFlowStar  correspond to those for a regular (SDF) dataflow actor.

Schedulers that require regular dataflow semantics on their actors must now callisSDF

to test that the actors obey the required semantics.

Just as we have a common base class for the stars, we also have a common base

class for the portholes. ClassesSDFPortHole , BDFPortHole , andDDFPortHole  all

have a common base class, calledDFPortHole . The base class has virtual functions that

specify whether the number of tokens transferred per execution is fixed or varying. There

is also a method that returns the number of tokens transferred on each execution by

default; for non-varying portholes, this is the number that is always transferred. In addi-

tion, virtual functions are provided that permit the porthole to indicate that another

DFPortHole  is “related” to the givenDFPortHole  (the associated port), as well as to

return a code indicating the nature of the relationship. This feature is used by BDF port-

holes to indicate, for example, that another port is the control port for this port. There are

1. For a detailed discussion of the impact of the features of the C++ language on Ptolemy’s design,
see [Buc91c].
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currently five possible relations, with provisions for extension:

• DF_TRUE: the port transfers data only when the token from the associated port

(the control port) is TRUE;

• DF_FALSE: the port transfers data only when the token from the associated port

is FALSE;

• DF_SAME: the stream produced on this port is logically the same as the stream

on the associated port (this relation is used for fork actors, for example);

• DF_COMPLEMENT: the stream produced on this port is the logical complement

of the stream on the associated port (this relation could be used by a logical NOT

actor).

• DF_NONE: there is no specified porthole relationship at all.

Because of the structure of these relations, we impose some restrictions on the

actors we can represent. In section 3.1, we required only that the number of token trans-

ferred by a conditional port be a two-valued function of a control Boolean. We now

require that one of the two values be zero. Furthermore, we currently do not provide a

way to model certain relationships; for example, we do not represent information suffi-

cient to reason about cases where Boolean streams are subsampled by SWITCH actors in

such a way that two subsampled streams are equivalent (as is discussed in the section

“Mutually Dependent Booleans” of [Lee91b]). It did not appear that there was sufficient

payoff from the added complexity, although as a result, some unusual graphs that are in

fact strongly consistent may be reported as weakly consistent, and some graphs with a

bounded state space may appear to be unbounded. In practice, these restrictions have not

proved to be a problem, although our experience is still limited.

The class hierarchies for dataflow stars and portholes resulted in two isomorphic

trees. All star classes, as stated, are derived fromDataFlowStar , and all porthole
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classes are derived fromDFPortHole . From these are derived the classesSDFStar  and

SDFPortHole , respectively, representing simulation objects obeying regular dataflow

semantics. The classesDynDFStar  and DynDFPortHole  are the base classes for all

other stars and ports, respectively, and contain some support for execution under dynamic

schedulers.BDFStar , representing BDF simulation actors, is derived fromDynDFStar ,

as isCGStar , representing all code generation stars. The latter derivation provides sup-

port for BDF semantics in all code generation domains. The derivation tree for portholes

is analogous (see figure 4.5).

We permit clusters of BDF simulation actors to be executed by a dynamic sched-

uler, but we do not support dynamic scheduling of code generation stars (other than in the

sense that generated if-then-else or do-while constructs constitute dynamic scheduling).

Accordingly, schedulers are designed to “inform” stars (by calling thesetDynamicExe-

cution  method ofDataFlowStar ) whether they will be executed by a dynamic sched-

uler; classCGStar  will report an error in such cases indicating that the operation is not

supported.

Star

DataFlowStar

SDFStar DynDFStar

BDFStar CGStar

AsmStar CGCStar

CG56Star, etc.

Figure 4.5 Inheritance hierarchy for dataflow and code generation stars. The hierarchy
for portholes has the same form, with class names obtained by substituting Port-
Hole for Star (except DataFlowStar -> DFPortHole).
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4.3.  STRUCTURE OF THE BDF SCHEDULER

The BDF scheduler performs a limited version of the “strongly consistent” check

on graphs presented to it, followed by loop scheduling and, if necessary, state space tra-

versal. At this point, state space traversal has not yet been implemented, other than the

simple form necessary to recognize certain types of do-while loops; we will discuss the

planned implementation strategy, however.

4.3.1  Checking For Strong Consistency

The check for strong consistency proceeds by associating an object called a

BoolFraction  with each actor and computing its value, in much the same way as a reg-

ular dataflow scheduler computes the repetition value of each actor. ABoolFraction

has a numerator and denominator, each of which is aBoolTerm ; aBoolTerm  has a con-

stant term plus a list (possibly zero length) ofBoolSignal  objects. ABoolSignal

object contains a reference to a control signal and a desired value, which is either TRUE

or FALSE. A BoolTerm  can be considered to be a product of its constituent constant

term andBoolSignal  terms. Given this representation, we can now compute the repeti-

tion vector for the system. At this stage we consider only equality of long-term rates, so a

control signal is considered equivalent to a delayed version of itself. We begin by picking

an actor and assigning it a repetition rate of one (represented by aBoolFraction  with

numerator and denominator both one). Each adjacent actor that has not had its repetition

rate set yet is assigned an appropriate value to solve the balance equations; if there are

cycles in the graph when considered as a nondirected graph, a given actor will be reached

more than once, at which point a consistency check is performed. If two different paths to

an actor determine two different repetition rates, an error results. This algorithm is

exactly the same as the one described in section 2.2.1 for regular dataflow graphs.

To report a useful error to the user, any common factors in the two BoolFractions

are eliminated and what remains is reported as an error. We then obtain a diagnostic mes-
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sage like

Consistency failure detected at Select1:

Select1.control != Switch1.control

for the graph in figure 4.6.

4.3.2  Clustering BDF Graphs: Overview

The BDF loop scheduler is responsible for implementing the clustering algorithm

described in section 3.3.3. It does so by constructing a parallel hierarchy of clusters corre-

sponding to the dataflow graph it is presented with, and by successively transforming this

group of clusters by applying merge operations, which merge actors with the same repeti-

tion rate into single clusters where possible, and “loop” operations, which introduce con-

ditionals and loops into the graph. The most complex part of the implementation has to

do with constructing the relationships between the ports of the cluster actors (e.g.

DF_TRUE and DF_FALSE to indicate conditional ports, and DF_SAME to indicate

ports with the same value) and keeping them consistent. This is simply a matter of careful

bookkeeping, however.

The abstract classBDFCluster  represents a cluster. There are three kinds of

cluster, each derived fromBDFCluster : BDFAtomCluster , which corresponds to a sin-

gle actor in the original graph,BDFClusterBag , a composite cluster with an internal

schedule, andBDFWhileLoop , a special type of composite cluster that represents a do-
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Figure 4.6 A weakly consistent graph, used as an illustration of consistency failure
detection. All actors other than the SWITCH and SELECT are homogeneous.
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while loop. A cluster has a set of input and output arcs (classBDFClustPort ), a loop

count (which may indicate that the contents are to be executedn times, for somen), and

an optional condition (which indicates that the cluster is only to be executed if some con-

trol token has either a TRUE or a FALSE value).

The top level of the clustering algorithm is simple to describe: first a “cluster gal-

axy” consisting of oneBDFAtomCluster  for each actor from the original universe is

built. We then alternate two passes, called the merge pass and the loop pass, until no fur-

ther transformations can be made. An internal schedule is computed, using regular data-

flow methods, for each composite cluster. Because each cluster consists only of actors

with the same repetition rate, these schedules have a very simple structure: they are data-

independent, and each subcluster will be executed exactly once. All data dependencies

are represented either by the inserted “if-then-else” or “do-while” constructs, or remain

visible at the top level.

“Looped” clusters will have if-then-else or do-while constructs around them, or

else will have a constant repetition factor. At this stage, some clusters may have multiple

subclusters that are conditionally executed based on the same condition, or on opposite

values of the same condition; a merge pass is run at this point to combine them into larger

loops and into if-then-else statements.

If the top level is reduced to a single cluster or is a regular dataflow graph, we

compute a schedule for the top level and we are done. If not, and this is a simulation run

rather than a code generation run, we can execute the top-level clusters with a dynamic

dataflow scheduler, treating each cluster as a single actor.

4.3.3  The Merge Pass

The goal of the merge pass of the BDF scheduler is to transform the input BDF

graph into a new BDF graph by combining adjacent actors into a single cluster, in such a

way that each cluster will have a static, data-independent internal schedule. In order to
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merge two adjacent actors, several conditions must be met. It should be noted that these

conditions are sufficient but not necessary.

First, we retain the conditions that pertain to cluster merging in regular dataflow

graphs; these are described in detail in section 3.3.2. Consider a pair of adjacent actors we

wish to merge, consisting of a source actor S that produces tokens on an arc and a desti-

nation actor D that consumes tokens from the same arc. Briefly, the merged actors must

have the same repetition rate and merging them must not cause deadlock, which may

occur if there is a path from the source actor to the destination actor that passes through a

third actor.

In addition, we obtain more conditions, imposed by the requirement that the new

graph we obtain by the merge operation must also be a BDF graph and that the internal

schedule be data-independent. We must avoid “burying” control arcs: if any of the arcs

that connect S and D have control ports for conditional ports of either S or D that will

remain external ports after S and D are merged, we may not perform the merge unless the

control ports can be “remapped”, or if the merged cluster can be turned into a do-while

loop with the correct semantics. Remapping of control arcs and the creation of do-while

loops is described later.

Normally, all arcs that connect the actors that are merged become internal arcs,

not visible from the exterior of the cluster. There are two exceptions: first, if the control

arc that would be buried contains initial tokens, we permit the merge and transform the

control arc into a self-loop of the merged cluster (the merge is permissible in this case

because the control arc remains visible). Second, to assure the data-independence of the

internal schedule, arcs with mismatched control conditions at either end will be also be

transformed into self-loops. An example in which both of these types of self-loops are

created appears in section 3.3.3 on page 94.

This is a complex set of conditions that may require repeated searching of the
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entire graph for paths. Fortunately, in most cases it can quickly be determined whether

two actors can be merged based only on local information. If all outputs of S connect

directly to D, or if all inputs to D connect directly to S, and there are no initial tokens on

at least one arc, then merging cannot possibly create deadlock. Since most dataflow

actors have only one output, only one input, or both, this is a common case. Furthermore,

most arcs are not control arcs. Therefore the merge pass consists of a “fast part” that

merges as many pairs of adjacent actors as possible without performing any path searches

or control arc remapping, followed by a “slow part” that searches for indirect paths and

remaps control arcs where possible and necessary (after the size of the graph has already

been reduced by the application of the fast part).

Remapping of control arcs is accomplished by exploiting DF_SAME and

DF_COMPLEMENT relations on arcs. FORK actors have an indication that all arcs pro-

vide the same signal, and other actors may be designed to provide this indication as well.

For the NOT actor, the output arc is marked as being the complement of the input. If an

important control signal would be buried by merging two actors, but the same signal is

available via a DF_SAME relation on an arc that will remain external, the merge opera-

tion may proceed anyway and the porthole relations in the new cluster are remapped to

use the signal that remains external. To ease the operation of remapping control arcs, the

classBDFClustPort  possesses an iterator mechanism that sequentially steps through

every arc that can be considered the same as, or the complement of, a given arc, so that

this complex operation need be implemented only once.

4.3.4  The Loop Pass: Adding Repetition

It is the task of the loop pass to transform clusters of the dataflow graph to enable

subsequent merge passes to combine more clusters. To do this it must alter the clusters in

such a way that their repetition rates will match those of their neighbors. Three transfor-

mations of a cluster are possible: a cluster may be repeated for a fixed number of times, a
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cluster’s execution may be made conditional on some control token, or a do-while loop

may be added around a cluster (so that the cluster is executed repeatedly until a desired

value appears on some control arc). Two of these three transformations cause control

loops to be added to the execution of the graph, hence the name “loop pass.”

The first transformation, corresponding to iteration of a cluster a fixed number of

times, is easiest to describe. There are two cases:integral rate conversions, in which the

number of tokens transferred at one end of an arc evenly divides the number of tokens

transferred at the other end, andnonintegral rate conversions, in which this condition

does not hold. These cases are handled exactly the same way as they are for regular data-

flow graphs in the algorithm described in section 3.3.2. The only additional consider-

ations are these: we do not loop a cluster to match the rate of its neighbor by inserting a

constant loop factor if there is also a difference in control conditions (one end of the arc is

conditional but the other is not, or the two ends are controlled by different conditions).

Only “if” conditions and “do-while” loops may be inserted in such cases. Second, in reg-

ular dataflow graphs certain graphs with feedback loops containing delays can be looped

given knowledge of the repetition count of each actor (arcs with “enough delay” can be

completely ignored, as discussed in [Bha93b]); these techniques are not applicable for

BDF graphs so clustering must sometimes be more conservative.

4.3.5  The Loop Pass: Adding Conditionals

In addition to adding repetition to cause a cluster to match the rate of its neigh-

bors, the loop pass may also add conditionals. Given an arc where one end transfers

tokens conditionally and the other end transfers tokens unconditionally, and the constant

term is the same (e.g. actor A always produces 2 tokens, actor B consumes 2 tokens if its

control port provides a TRUE token) we have a possible candidate for making a cluster

conditional. In many cases, if a cluster is made conditional we must add an extra arc that

serves to pass the conditional token from its source to the cluster that requires it. An
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example of this appears in section 3.3.3. To accommodate this, the implementation pro-

vides a mechanism for creating duplicate arcs to pass conditions from one cluster to

another.

If the control arc is on a self-loop, we may wish to avoid creating a conditional

construct so that a do-while may be created instead. Consider the example in figure 4.7,

which might arise in the process of clustering a system with data-dependent iteration. It

would be possible to add an “if” around clusters 1 and 5, and then merge them into the

main cluster. We would then add a “while” around the whole system. But then actors 1

and 5 would both appear inside both an “if” statement and a “while” statement, even

though they are each executed exactly once. For now, we avoid creating a conditional

construct if the if-condition matches the state of the initial token on the feedback arc,

since this means that a “do-while” form of clustering is likely to succeed.

4.3.6  Loop Pass: Creation of Do-While Constructs

Do-while constructs, in which a cluster is repeatedly executed until a control

token with a particular value is produced on some control arc, may be created in either of

two ways. The first possibility is that an actor that contains a control signal on a self-loop

may, if conditions are right, be transformed by adding a do-while condition around it. The

second possibility is that a pair of adjacent actors, in which one produces a control signal

T2

F2
1 54

T1

F1

2,3,4

b1
1

11

FALSE b2

Figure 4.7 A partially clustered do-while system. At this point, it would be possible to
make either actor 1 or actor 5 conditional so that a subsequent merge pass can
combine them with the main cluster. We prefer to put only the main cluster inside
the while loop to more accurately reflect the control structure.
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and one consumes it, may be simultaneously “merged” and “looped” to produce a do-

while loop.

There is a natural tension between the creation of an “if” construct and the cre-

ation of a “while” construct. In many dataflow graphs, it is possible to create either type

of construct in the process of obtaining a complete clustering. Consider the following

graph:

It is identical to figure 3.7 except that actor 5 is now homogeneous. Clearly we could

cluster this graph by the introduction of conditionals, obtaining a schedule like

(1,2,3,if(cond) then 4 else 5)

But the clustering we obtained for figure 3.7 in section 3.3.3 would work as well; in this

case, we would obtain

do { 1,2,3, if(cond)4} while cond; 5

We could also obtain the alternative clustering

do { 1,2,3, if(!cond)5 } while !cond; 4

Our implementation favors the creation of “if” over “while” where possible as it

leads to bounded-length schedules where they exist. It is possible that one of the latter

schedules may be preferable in some circumstances. The third schedule would be prefer-

able, for example, if the task is to repeatedly execute the graph until actor 4 has been exe-

cuted some number of times.

If a pair of actors meet all the conditions for merging other than that the merge
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operation would bury a control arc, it is possible that the pair may still be merged by the

creation of a while loop. The while loop will have the form

do {S; token = S.control; D} while(token == value)

The code for insertion of do-while loops determines whether the insertion of this type of

loop is legal. For it to be permissible, all arcs of the source and destination actors that

remain external after the merge must be conditional on the control signal, and conditional

in the same way; they will become unconditional after the addition of the while loop and

the direction of their conditionality will determine the termination condition. For exam-

ple, in the process of clustering the example in figure 3.7 we obtained the following inter-

mediate clustering:

Here we are considering merging actor 2 with the cluster at the center. There will

then be one external port, and it is indeed conditional on the control signal that connects

the actors to be merged. The fact that it produces output when the signal is FALSE deter-

mines the sign of the loop termination condition: the loop executes until a FALSE token

is produced. Since there will be exactly one FALSE token, the conditional goes away, and

we obtain the clustering given below:

The second type of do-while loop is created from a single actor or cluster. This

single actor always has one or more Boolean control signals in the form of self loops, so

that the same actor both produces and consumes the control signal. Such actors may pos-

sess other self loops as well. In order to create a do-while in this circumstance, all exter-

b1

1,3,if(b)42 5
1 1 F 2

repeat (2,1,3,if(b)4)
5

1 2
until b is false
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nal ports must be conditional with the same sign (TRUE or FALSE) and depend either on

the same signal or on delays of the same signal. Dependence on delays is permissible

because the loop will generate one cycle of both the signal and all of its delays. After the

while loop is added, the new cluster will be unconditional.

If the actor we started with contains self-loops, or the pair of actors we started

with has additional conditional arcs that pass between the actors to be merged, we must

also check that the loop created will be “proper”, in the sense that it is bounded. Doing so

forms a simplified case of the general state traversal problem. We currently handle only

the cases in which there are exactly two states, one corresponding to the production of a

TRUE token on the control arc and one corresponding to the production of a FALSE

token. Other cases are objected to by the current implementation.

4.4.  GRAPHS LACKING SINGLE APPEARANCE SCHEDULES

Some BDF graphs cannot be completely clustered, so that after the clustering

algorithm has completed its work, multiple clusters are left at the top level and the top-

level graph is not a regular dataflow graph. In some cases, even though the graph cannot

be reduced to a regular form, a static schedule (one consisting only of sequential execu-

tion, fixed-repetition loops, if-then-else constructs, and do-while constructs) may some-

times still exist. This happens for BDF graphs that, in the terminology of [Bha93b], lack

single appearance schedules. One such example appears in figure 4.8. To avoid having a

complicated maze of wires, the graph has been simplified; actor E’s output is connected

to a six-way FORK actor that passes identical control streams to each of the six dynamic

actors (three SWITCH and three SELECT actors). This graph has an interesting property:

based on local information, each connection appears to be “logically homogeneous” in

that the source star produces exactly what the destination star consumes. Despite this, the

order of execution must depend on the particular Boolean values generated.

The graph can be partially clustered; actors B and C may be combined with the
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SWITCH and SELECT actors that are adjacent to them, as can actors A and D. Further-

more, the actor E and the FORK can be combined with the cluster containing actor A.

The resulting graph cannot be clustered further, but nevertheless the graph can be shown

to have a bounded-length schedule. In fact, the following schedule executes the graph

correctly:

A,E,FORK, SW1;

if(E.output) {SEL2,B,SW2,SEL3,C,SW3}

else {SEL3,C,SW3,SEL2,B,SW2}

D

Note that six actors appear in the schedule twice. The total number of times each actor is

executed in the schedule is exactly one, but since the order of execution and data depen-

dencies depend on the value of the Boolean token, we do not have a data-independent

schedule. Our current implementation does not generate such schedules, though they can

be generated by a process we call “node splitting” that has been designed but not yet

implemented.1 It is applicable for graphs with bounded-length schedules that cannot be
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Figure 4.8 A BDF graph that lacks a single appearance schedule. Certain arcs have
been omitted from the graph to make it easier to understand: the FORK actor con-
nected to E, whose outputs are not shown, passes the stream of tokens from actor
E to the control input of each of the SWITCH and SELECT actors. Crossing lines
do not imply a connection.
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completely clustered. We compute the repetition vector, considering it as a list of tasks to

be performed, and attempt a topological sort. In the above example, each actor is to be

executed once. We succeed in scheduling A, E, FORK, and SWITCH1, but find that the

SELECT2 actor can only be executed conditionally. We therefore split it into two sepa-

rate tasks to be performed, corresponding toif(E.output)SEL2  and if(!E.out-

put)SEL2 . We then find that we can schedule the former task. We proceed in this

manner, splitting nodes into two tasks only when otherwise no actors can be executed,

until all actors have been scheduled the number of times required. This operation suc-

ceeds in scheduling any graph that has a valid bounded length schedule, but in code gen-

eration applications, code size may increase considerably unless subroutine calls are used

to avoid duplication of code.

4.5.  MIXING STATIC AND DYNAMIC SCHEDULING

If, after clustering, the resulting BDF graph does not have a bounded length

schedule and we must execute the graph anyway, dynamic scheduling is required,

together with dynamic memory allocation on certain arcs. When executing dataflow

graphs in the simulation environment, this requirement is not a problem; it is already sup-

ported for general dynamic dataflow actors. To be as efficient as possible, we wish for the

clusters to be considered atomic actors from the point of view of the dynamic scheduler.

When the dynamic scheduler selects a cluster to be run, the cluster’s statically computed

schedule is executed.

This kind of behavior is exactly what is provided by Ptolemy’s wormhole mecha-

nism, in which a portion of the graph that follows one computational model appears as an

atomic actor inside a larger portion of the graph that follows another computational

model. Clusters have some of the features of wormholes; for example,BDFClusterBag

1. In the literature of optimizing compilers for procedural languages, “node splitting” refers to a
process of code duplication that converts unstructured code with many “gotos” to a structured
form. This procedure was first described in [All72].
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has an internal scheduler, and all clusters appear as atomic actors to the outside. How-

ever, clusters do not have internalTarget  objects, and there are noEventHorizon

objects to convert betweenParticle  communication protocols because there is no dif-

ference in protocol. Accordingly, clusters are designed to serve as “lightweight worm-

holes” — in particular, cluster boundaries are treated exactly like wormhole boundaries

by all schedulers. Given this behavior, all that is necessary to arrange for mixed static and

dynamic scheduling is to arrange for the dynamic scheduler to run the galaxy containing

the top level clusters, and to assure that the clusters, when run, obey the protocol

expected of dynamic actors by the dynamic dataflow scheduler.

4.6.  BDF CODE GENERATION FOR A SINGLE PROCESSOR

We now discuss the modifications to the Ptolemy code generation scheme

described earlier to permit BDF code generation for single-processor targets. The design

goal was to permit all targets to use dynamic actors, not to require that special new targets

or new domains be provided. Accordingly,CGStar , the base class for all code generation

stars, is now derived fromDynDFStar , andCGPortHole  is derived fromDynDFPort-

Hole . This means that all code generation domains now permit dynamic actors such as

SWITCH and SELECT. However, it is not currently possible to generate code corre-

sponding to Ptolemy’s dynamic dataflow scheduler or that handles dynamic memory allo-

cation for arcs; therefore, systems of code generation stars that cannot be completely

clustered are rejected as errors.

4.6.1  Additional Methods for Code Generation Targets

So that code can be generated corresponding to the structure built up by the BDF

loop scheduler,CGTarget  and derivedTarget  classes were given new methods that

generate the correct code for if-then-else constructs and do-while constructs. There are

five new methods, as follows. Separate implementations of these methods must be sup-

plied for each output language targeted.
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void beginIf(PortHole& cond ,int truthdir ,

int depth ,int haveElse );

This method begins an “if-then” or “if-then-else” statement. Subsequent code

generation corresponds to code to be executed if the conditioncond’s value matches the

“truth direction” truthdir. Thedepth parameter indicates the nesting depth; ifhaveElse is

TRUE, there is an “else” part to the statement.

void beginElse(int depth );

This method begins the “else” part of an “if-then-else” statement that has previ-

ously been begun with abeginIf  call. Thedepth parameter will match that of the previ-

ous beginIf  call that corresponds to this “else” part. Subsequent code generation

corresponds to code that belongs in the “else” part of the statement.

void endIf(int depth );

This method completes the “if-then-else.”

void beginDoWhile(int depth );

This method begins a “do-while” statement. The condition is provided at the end.

void endDoWhile(PortHole& cond ,int truthdir ,

int depth );

This method ends the “do-while” statement. The loop will continue to execute as

long as the state of the conditioncond matches the truth direction specified bytruthdir.

4.6.2  Efficient Code Generation for SWITCH and SELECT

It would be possible to generate code for SWITCH and SELECT actors that reads

the control token and, based on its value, copies a token between the appropriate pair of

arcs. We can do much better, though. Consider the special case in which all ports con-

nected to the SWITCH or SELECT actor transfer only one token. This will be true if all

actors adjacent to the SWITCH or SELECT are homogeneous, for example. In this case,

all arcs connected to the actor except for the control arc can share the same memory and

no code is required to implement the SWITCH or SELECT function. The token on the



146

control arc will still be used; it will be referred to by the control construct that imple-

ments the “if-then-else” or “do-while” statement. For example, in the canonical if-then-

else construct below

where all actors other than SWITCH and SELECT are homogeneous, we can allocate a

single memory location for the value produced by A, and a single memory location for

the value consumed by D, and arrange to have the actors B and C share these locations,

which is feasible because only one of the two actors will execute. The token generated by

actor K determines which of B or C will execute.

In order to have all the arcs share the same buffer, we require that the data input(s)

and output(s) of the SWITCH and SELECT be of size one. The current implementation

also requires that the control arc have only one token, so that it will be a simple matter to

find the control token that controls execution. These restrictions would appear to be a

severe limitation, but in practice they are easily met: if a non-homogeneous actor is con-

nected to a SWITCH or a SELECT, the system simply inserts a dummy homogeneous

actor that performs a copy operation in between.

It would be possible to remove some of the restrictions on dynamic actors. Con-

sider the SWITCH actor, and assume that one or more of the data arcs transfer more than

one token per execution. We can still use one buffer for all three arcs; this would be

accomplished by having the actors that read from the TRUE output and the FALSE out-

put of the switch share a read pointer. Since the star connected to the TRUE output is not

S
W

IT
C

H

T

F

S
E

LE
C

T

A

B

C

D

K

T

F
52



147

executed unless the control token is TRUE, and similarly for the star connected to the

FALSE output, sharing the read pointer assures that the data are properly “consumed” by

the star they are intended for.

The data input and the two outputs of the SWITCH, as well as the data inputs and

the output of the SELECT share memory by use of the Ptolemy embedded buffer mecha-

nism, which is described in detail in [Pin93]. The control input to each actor has its own

buffer.

4.7.  EXAMPLE APPLICATION: TIMING RECOVERY IN A MODEM

This section will consider a nontrivial application of BDF scheduling of a data-

flow graph: timing recovery in a modem. The application models baud-rate timing recov-

ery in a digital communication system using an approximate minimum mean square error

technique. This example, as implemented in Ptolemy, was presented in [Buc91a]; the

underlying digital communication theory is presented in detail in [Lee88b]. The example

appears in figure 4.9.

An amplitude-shift keyed (ASK) signal is generated by the “ask” galaxy on the

left. The bit source provides a source of random bits; the table lookup actor and pulse

shaper provide for modulation, resulting in a simple baseband, binary-antipodal signal

with a 100% excess bandwidth raised cosine pulse. The sample rate is eight times the

baud rate, and may be controlled by adjusting the parameters of the pulse shaping filter.

The derivative of the signal is estimated using a finite impulse response (FIR) filter in the

top-level diagram (the universe). The derivative and the signal sample itself are sampled

by a signal provided by the “timing control” subsystem; they will either be discarded (at

convergence, about seven out of eight times) or passed on to the baud rate subsystem

(about one out of eight times) by a pair of SWITCH actors. This baud rate subsystem esti-

mates the timing error and uses this estimate to control a phase locked loop. The key to

estimating the error is that, if the timing is correct, we should see full-scale values (plus
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or minus one) at the decision device (the “slicer”) and a slope (derivative) of zero.

Accordingly, the error estimate is formed by multiplying the estimated derivative by the

error at the slicer.

The error estimate is upsampled to the original sample rate at the SELECT actor

by adding zeros corresponding to the missing points. It is then used to adjust a phased

locked loop implemented in the “Timing Control” galaxy. A simple voltage controlled

oscillator is made using an integrator with limits that is allowed to wrap around when the

limits are exceeded. The wrap-around is detected and used as the signal to indicate that a

baud-rate sample should be taken. Increasing the input to the VCO integrator (middle of

the lower left window) causes the time between samples to decrease.

Executing the simulation generates four plots, corresponding to the four graph

stars. These plots appear in figure 4.10. The first plot shows the line signal and its esti-

mated derivative. The second and third plots show the timing control signal and the error

Figure 4.9 A Ptolemy screen dump of an application of BDF graphs to timing recovery
in a modem. The top-level system is at the upper right; the other three windows
represent subsystems (galaxies).
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signal used by the phase locked loop, respectively. The final signal shows the actual sam-

ples, representing the received digital data. Ideally the values of these samples will be 1

and−1.

In [Buc91a], the simulation of this system under Ptolemy’s DDF and SDF

domains was described. Here the three subsystems were statically scheduled and the top-
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Figure 4.10 Plots generated by the Ptolemy timing recovery model of figure 4.9. The
plots show the first 80 baud-rate samples. The sample clock is eight times the baud
rate, hence the first three plots have eight times as many samples as the last plot.
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level system was dynamically scheduled. However, given a BDF implementation, it is

possible to cluster the graph to find an efficient set of control structures that permit a

lower-overhead simulation, or to generate code for an even more efficient execution,

either in C or in assembly language.

We now describe the clustering of the graph by the BDF loop scheduler. For sim-

ulation purposes, it is possible to declare that the subsystems are regular (SDF) as was

done in [Buc91a], but it turns out to be more efficient to use BDF scheduling at all levels

to avoid the excess overhead of communicating across wormhole boundaries. This is

because the BDF loop scheduler generates a static schedule for all regular subsystems

found in the graph.

The control structure of the graph is not extremely complex; there is a sample rate

change, because the ASK subsystem produces eight samples per execution and the

FORK actor consumes one, and there is an if-then-else construct formed by the pair of

SWITCH actors and the SELECT. Furthermore, the presence of the four delay tokens

complicates the analysis somewhat, though for the most part, these complications come

into play only for code generation, since they affect the buffer allocation for arcs.

The system has thirty-six actors, including four implicit FORK actors inserted to

permit the same actor output to connect to multiple inputs. The first merge pass succeeds

in reducing the universe to seven clusters. This clustering is shown in figure 4.11. Most

merging is accomplished by the “fast merge pass” using only local information; to com-

bine the two SWITCH actors into the “BAG1” cluster, it is necessary to remap the control

arcs for the “baud” and the “black hole” actors (the latter actors are the inverted triangles

attached to the FALSE outputs of the SWITCH actors). These arcs are controlled after

clustering by the arc that connects to the control input of the SELECT actor that is part of

the cluster “BAG2.” Although they have the same repetition rate, BAG1 and BAG2 can-

not be combined into one because this would cause deadlock.
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The first loop pass makes the two black hole actors, the “baud” cluster/subsystem,

and the DC actor into conditionally executed clusters. To do so, a dummy arc is created

connecting these clusters with the BAG1 cluster; this arc provides a copy of the control

signal. BAG1 is not looped to match the rate of the “ASK” subsystem because of the

need to “loop” the “baud” subsystem first. After the loop pass, the next merge pass is able

to combine BAG1, BAG2, and all the conditional subsystems into one. There are now

only two clusters: the ASK cluster/subsystem and everything else. A “repeat 8 times”

loop is put around the “everything else” cluster, and the system has now been completely

clustered. At this stage, each of the black hole actors, the DC actor, and the “baud” sub-

system is in a different “if” statement; the parallel loop merge pass combines these into a

single if-then-else statement. Here is a simplified version of the generated schedule, in

which subsystems are written as single actors and automatically inserted forks are omit-

ted:

Figure 4.11 Clustering caused by applying the first merge pass. Clusters are indicated
by the two loops marked BAG1 and BAG2; also, the subsystems “ASK” and “baud”
become single clusters, as do the two “black holes” and the DC star.

“BAG1”

“BAG2”
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ASK;

repeat 8 times {

Fork3,TimingControl,FIR1, XMgraph;

Switch1, Switch2;

if (TimingControl.output) Baud;

else { BlackHole1, BlackHole2, DC }

Select1; Fork; Xgraph3

}

When code is generated for this system, no code is required to implement the

FORK, SWITCH, and SELECT actors. However, because of initial delay tokens, it turns

out that one of the SWITCH actors and the SELECT actor are connected to buffers that

require two tokens, violating the assumption used to implement these actors with no code

and with embedded buffers. This problem is solved by automatically inserting a pair of

COPY actors, whose function is to generate code to copy a single token. Insertion of

these extra actors implies the creation of two extra buffers. In effect, we have added a

small amount of code to create two simple delay lines.

4.8.  SUMMARY AND STATUS

At the present time, Ptolemy’s ability to execute BDF actors in a simulation mode

is nearly complete. Dataflow graphs with mixtures of BDF and SDF (regular) actors are

clustered as much as possible, and the clusters are dynamically executed if the algorithm

does not successfully reduce the graph to a single cluster. Other than the special case of

determining that do-while loops are valid, the state traversal algorithm described in sec-

tion 3.4.1 is not implemented.

Code generation using the BDF model is currently limited to C language genera-

tion for a single processor, and assembly language BDF code generation will be com-

pleted shortly.
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•

EXTENDING THE BDF MODEL

5

God made the integers; all else is the work of man.

— Kronecker

This chapter describes an extension of the token flow model that permits a larger

class of dynamic dataflow actors to be considered. This class differs from BDF actors

such as SWITCH and SELECT in that control tokens are permitted to have arbitrary inte-

ger values, not just TRUE and FALSE. We will find that, for the most part, the analysis

techniques developed in previous chapters apply with little change to this extended

model, which we shall call integer-controlled dataflow, or IDF.

5.1.  MOTIVATION FOR INTEGER-VALUED CONTROL TOKENS

While the Boolean-controlled dataflow model is Turing-equivalent, it does not

directly express certain actors that have been found to be useful. Most of these actors

have the property that the control token is an integer rather than a Boolean token, which
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might be used in two ways:

• Specification of the number of tokens produced or consumed on some arc (e.g. the

REPEAT or LAST_OF_N actor), or

• Enabling or disabling the arc depending on whether the token has a specific value

or belongs to some set of values (as in a multi-way CASE construct).

Note that it is not difficult to synthesize either a REPEAT actor or a multi-way

CASE from the SWITCH, SELECT, and SDF actors. In some cases, however, the con-

structs that naturally arise for iterations have shortcomings. Consider the design of a sub-

graph that, given an integer-valued token with valuen, computes a token with value

(4-1)

assuming that the function  is computed by an atomic actor. Let us assume

g n( ) f i( )
i 0=

n 1–

∑=

f n( )

-1

>=0?f()+

F

D2 D1

T1 T2 F2 F1
SELECT-2

T1 T2 F1 F2
SWITCH-2

D2 D1

0 input

output
Figure 5.1 The first subgraph (a) implements the function  described above

using BDF actors. The actors SWITCH-2 and SELECT-2 switch two data streams
based on one control token, e.g. SWITCH-2 copies D1 to either T1 or F1 and cop-
ies D2 to either T2 or F2. The system on the right (b) computes the same function
using coarser-grained IDF actors.

g n( )

IOTA f() Σ

(b)
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that the functionf is relatively expensive to evaluate, and we wish to leave open the pos-

sibility that thef evaluations be computed in parallel. We could produce a subgraph that

implements this function using BDF and a DO-WHILE loop (see figure 5.1 (a)), but this

graph implies a serial execution of thef actors, and the data dependency between the iter-

ations is difficult to analyze away. The parallelism is more naturally expressed with actors

that have integer control tokens. Consider two such actors: one that, given an integer

value n, producesn output tokens with values ranging from 0 to , and one that,

given an integer valuen on its control port, readsn tokens from its input data port and

outputs their sum. Let us call the former actor IOTA (after the operation from the APL

language that it resembles) and the latter actor SUM orΣ. Then the simple system in fig-

ure 5.1 (b) naturally models the solution. While it is true that we could produce BDF sys-

tems corresponding to the actors IOTA and SUM, it would be desirable to have a theory

that could represent such actors directly, rather than as composite systems of simpler

actors. However, the BDF model has one very significant advantage: the BDF system

requires only one location for each arc, while the IDF system requires memory propor-

tional ton.

We therefore wish to extend the BDF model to permit integer control tokens. We

will consider a set of actors with the following properties: the number of tokens produced

or consumed on any arc is either a constant, or a function of an integer-valued control

token on some other arc of the same actor. Only the following functions are permitted:

Type 1 (CASE): the number of tokens transferred is either a constant, or zero,

depending on whether the value of the control token is a member of a specified set.

Type 2 (REPEAT): the number of tokens transferred is a constant multiple of the

control token.

Given any specified encoding of TRUE and FALSE values into integers, we see

that BDF actors are IDF actors. If only Type 1 functions are considered, there is not much

n 1–
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new in the IDF theory: we simply have mapping functions to turn integer tokens into

Booleans, and, with respect to any controlled arc, a control token may still be regarded as

“true” or “false”. However, relations among Booleans may be more easily discovered and

represented in some cases given CASE arcs.

We introduce two new dynamic dataflow actors, which we call CASE and END-

CASE, as shown in figure 5.2. CASE is the IDF analog of the SWITCH actor, and END-

CASE is the IDF analog of the SELECT actor.

5.2.  ANALYSIS OF IDF GRAPHS

Where in BDF theory we use  to represent the proportion of tokens on streamn

that are TRUE, we instead use  to represent the proportion of tokens on streamn that

have valuem. The other interpretations for thep quantities we considered for the BDF

case, such as long-term averages and probabilities, could be used as well for the IDF

case, of course. The analysis problems are much the same as before: the procedure for

determining whether a graph has a bounded length schedule is the same as before, and the

clustering algorithm is easily adapted to handle “CASE arcs”. The result is that we now

build multi-way case statements where in BDF we built if-then-else statements, so we

have generalized from a two-way conditional branch to anN-way conditional branch.

CASE
0 DEF

1

pi0

ni

1

1

pi1
1 pi0– pi1–

ENDCASE
0 DEF

1

pi0

ni

1

1

pi1 1 pi0– pi1–

Figure 5.2 The CASE and ENDCASE actors, annotated with IDF analysis quantities.
This particular pair of actors implement a three-way case, however, any number of
outputs are admissible.

pn

pnm
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Using the CASE and ENDCASE actors, we can produce the three-way branch

analog to the canonical if-then-else construct, as shown in figure 5.3. By a straightfor-

ward generalization of the techniques of section 3.2, we can determine the repetition vec-

tor for the graph; it is simply

(4-2)

By analogy with BDF theory, we now interpret expressions like  as the num-

ber of tokens on control stream 1 with value 0 during a complete cycle divided by the

number of tokens on stream 1 in a complete cycle, and then find the smallest integer solu-

tion. We then find that there is only one control token per complete cycle and the repeti-

tion vector is

(4-3)

where  is 1 if the control token is 0 and 0 otherwise, and  is 1 if the control token is

1 and 0 otherwise. Furthermore, it is a simple matter to generalize the clustering algo-

rithm of section 3.3 to cluster graphs such as this to form multi-way case statements, like

the “switch” construct in the C programming language.

Type 2 arcs, in which the number of tokens transferred on an arc is proportional to

the value of an integer control token, introduce a new complication into IDF theory. If we
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Figure 5.3 A three-way CASE statement. The numbers adjacent to arcs and on actors
merely identify them; all actors other than CASE and ENDCASE are homogeneous.
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have even a single type 2 arc in the system, we immediately have unbounded memory,

because there is no limit on how large an integer control token’s value might be1. But

there are very distinct differences between a case like the IDF graph of figure 5.1 (b) and

a BDF graph with data-dependent iteration. The BDF graph may represent a system that

never halts; however, we can be assured that the IDF system always terminates. With the

IDF system, it is also a simpler matter to determine the number of times each actor is exe-

cuted. While the cycle length and the memory required are not absolutely bounded, both

are bounded if we possess an upper bound on the value of the computed tokens, and fur-

thermore they are guaranteed to be finite even without such a bound. Thus for IDF we

have an important distinction between “bounded length schedule” and “finite length

schedule” and we can speak of bounds that are functions of the maximum values of cer-

tain control tokens.

It may be possible to combine the advantages of IDF and BDF in cases like figure

5.1. Note that we could construct subsystems with behavior corresponding to the IOTA

and SUM actors of figure 5.1 (b) out of BDF actors. IDF analysis permits us to easily

determine the number of executions of each actor. We can now remove the cluster bound-

aries of the IOTA and SUM systems and schedule the collection of actors as BDF actors,

thereby assuring that memory is bounded. What we have accomplished that could not be

obtained by BDF theory alone is that we know the number of times the actors are exe-

cuted; since BDF knows only about relationships between Boolean tokens and knows

nothing about the properties of the DECREMENT and COMPARE-TO-ZERO actors that

might make up IOTA and SUM, it is not capable of reaching these conclusions.

1. For certain actors, it might be possible to exploit properties of the actor’s semantics to avoid
unbounded memory. For example, all outputs of a REPEAT actor have the same value, and
depending on the context, it might be possible to use a size-1 shared buffer to hold the value rather
than a buffer of unbounded size.
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•

FURTHER WORK

6

Graduate? But I’m not done yet!

— J. T. Buck

It is rare indeed when any line of research can be considered completed, and there

is much remaining work to do on the token flow model. This chapter summarizes the

principal lines of investigation now being considered as an answer to the question

“What’s next?”. There are theoretical issues having to do with answering open questions

about the material presented in Chapter 3, implementation of the current theory is incom-

plete, and there is also the task of extending BDF to fully support parallel scheduling.

The last topic, parallel scheduling of dynamic dataflow graphs, is worthy of a thesis topic

all on its own, and [Ha92] is such a thesis, and has a bibliography pointing to other work

in the field. To avoid significantly expanding the size of this thesis for little gain, we will

not attempt to duplicate the full treatment of the topic given there, but rather we will sim-

ply summarize possible approaches to the use of BDF theory for parallel scheduling.
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6.1.  IMPROVING THE CLUSTERING ALGORITHM

There is a striking contrast between the completeness of the development of the

loop scheduling theory in [Bha93b] and the clustering algorithm presented in section 3.3.

To summarize, we find that we can completely cluster regular dataflow graphs into single

appearance schedules provided that they have no tightly interdependent components, and

we have algorithms for finding such components. Even if tightly interdependent compo-

nents exist, we can still find efficient looped schedules for the remainder of the graph,

with repeated appearances only for the actors that appear in the tightly interdependent

components. A family of divide-and-conquer algorithms is presented that decomposes

the loop scheduling problem for regular dataflow graphs into a set of smaller problems.

No such complete theory exists for the BDF loop scheduling problem; instead, we

have presented a series of transformations that simplify the structure but that may not

succeed in completely clustering it, without any sort of precise indication of the proper-

ties of the class of graphs that can be completely clustered. One possible line of investiga-

tion is to find divide-and-conquer algorithms for BDF graphs that attempt to separate out

the parts of the graph whose execution depends on particular Boolean streams.

6.2.  PROVING THAT UNBOUNDED MEMORY IS REQUIRED

In section 3.4.2, we provide a technique for proving that a BDF graph requires

unbounded memory. It appears that the fourth condition we give for proving that

unbounded memory is required, given that we can reach state  from state , is too

strong. Is it really required that we check every intermediate state as described on

page 102? This check may be expensive in some cases, and may not even be needed

given that the first three conditions are satisfied. At minimum, it should be possible to

find a weaker condition.

6.3.  USE OF ASSERTIONS

We have at several points discussed the use of user-supplied assertions to provide

µ' µ
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the BDF analysis system with more information than it can directly obtain from the

graph. One assertion that is relatively easy to use is the statement that two Boolean

streams are equal. Such assertions can be added when a system is found to be only

weakly consistent because the system could not prove two streams to be equal, as in the

example in figure 4.6, as discussed in section 4.3.1. Given this type of assertion, the clus-

tering algorithm can usually reduce the graph to standard control structures.

There is another type of assertion that may be useful in cases where the state

space would otherwise be unbounded, for example in figure 3.5. If we knew, for example,

that the Boolean control stream in this actor could never contain more than 10 TRUE

tokens in a row, then the graph could be scheduled in bounded memory. The state space

in such cases could be quite large, and it would be desirable to find efficient ways to han-

dle such cases in an efficient way.

6.4.  PARALLEL SCHEDULING OF BDF GRAPHS

Parallel scheduling of dynamic dataflow graphs is a topic worthy of a dissertation

in itself; in fact, my colleague Soonhoi Ha recently completed such a project [Ha92]. It

has not, however, been the main focus of research on the token flow model, which has

been concerned mainly with the consistency properties of the graphs and with the genera-

tion of sequential schedules. However, it has always been our intention to extend the

analysis principles of the token flow model to encompass parallel scheduling, and accord-

ingly this section points out directions for parallel scheduling of such graphs. This section

is unavoidably sketchy and lacking in detail.

The first possibility is to build on the work of Lee [Lee88] and Ha [Ha91],

[Ha92], in which standard dynamic constructs are scheduled using quasi-static methods.

These techniques produce parallel schedules based on the simplifying assumption that the

control stream that controls each dynamic construct (if-then-else, multi-way switch, do-

while, or recursion) has known statistics and that these streams can be considered as
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being independent of each other. These assumptions are clearly violated in practice, but at

least yield a good starting point. By coupling the BDF clustering algorithm (and its gen-

eralization to IDF) with this quasi-static scheduling framework, a greater variety of con-

trol structures could be automatically recognized.

For the case of BDF graphs with bounded-length schedules, another approach is

feasible that does not require any assumptions about the statistics of the Boolean control

streams. In this approach, which is appropriate for hard real-time systems in which dead-

lines must be met, our scheduling criterion is to minimize the worst-case execution time

of the schedule, or to produce a schedule that assures that a deadline is met regardless of

the outcomes of the Boolean control streams. For all but the most trivial cases, either of

these criteria lead to an NP-complete problem, meaning that it belongs to a class of prob-

lems for which the only known solutions require time that is exponential in the size of the

problem (see [Gar79] for a thorough discussion on the theory of NP-completeness). We

must therefore settle for heuristic, suboptimal solutions.

It appears reasonable to generalize heuristic algorithms based on the critical path

algorithm [Ada74], which generates near-optimal schedules when communication costs

are not included, or the various heuristic algorithms discussed in [Sih91] that do take

communication costs into account, to work with the annotated acyclic precedence graphs

discussed in section 3.2.2. In effect, we generate one schedule for each of the possible

Boolean outcomes. There are some complications added by the requirement that Boolean

control tokens be communicated between processors when a computation on one proces-

sor depends on Boolean tokens generated on another processor. This may effect the com-

munication costs generated by certain partitions.
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