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Component Frameworks

l What is a component? (ontology)
– States? Processes? Threads? Differential equations? 

Constraints? Objects (data + methods)?
l What knowledge do components share? (epistemology)

– Time? Name spaces? Signals? State?
l How do components communicate? (protocols)

– Rendezvous? Message passing? Continuous-time signals? 
Streams? Method calls? Events in time?

l What do components communicate? (lexicon)
– Objects? Transfer of control? Data structures? ASCII text?
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A Laboratory for Exploring 
Component Frameworks

Ptolemy II –
– Java based, network integrated
– Several frameworks implemented

– A realization of a framework is 
called a “domain.”  Multiple domains 
can be mixed hierarchically in the 
same model.

http://ptolemy.eecs.berkeley.edu
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action {
…
read();
…

}

A Class of Concurrent Frameworks: 
Producer / Consumer

action {
…
write();
…

}

channel

port port

receiver

Are actors active? passive? reactive?
Flow of control is mediated by a director.

Are communications timed? synchronized? buffered?
Communications are mediated by receivers.
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Domain – Realization of a 
Component Framework

l CSP – concurrent threads with rendezvous
l CT – continuous-time modeling
l DE – discrete -event systems
l DT – discrete time (cycle driven)
l PN – process networks
l SDF – synchronous dataflow
l SR – synchronous/reactive

Each of these defines a component ontology and an interaction 
semantics between components. There are many more 
possibilities!

Each is realized 
as a director and 
a receiver class
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1. Continuous Time (Coupled ODEs)

Semantics:
– actors define relations 

between functions of 
time (ODEs or algebraic 
equations)

– a behavior is a set of 
signals satisfying these 
relations

Examples:
• Spice,
• HP ADS, 
• Simulink, 
• Saber,
• Matrix X, 
• …
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1. Continuous Time in Ptolemy II

The continuous time 
(CT) domain in 
Ptolemy II models 
components 
interacting by 
continuous-time 
signals. A variable-
step size, Runge-
Kutta ODE solver is 
used, augmented with 
discrete-event 
management (via 
modeling of Dirac 
delta functions). 
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1. CT Block Diagram

© 2000 Edward A. Lee, UC Berkeley

1. CT: Strengths and Weaknesses

Strengths:
– Accurate model for many physical systems
– Determinate under simple conditions 
– Established and mature (approximate) simulation techniques

Weaknesses:
– Covers a narrow application domain
– Tightly bound to an implementation
– Relatively expensive to simulate
– Difficult to implement in software
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2. Discrete Time

Semantics:
– blocks are relations 

between functions of 
discrete time 
(difference equations)

– a behavior is a set of 
signals satisfying these 
relations

z-1 z-1 z-1 z-1

Examples:
• System C
• HP Ptolemy, 
• SystemView,
• ...

© 2000 Edward A. Lee, UC Berkeley

2. DT: Strengths and Weaknesses

Strengths:
– Useful model for embedded DSP
– Determinate under simple conditions 
– Easy simulation (cycle-based)
– Easy implementation (circuits or software)

Weaknesses:
– Covers a narrow application domain
– Global synchrony may overspecify some systems
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3. Discrete Events

Examples:
• SES Workbench,
• Bones,
• VHDL
• Verilog
• ...

Semantics:
– Events occur at discrete 

points on a time line that 
is often a continuum. The 
components react to 
events in chronological 
order.

time

events
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3. Discrete-Events in Ptolemy II

The discrete-event 
(DE) domain in 
Ptolemy II models 
components 
interacting by 
discrete events 
placed in time. A 
calendar queue 
scheduler is used for 
efficient event 
management, and 
simultaneous events 
are handled 
systematically and 
deterministically.
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3. DE: Strengths and Weaknesses

Strengths:
– Natural for asynchronous digital hardware
– Global synchronization
– Determinate under simple conditions 
– Simulatable under simple conditions

Weaknesses:
– Expensive to implement in software
– May over-specify and/or over-model systems
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Mixing Domains
Example: MEMS Accelerometer

+
-

Digital

T

V/F

M. A. Lemkin, “Micro Accelerometer 
Design with Digital Feedback Control”,
Ph.D. dissertation, EECS, University of 
California, Berkeley, Fall 1997
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Accelerometer Applet

This model mixes 
two Ptolemy II 
domains, DE 
(discrete events) 
and CT 
(continuous time).
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Hierarchical Heterogeneous Models

Continuous-time model Discrete-event model



l10

© 2000 Edward A. Lee, UC Berkeley

Hierarchical Heterogeneity vs.
Amorphous Heterogeneity

Color is a domain, which defines 
both the flow of control and 
interaction protocols.

Hierarchical

Color is a communication protocol 
only, which interacts in 
unpredictable ways with the flow 
of control.

Amorphous
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4. Synchronous/Reactive Models

l A discrete model of time progresses as a 
sequence of “ticks.” At a tick, the signals 
are defined by a fixed point equation:
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Examples:
• Esterel,
• Lustre,
• Signal,
• Argos,
• ...
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4. SR: Strengths and Weaknesses

Strengths:
– Good match for control-intensive systems
– Tightly synchronized
– Determinate in most cases 
– Maps well to hardware and software

Weaknesses:
– Computation-intensive systems are overspecified
– Modularity is compromised
– Causality loops are possible
– Causality loops are hard to detect
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5. Process Networks

l Processes are prefix-
monotonic functions mapping 
sequences into sequences.

l One implementation uses 
blocking reads, non-blocking 
writes, and unbounded FIFO 
channels.

A

C
B

process

channel stream

Examples:
• SDL,
• Unix pipes,
• ...
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5. Strengths and Weaknesses

Strengths:
– Loose synchronization (distributable)
– Determinate under simple conditions
– Implementable under simple conditions
– Maps easily to threads, but much easier to use
– Turing complete (expressive)

Weaknesses:
– Control-intensive systems are hard to specify
– Bounded resources are undecidable
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6. Dataflow

l A special case of process 
networks where a process is 
made up of a sequence of 
firings (finite, atomic 
computations).

l Similar to Petri nets, but 
ordering is preserved in 
places.

A

C
B

actor

channel stream

Examples:
• SPW,
• HP Ptolemy, 
• Cossap,
• ...
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6. Strengths and Weaknesses

Strengths:
– Good match for signal processing
– Loose synchronization (distributable)
– Determinate under simple conditions
– Special cases map well to hardware and embedded software

Weakness:
– Control-intensive systems are hard to specify
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6. Special Case: SDF

Synchronous dataflow (SDF)

fire B {
…
consume M
…

}

fire A {
…
produce N
…

}

channel

port port

l Balance equations (one for each channel):
FAN = FBM

l Schedulable statically
l Decidable resource requirements
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7. Rendezvous Models

l Events represent rendezvous 
of a sender and a receiver. 
Communication is unbuffered
and instantaneous.

l Often implicitly assumed 
with “process algebra” or 
even “concurrent.” A

C
B

process

events

a a1 2, ,.. .

b b1 2, , .. .

Examples:
• CSP,
• CCS,
• Occam,
• Lotos,
• ...
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7. Strengths and Weaknesses

Strengths:
– Models resource sharing well
– Partial-order synchronization (distributable)
– Supports naturally nondeterminate interactions

Weaknesses:
– Oversynchronizes some systems
– Difficult to make determinate (and useful)
– Difficult to avoid deadlock
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Making Sense of the Options: 
Component Interfaces

l Represent not just data types, but 
interaction types as well.

Int

Double

SDF1

DE1

value conversion behavior conversion

© 2000 Edward A. Lee, UC Berkeley

Approach – System-Level Types

General

String

ScalarBoolean

Complex

Double

Long

Int

NaT

actoractor

represent interaction semantics 
as types on these ports.

Need a new type lattice representing
subclassing & ad-hoc convertibility.
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Our Hope –
Polymorphic Interfaces

actoractor

polymorphic interfaces

© 2000 Edward A. Lee, UC Berkeley

More Common Approach –
Interface Synthesis

actoractor

protocol
adapter

rigid, pre-defined interfaces
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Receiver Object ModelIOPort

FIFOQueue

1..1

1..1

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

0..1 0..n

QueueReceiver

NoRoomException

throws
NoTokenException

throws

PNReceiver

«Interface»
ProcessReceiver

CSPReceiver

SDFReceiver

ArrayFIFOQueue

1..1
1..1

DEReceiverMailbox

CTReceiver
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Receiver Interface

l get() : Token
l put(t : Token)
l hasRoom() : boolean
l hasToken() : boolean

The common interface makes it possible 
to define components that operate in 
multiple domains.
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SDF Receiver Type Signature

has
Token

no
Token

p/v g/t

g/e

h/1g/t

h/0

p/v

SDF1
Input alphabet:

g: get
p: put
h: hasToken

Output alphabet:
0: false
1: true
t: token
v: void
e: exception

© 2000 Edward A. Lee, UC Berkeley

DE Receiver Type Signature

Input alphabet:
g: get
p: put
h: hasToken

Output alphabet:
0: false
1: true
t: token
v: void
e: exception

has
Token

no
Token

p/v g/t

h/1g/t

p/v

g/eh/0
p/v

DE1

Put does not 
necessarily 
result in 
immediate 
availability of 
the data.

This automaton simulates the previous oneThis automaton simulates the previous one
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Type Lattice

NaT

CT1

PN1

SDF1

DE1

CSP1

DP

Simulation relation

Simulation relation:

A relation between 
state spaces so that 
the upper machine 
simulates the behavior 
of the lower one.
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Domain Polymorphism

Components have meaning in multiple domains.

– Make the inputs as general as possible
l Design to a receiver automaton that simulates that of several 

domains.

– Make the outputs as specific as possible
l Design to a receiver automaton that is simulated by that of 

several domains.

Resolve to the most specific design that meets all the constraints.
Formulation: Least fixed point of a monotonic 
function on a type lattice.
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PN Receiver Type Signature

Input alphabet:
g: get
p: put
h: hasToken

Output alphabet:
0: false
1: true
t: token
v: void
e: exception

has
Token

h/1g/t

p/v

stall
csmr

g

p/t

h/1

g
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CSP Receiver Type Signature

Input alphabet:
g: get
p: put
h: hasToken

Output alphabet:
0: false
1: true
t: token
v: void
e: exception

CSP1

stall
csmr

no
Token

p/t

stall
pdcr

g/t

h/0

h/1

gp

h/0

gp
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NaT

CT1

PN1

SDF1

DE1

CSP1

DP

Incomparable types:

PN and CSP are 
incomparable with DE 
and SDF.  Does this 
mean we cannot design 
polymorphic
components?  No, it 
means we need to 
design them to the 
least upper bound.

Type Lattice
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has
Token stall

csmr

g

no
Token

p/v
g/t

g/e

p/t

h/1

p/t
stall
pdcr

g/t

p

g/t

p/v

g/t

h/0

h/1h/1

gp

p/v

h/0

gp

DP

Domain Polymorphic 
Type Signature

Input alphabet:
g: get
p: put
h: hasToken

Output alphabet:
0: false
1: true
t: token
v: void
e: exception
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NaT

CT1

PN1

SDF1

DE1

CSP1

DP

Constraints:

Actors impose 
inequality constraints 
w.r.t. this lattice.  
Connectivity also 
imposes constraints. 
Find the least solution 
that satisfies all 
constraints.

Type Lattice

Finding the bottom element 
identifies a type conflict.
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*Charts: 
Exploiting Domain Polymorphism

A

C

D

B

x
y

z

G
F

E

x
y

z

G
F

E

FSM domain
Modal model

XXX domain

YYY domain

Domain-polymorphic
component interface
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Special Case: Hybrid Systems

The stickiness is exponentially decaying with respect to time. 

Example: Two point 
masses on springs on 
a frictionless table.  
They collide and stick 
together.
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Hybrid System: Block Diagram

out = k1*(y1 - in)/m1

out = k2*(y2 - in)/m2

=?

P
1

P
2

V1

V2

C

out = (k 1*y1+ k2*y2  - in)/(m 1+m2 )

P
1

V

P2

out = k1*(y1-in) - k2*(y2  - in)
Fs

St

C

P:=P1
V:=(V 1*m1+V2*m2 )/(m1+m2)

s:=5

|Fs|>St

P
1
:=P

P2:=P
V1:=V
V2:=V

P1

P
2

Plot

-s

FSM domain

CT domain

CT CT
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Ptolemy II Execution

Because of domain 
polymorphism, 
Ptolemy II can 
combine FSMs 
hierarchically with 
any other domain, 
delivering models like
statecharts (with 
SR) and SDL (with 
process networks) 
and many other 
modal modeling 
techniques. 
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Summary

l There is a rich set of component interaction models
l Hierarchical heterogeneity

– more understandable designs than amorphous heterogeneity
l System-level types

– Ensure component compatibility
– Clarify interfaces
– Provide the vocabulary for design patterns
– Promote modularity and polymorphic component design

l Domain polymorphism
– More flexible component libraries
– A very powerful approach to heterogeneous modeling
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