
l1

Concurrent Models of Computation
in System Level Design

Edward Lee
UC Berkeley

Forum on Design Languages

Workshop on System
Specification & Design
Languages

September 4-8, 2000 -
Tübingen, Germany

© 2000 Edward A. Lee, UC Berkeley

Actuator

controller

Br Acc

Ba

plant

dynamics sensors

S

Components and Composition

modal model

continuous-
time model

mode models

discrete-event
model

Hierarchical,
heterogenous,
system-level
model

l2

© 2000 Edward A. Lee, UC Berkeley

Component Frameworks

l What is a component? (ontology)
– States? Processes? Threads? Differential equations?

Constraints? Objects (data + methods)?
l What knowledge do components share? (epistemology)

– Time? Name spaces? Signals? State?
l How do components communicate? (protocols)

– Rendezvous? Message passing? Continuous-time signals?
Streams? Method calls? Events in time?

l What do components communicate? (lexicon)
– Objects? Transfer of control? Data structures? ASCII text?

© 2000 Edward A. Lee, UC Berkeley

A Laboratory for Exploring
Component Frameworks

Ptolemy II –
– Java based, network integrated
– Several frameworks implemented

– A realization of a framework is
called a “domain.” Multiple domains
can be mixed hierarchically in the
same model.

http://ptolemy.eecs.berkeley.edu

l3

© 2000 Edward A. Lee, UC Berkeley

action {
…
read();
…

}

A Class of Concurrent Frameworks:
Producer / Consumer

action {
…
write();
…

}

channel

port port

receiver

Are actors active? passive? reactive?
Flow of control is mediated by a director.

Are communications timed? synchronized? buffered?
Communications are mediated by receivers.

© 2000 Edward A. Lee, UC Berkeley

Domain – Realization of a
Component Framework

l CSP – concurrent threads with rendezvous
l CT – continuous-time modeling
l DE – discrete -event systems
l DT – discrete time (cycle driven)
l PN – process networks
l SDF – synchronous dataflow
l SR – synchronous/reactive

Each of these defines a component ontology and an interaction
semantics between components. There are many more
possibilities!

Each is realized
as a director and
a receiver class

l4

© 2000 Edward A. Lee, UC Berkeley

1. Continuous Time (Coupled ODEs)

Semantics:
– actors define relations

between functions of
time (ODEs or algebraic
equations)

– a behavior is a set of
signals satisfying these
relations

Examples:
• Spice,
• HP ADS,
• Simulink,
• Saber,
• Matrix X,
• …

© 2000 Edward A. Lee, UC Berkeley

1. Continuous Time in Ptolemy II

The continuous time
(CT) domain in
Ptolemy II models
components
interacting by
continuous-time
signals. A variable-
step size, Runge-
Kutta ODE solver is
used, augmented with
discrete-event
management (via
modeling of Dirac
delta functions).

l5

© 2000 Edward A. Lee, UC Berkeley

1. CT Block Diagram

© 2000 Edward A. Lee, UC Berkeley

1. CT: Strengths and Weaknesses

Strengths:
– Accurate model for many physical systems
– Determinate under simple conditions
– Established and mature (approximate) simulation techniques

Weaknesses:
– Covers a narrow application domain
– Tightly bound to an implementation
– Relatively expensive to simulate
– Difficult to implement in software

l6

© 2000 Edward A. Lee, UC Berkeley

2. Discrete Time

Semantics:
– blocks are relations

between functions of
discrete time
(difference equations)

– a behavior is a set of
signals satisfying these
relations

z-1 z-1 z-1 z-1

Examples:
• System C
• HP Ptolemy,
• SystemView,
• ...

© 2000 Edward A. Lee, UC Berkeley

2. DT: Strengths and Weaknesses

Strengths:
– Useful model for embedded DSP
– Determinate under simple conditions
– Easy simulation (cycle-based)
– Easy implementation (circuits or software)

Weaknesses:
– Covers a narrow application domain
– Global synchrony may overspecify some systems

l7

© 2000 Edward A. Lee, UC Berkeley

3. Discrete Events

Examples:
• SES Workbench,
• Bones,
• VHDL
• Verilog
• ...

Semantics:
– Events occur at discrete

points on a time line that
is often a continuum. The
components react to
events in chronological
order.

time

events

© 2000 Edward A. Lee, UC Berkeley

3. Discrete-Events in Ptolemy II

The discrete-event
(DE) domain in
Ptolemy II models
components
interacting by
discrete events
placed in time. A
calendar queue
scheduler is used for
efficient event
management, and
simultaneous events
are handled
systematically and
deterministically.

l8

© 2000 Edward A. Lee, UC Berkeley

3. DE: Strengths and Weaknesses

Strengths:
– Natural for asynchronous digital hardware
– Global synchronization
– Determinate under simple conditions
– Simulatable under simple conditions

Weaknesses:
– Expensive to implement in software
– May over-specify and/or over-model systems

© 2000 Edward A. Lee, UC Berkeley

Mixing Domains
Example: MEMS Accelerometer

+
-

Digital

T

V/F

M. A. Lemkin, “Micro Accelerometer
Design with Digital Feedback Control”,
Ph.D. dissertation, EECS, University of
California, Berkeley, Fall 1997

l9

© 2000 Edward A. Lee, UC Berkeley

Accelerometer Applet

This model mixes
two Ptolemy II
domains, DE
(discrete events)
and CT
(continuous time).

© 2000 Edward A. Lee, UC Berkeley

text

K(z)Sin + 1/s 1/s

ZOH

DE
CT

Sampler

ZeroOrderHold

CTPlot

IntegratorIntegrator

Gain

Gain

Gain

GainSource
FIRFilter Quantizer

accumulator DEPlot

Hierarchical Heterogeneous Models

Continuous-time model Discrete-event model

l10

© 2000 Edward A. Lee, UC Berkeley

Hierarchical Heterogeneity vs.
Amorphous Heterogeneity

Color is a domain, which defines
both the flow of control and
interaction protocols.

Hierarchical

Color is a communication protocol
only, which interacts in
unpredictable ways with the flow
of control.

Amorphous

© 2000 Edward A. Lee, UC Berkeley

4. Synchronous/Reactive Models

l A discrete model of time progresses as a
sequence of “ticks.” At a tick, the signals
are defined by a fixed point equation:

A

C
B

x

y
z

x
y

z

f
f z

f x y

A t

B t

C t

L

N
MMM
O

Q
PPP
=
L

N
MMM

O

Q
PPP

,

,

,

()
()

(,)

1
Examples:
• Esterel,
• Lustre,
• Signal,
• Argos,
• ...

l11

© 2000 Edward A. Lee, UC Berkeley

4. SR: Strengths and Weaknesses

Strengths:
– Good match for control-intensive systems
– Tightly synchronized
– Determinate in most cases
– Maps well to hardware and software

Weaknesses:
– Computation-intensive systems are overspecified
– Modularity is compromised
– Causality loops are possible
– Causality loops are hard to detect

© 2000 Edward A. Lee, UC Berkeley

5. Process Networks

l Processes are prefix-
monotonic functions mapping
sequences into sequences.

l One implementation uses
blocking reads, non-blocking
writes, and unbounded FIFO
channels.

A

C
B

process

channel stream

Examples:
• SDL,
• Unix pipes,
• ...

l12

© 2000 Edward A. Lee, UC Berkeley

5. Strengths and Weaknesses

Strengths:
– Loose synchronization (distributable)
– Determinate under simple conditions
– Implementable under simple conditions
– Maps easily to threads, but much easier to use
– Turing complete (expressive)

Weaknesses:
– Control-intensive systems are hard to specify
– Bounded resources are undecidable

© 2000 Edward A. Lee, UC Berkeley

6. Dataflow

l A special case of process
networks where a process is
made up of a sequence of
firings (finite, atomic
computations).

l Similar to Petri nets, but
ordering is preserved in
places.

A

C
B

actor

channel stream

Examples:
• SPW,
• HP Ptolemy,
• Cossap,
• ...

l13

© 2000 Edward A. Lee, UC Berkeley

6. Strengths and Weaknesses

Strengths:
– Good match for signal processing
– Loose synchronization (distributable)
– Determinate under simple conditions
– Special cases map well to hardware and embedded software

Weakness:
– Control-intensive systems are hard to specify

© 2000 Edward A. Lee, UC Berkeley

6. Special Case: SDF

Synchronous dataflow (SDF)

fire B {
…
consume M
…

}

fire A {
…
produce N
…

}

channel

port port

l Balance equations (one for each channel):
FAN = FBM

l Schedulable statically
l Decidable resource requirements

l14

© 2000 Edward A. Lee, UC Berkeley

7. Rendezvous Models

l Events represent rendezvous
of a sender and a receiver.
Communication is unbuffered
and instantaneous.

l Often implicitly assumed
with “process algebra” or
even “concurrent.” A

C
B

process

events

a a1 2, ,.. .

b b1 2, , .. .

Examples:
• CSP,
• CCS,
• Occam,
• Lotos,
• ...

© 2000 Edward A. Lee, UC Berkeley

7. Strengths and Weaknesses

Strengths:
– Models resource sharing well
– Partial-order synchronization (distributable)
– Supports naturally nondeterminate interactions

Weaknesses:
– Oversynchronizes some systems
– Difficult to make determinate (and useful)
– Difficult to avoid deadlock

l15

© 2000 Edward A. Lee, UC Berkeley

Making Sense of the Options:
Component Interfaces

l Represent not just data types, but
interaction types as well.

Int

Double

SDF1

DE1

value conversion behavior conversion

© 2000 Edward A. Lee, UC Berkeley

Approach – System-Level Types

General

String

ScalarBoolean

Complex

Double

Long

Int

NaT

actoractor

represent interaction semantics
as types on these ports.

Need a new type lattice representing
subclassing & ad-hoc convertibility.

l16

© 2000 Edward A. Lee, UC Berkeley

Our Hope –
Polymorphic Interfaces

actoractor

polymorphic interfaces

© 2000 Edward A. Lee, UC Berkeley

More Common Approach –
Interface Synthesis

actoractor

protocol
adapter

rigid, pre-defined interfaces

l17

© 2000 Edward A. Lee, UC Berkeley

Receiver Object ModelIOPort

FIFOQueue

1..1

1..1

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

0..1 0..n

QueueReceiver

NoRoomException

throws
NoTokenException

throws

PNReceiver

«Interface»
ProcessReceiver

CSPReceiver

SDFReceiver

ArrayFIFOQueue

1..1
1..1

DEReceiverMailbox

CTReceiver

© 2000 Edward A. Lee, UC Berkeley

Receiver Interface

l get() : Token
l put(t : Token)
l hasRoom() : boolean
l hasToken() : boolean

The common interface makes it possible
to define components that operate in
multiple domains.

l18

© 2000 Edward A. Lee, UC Berkeley

SDF Receiver Type Signature

has
Token

no
Token

p/v g/t

g/e

h/1g/t

h/0

p/v

SDF1
Input alphabet:

g: get
p: put
h: hasToken

Output alphabet:
0: false
1: true
t: token
v: void
e: exception

© 2000 Edward A. Lee, UC Berkeley

DE Receiver Type Signature

Input alphabet:
g: get
p: put
h: hasToken

Output alphabet:
0: false
1: true
t: token
v: void
e: exception

has
Token

no
Token

p/v g/t

h/1g/t

p/v

g/eh/0
p/v

DE1

Put does not
necessarily
result in
immediate
availability of
the data.

This automaton simulates the previous oneThis automaton simulates the previous one

l19

© 2000 Edward A. Lee, UC Berkeley

Type Lattice

NaT

CT1

PN1

SDF1

DE1

CSP1

DP

Simulation relation

Simulation relation:

A relation between
state spaces so that
the upper machine
simulates the behavior
of the lower one.

© 2000 Edward A. Lee, UC Berkeley

Domain Polymorphism

Components have meaning in multiple domains.

– Make the inputs as general as possible
l Design to a receiver automaton that simulates that of several

domains.

– Make the outputs as specific as possible
l Design to a receiver automaton that is simulated by that of

several domains.

Resolve to the most specific design that meets all the constraints.
Formulation: Least fixed point of a monotonic
function on a type lattice.

l20

© 2000 Edward A. Lee, UC Berkeley

PN Receiver Type Signature

Input alphabet:
g: get
p: put
h: hasToken

Output alphabet:
0: false
1: true
t: token
v: void
e: exception

has
Token

h/1g/t

p/v

stall
csmr

g

p/t

h/1

g

© 2000 Edward A. Lee, UC Berkeley

CSP Receiver Type Signature

Input alphabet:
g: get
p: put
h: hasToken

Output alphabet:
0: false
1: true
t: token
v: void
e: exception

CSP1

stall
csmr

no
Token

p/t

stall
pdcr

g/t

h/0

h/1

gp

h/0

gp

l21

© 2000 Edward A. Lee, UC Berkeley

NaT

CT1

PN1

SDF1

DE1

CSP1

DP

Incomparable types:

PN and CSP are
incomparable with DE
and SDF. Does this
mean we cannot design
polymorphic
components? No, it
means we need to
design them to the
least upper bound.

Type Lattice

© 2000 Edward A. Lee, UC Berkeley

has
Token stall

csmr

g

no
Token

p/v
g/t

g/e

p/t

h/1

p/t
stall
pdcr

g/t

p

g/t

p/v

g/t

h/0

h/1h/1

gp

p/v

h/0

gp

DP

Domain Polymorphic
Type Signature

Input alphabet:
g: get
p: put
h: hasToken

Output alphabet:
0: false
1: true
t: token
v: void
e: exception

l22

© 2000 Edward A. Lee, UC Berkeley

NaT

CT1

PN1

SDF1

DE1

CSP1

DP

Constraints:

Actors impose
inequality constraints
w.r.t. this lattice.
Connectivity also
imposes constraints.
Find the least solution
that satisfies all
constraints.

Type Lattice

Finding the bottom element
identifies a type conflict.

© 2000 Edward A. Lee, UC Berkeley

*Charts:
Exploiting Domain Polymorphism

A

C

D

B

x
y

z

G
F

E

x
y

z

G
F

E

FSM domain
Modal model

XXX domain

YYY domain

Domain-polymorphic
component interface

l23

© 2000 Edward A. Lee, UC Berkeley

Special Case: Hybrid Systems

The stickiness is exponentially decaying with respect to time.

Example: Two point
masses on springs on
a frictionless table.
They collide and stick
together.

© 2000 Edward A. Lee, UC Berkeley

Hybrid System: Block Diagram

out = k1*(y1 - in)/m1

out = k2*(y2 - in)/m2

=?

P
1

P
2

V1

V2

C

out = (k 1*y1+ k2*y2 - in)/(m 1+m2)

P
1

V

P2

out = k1*(y1-in) - k2*(y2 - in)
Fs

St

C

P:=P1
V:=(V 1*m1+V2*m2)/(m1+m2)

s:=5

|Fs|>St

P
1
:=P

P2:=P
V1:=V
V2:=V

P1

P
2

Plot

-s

FSM domain

CT domain

CT CT

l24

© 2000 Edward A. Lee, UC Berkeley

Ptolemy II Execution

Because of domain
polymorphism,
Ptolemy II can
combine FSMs
hierarchically with
any other domain,
delivering models like
statecharts (with
SR) and SDL (with
process networks)
and many other
modal modeling
techniques.

© 2000 Edward A. Lee, UC Berkeley

Summary

l There is a rich set of component interaction models
l Hierarchical heterogeneity

– more understandable designs than amorphous heterogeneity
l System-level types

– Ensure component compatibility
– Clarify interfaces
– Provide the vocabulary for design patterns
– Promote modularity and polymorphic component design

l Domain polymorphism
– More flexible component libraries
– A very powerful approach to heterogeneous modeling

l25

© 2000 Edward A. Lee, UC Berkeley

Acknowledgements

The entire Ptolemy project team contributed
immensely to this work, but particularly

– John Davis
– Chamberlain Fong
– Tom Henzinger
– Christopher Hylands
– Jie Liu
– Xiaojun Liu
– Steve Neuendorffer
– Neil Smyth
– Kees Vissers
– Yuhong Xiong

