Panel: What Comes After C++ in System-Level Specification

Forum on Design Languages

Workshop on System Specification & Design Languages

Edward Lee
UC Berkeley

September 4-8, 2000 - Tübingen, Germany

What is C++

- Object-oriented language
 - Abstract data types
 - Polymorphism
 - Inheritance

- No concurrency
 - Sequential flow of control

It is not a system-level specification language!
What About Java?

- Has (very low level) concurrency
 - threads
 - monitors

- Threads are hard to use! Sun says in the on-line Java tutorial:
 "The first rule of using threads is this: avoid them if you can. Threads can be difficult to use, and they tend to make programs harder to debug."

- Threads are a poor model for concurrent hardware.

What is System C?

- An elaborate design pattern
 - happens to be defined as a set of C++ classes
 - has semantics well beyond those of C++
 - is more properly viewed as a new language than as C++

- A concurrency model
 - cycle driven (discrete-time)
 - multirate (some discrete-event flavor)

This is a system-level specification language, but it is not C++.
- Is it the right SLDL?
- Is it sufficient?
Using the syntax of C++ does not mean you are programming in C++!

Many languages use the Roman alphabet, but that does not make them Latin.

The warm, fuzzy familiarity of the syntax of C++ is a marketing tool, not a technical tool.

Tower of Babel, by Bruegel, 1563

© 2000 Edward A. Lee, UC Berkeley

Proposed Focus: Component Frameworks

- What is a component? (ontology)
- What knowledge do components share? (epistemology)
 - Time? Name spaces? Signals? State?
- How do components communicate? (protocols)
- What do components communicate? (lexicon)
 - Objects? Transfer of control? Data structures? ASCII text?

© 2000 Edward A. Lee, UC Berkeley
A Class of Concurrent Frameworks: Producer / Consumer

Are actors active? passive? reactive? cycle-driven?

```
action {
  ...
  write();
  ...
}
```

Are communications timed? synchronized? buffered?

```
action {
  ...
  read();
  ...
}
```

Concurrent Component Frameworks

- CSP - concurrent threads with rendezvous
- CT - continuous-time modeling
- DE - discrete-event systems
- DT - discrete time (cycle driven)
- PN - process networks
- SDF - synchronous dataflow
- SR - synchronous/reactive

There are many more possibilities!

Survival of the fittest is the only reasonable way to choose among these.

© 2000 Edward A. Lee, UC Berkeley
Interoperability Levels

- Code can be written to translate the data from one tool to be used by another.
- Tools can open each other’s files and extract useful information (not necessarily all useful information).
- Tools can interoperate dynamically, exchanging information at run time.

Syntax alone achieves none of these.

Conclusions

- Any nice unified system-level design language is destined to be a drowning cathedral.
- This is socket science!
- "Strategy is better than strength"
 - proverb from the Hausa culture of Nigeria
What is UML?

- A family of graphical notations
 - object models
 - interaction diagrams
 - statecharts
 - package diagrams
 - use diagrams

- Very weak at expressing concurrency (except its statecharts model, which has a specialized form of concurrency)