Concurrent Models of Computation
in System Level Design

Edward Lee
UC Berkeley

Components and Composition

continuous-
time model

modal model

Hierarchical,
heterogenous,
7 system-level
" mode models model

© 2000 Edward A. Lee, UC Berkeley

ol

Component Frameworks
G

e What is a component? (ontology)

- States? Processes? Threads? Differential equations?
Constraints? Objects (data + methods)?

e What knowledge do components share? (epistemology)
- Time? Name spaces? Signals? State?
e How do components communicate? (protocols)

- Rendezvous? Message passing? Continuous-time signals?
Streams? Method calls? Events in time?

e What do components communicate? (lexicon)
- Objects? Transfer of control? Data structures? ASCI I text?

© 2000 Edward A. Lee, UC Berkeley

A Laboratory for Exploring
Component Frameworks

~ * Ptolemy 11 -
-~ - Java based, network integrated
- Several frameworks implemented

A realization of a framework is
called a “domain.” Multiple domains
can be mixed hierarchically in the
same model.

http://ptolemy.eecs.berkeley.edu

© 2000 Edward A. Lee, UC Berkeley

(YA

A Class of Concurrent Frameworks:

Producer / Consumer

Are actors active? passive? reactive?

Flow of control is mediated by a

action{

channel

write(); @
port port

irector.

/receiver

Are communications timed? synchronized? buffered?
Communications are mediated by receivers.

Cmeie i meey —— —Tkeley

Domain - Realization of
Component Framework

a

CSP - concurrent threads with rendezvous
CT - continuous-time modeling

DE - discrete -event systems

DT - discrete time (cycle driven)

PN - process networks

SDF - synchronous dataflow

SR - synchronous/reactive

N

> Each is realized
as a director and
a receiver class

J

Each of these defines a component ontology and an interaction
semantics between components. There are many more

possibilities!

© 2000 Edward A. Lee, UC Berkeley

o3

1. Continuous Time (Coupled ODESs)
.|

Semantics:

- actors define relations Examples:
between functions of * Spice,
time (ODEs or algebraic HP ADS,
equations) Simulink,

 Saber,
e Matrix X,

- a behavior is a set of
signals satisfying these
relations

© 2000 Edward A. Lee, UC Berkeley

1. Continuous Time in Ptolemy 11

The continuous time
(CT) domain in -
Ptolemy 11 models = B
components

interacting by
continuous-time
signals. A variable-
step size, Runge-
Kutta ODE solver is
used, augmented with
discrete-event
management (via
modeling of Dirac
delta functions).

btolemy Project "
o 0= Document; Done

o4

1. CT Block Diagram
G

File Edit Ptalemy !l Debugger

D] D@ =
A

-1 generic frodz
i
18- sifvg
B4
- -[®] cTRuttonEvent
i -[#] cTPerindicsampler
: tegratol
: -[®] Thresholdhanitor
. [®]ZerocrossingDetectar
+ ~[®] ZernorderHold
Clde
L Afsm
[lego
_ agilent

=10/
=18 x|

LAMBDA

IntegratorX2

CTXYPlot

IntegratorX 1

IntegratorX3

Saved Clusersiealveraifiorenzigen.xml |

UC Berkeley

1. CT: Strengths and Weaknesses
|

Strengths:
- Accurate model for many physical systems
- Determinate under simple conditions
- Established and mature (approximate) simulation techniques

Weaknesses:

- Covers a narrow application domain
- Tightly bound to an implementation
- Relatively expensive to simulate

Difficult to implement in software

© 2000 Edward A. Lee, UC Berkeley

o5

2. Discrete Time

Semantics:

- blocks are relations
between functions of
discrete time
(difference equations)

Examples:
» System C
- a behavior is a set of « HP Ptolemy,
signals satisfying these « SystemView,
relations ...

© 2000 Edward A. Lee, UC Berkeley

2. DT: Strengths and Weaknesses
|

Strengths:
- Useful model for embedded DSP
- Determinate under simple conditions
- Easy simulation (cycle-based)
- Easy implementation (circuits or software)

Weaknesses:
- Covers a narrow application domain
- Global synchrony may overspecify some systems

© 2000 Edward A. Lee, UC Berkeley

[13)

3. Discrete Events

Semantics:

- Events occur at discrete
points on a time line that
is often a continuum. The
components react to
events in chronological
order.

DAl oy

Examples:

e SES Workbench,
* Bones,

* VHDL

* Verilog

L
time

© 2000 Edward A. Lee, UC Berkeley

3. Discrete-Events in Ptolemy 11

!EB

The discrete-event
(DE) domain in
Ptolemy 11 models
components

heterogenous
modeling and design

interacting by
discrete events

placed in time. A
calendar queue
scheduler is used for
efficient event

Histogram of Waiting Times

management, and
simultaneous events
are handled

||||I.|l|||| .

systematically and
deterministically.

applet uses the Ptc

'
s 0005 10 15 20 25 30 35 40 45 50 55 60

I Di

Waiting Tirme

it (DE) domain to illustrate the inspection paradox. The.

o oo a2 Bz Berkeley

o7/

3. DE: Strengths and Weaknesses

|
Strengths:

Natural for asynchronous digital hardware
Global synchronization

- Determinate under simple conditions

- Simulatable under simple conditions
Weaknesses:

- Expensive to implement in software

- May over-specify and/or over-model systems

© 2000 Edward A. Lee, UC Berkeley

Mixing Domains
Example: MEMS Accelerometer

=M. A Lemkin, “Micro Accelerometer
Design with Digital Feedback Control”,
ertation, EECS, University of

© 2000 Edward A. Lee, UC Berkeley

o8

Accelerometer Applet

3 P
Eile
[

This model mixes
two Ptolemy 11
domains, DE

heterogeneous , 1
modeling and design (g4

(discrete events)
and CT

(continuous time).

Hierarchical Heterogeneous Models

/7 I DE
cT _'E
CTPlot
»—»E_I—»n—— K@) —+
Integrator or Sampler
< FIRFilter Quanti
Gain
<]
Gain
d
\I_ ZOH 0. Z
\ A Gain ZeroOrderHold ﬁ ot DEPloL

Continuous-time model

DISC rete_ evetoomme,l Lee, UC Berkeley

o9

Hierarchical Heterogeneity vs.
Amorphous Heterogeneity

Amorphous

5 o
5[%%@

Color is a communication protocol
only, which interacts in
unpredictable ways with the flow
of control.

Hierarchical

ul

7l

D_EID

?DJ

[]

Color is a domain, which defines
both the flow of control and
interaction protocols.

© 2000 Edward A. Lee, UC Berkeley

4. Synchronous/Reactive Models

e A discrete model of time progresses as a
sequence of “ticks.” At a tick, the signals
are defined by a fixed point equation:

@
(2
Y L (X, Y)
cEy=
Z

Examples:
 Esterel,
e Lustre,
* Signal,
* Argos,

© 2000 Edward A. Lee, UC Berkeley

el10

4. SR: Strengths and Weaknesses
|

Strengths:

Weaknesses:

Good match for control-intensive systems
Tightly synchronized

Determinate in most cases

Maps well to hardware and software

Computation-intensive systems are overspecified
Modularity is compromised

Causality loops are possible

Causality loops are hard to detect

© 2000 Edward A. Lee, UC Berkeley

5. Process Networks
L]

e Processes are prefix-

monotonic functions mapping Examples:
sequences into sequences. : SD_L’ .
 Unix pipes,
e One implementation uses
blocking reads, non-blocking process
writes, and unbounded FIFO 2l oo

channels.
el
000

A

-Chanﬂel—%tfe-a-m—

© 2000 Edward A. Lee, UC Berkeley

oll

5. Strengths and Weaknesses
|

Strengths:
- Loose synchronization (distributable)
- Determinate under simple conditions
- Implementable under simple conditions
- Maps easily to threads, but much easier to use
- Turing complete (expressive)

Weaknesses:

- Control-intensive systems are hard to specify
- Bounded resources are undecidable

© 2000 Edward A. Lee, UC Berkeley

6. Dataflow
G

e A special case of process Examples:
networks where a process is « SPW,
made up of a sequence of * HP Ptolemy,
firings (finite, atomic « Cossap,
computations). . ..
actor

e Similar to Petri nets, but
ordering is preserved in

A
places. (; o= j
000

channel

© 2000 Edward A. Lee,

C Berkeley

ol2

6. Strengths and Weaknesses
|

Strengths:
- Good match for signal processing
- Loose synchronization (distributable)
- Determinate under simple conditions
- Special cases map well to hardware and embedded software

Weakness:
- Control-intensive systems are hard to specify

© 2000 Edward A. Lee, UC Berkeley

6. Special Case: SDF

G
Synchronous dataflow (SDF)

fire A{ fire B {
channel
produce N ‘ >. consume M
port port | ..

} }

e Balance equations (one for each channel):
FAN = FgM
e Schedulable statically
e Decidable resource requirements ¢ o0 Edward . Lee, UC Berkeley

el3

7. Rendezvous Models
@

e Events represent rendezvous Examples:
of a sender and a receiver. * CSP,
Communication is unbuffered * CCS,
and instantaneous. Occam,

e | otos,

e Often implicitly assumed

with “process algebra” or processy—g _
even “concurrent.” || ’a2'
B
b,.b,,

© 2000 Edward A. Lee, UC Berkeley

7. Strengths and Weaknesses
|

Strengths:
- Models resource sharing well
- Partial-order synchronization (distributable)
- Supports naturally nondeterminate interactions

Weaknesses:
- Oversynchronizes some systems
- Difficult to make determinate (and useful)
- Difficult to avoid deadlock

© 2000 Edward A. Lee, UC Berkeley

el4

Making Sense of the Options:
Component Interfaces

e Represent not just data types, but
interaction types as well.

value conversion

© 2000 Edward A. Lee, UC Berkeley

Approach - System-Level Types

Genraral

tri actor . ; . actor
/S v\/
Boolkean

Long Com lex represent interaction semantics
)Qubl as types on these ports.
e

Need a new type lattice representing

subclassing & ad-hoc convertibility.
© 2000 Edward A. Lee, UC Berkeley

NaT

el5

Our Hope -
Polymorphic Interfaces

actor

I. actor

/

polymorphic interfaces

© 2000 Edward A. Lee, UC Berkeley

More Common Approach -
Interface Synthesis

actor

protocol

\

acﬁr

V. actor

/

rigid, pre-defined interfaces

© 2000 Edward A. Lee, UC Berkeley

016

Receiver Object Model

0.1 0..n

IOPort

«Interface»

NoRoomException Receiver
NoTokenException|
thrgws
thrgws

+get() : Token

+getContainer() : IOPort
+hasRoom() : boolean

+hasToken() : boolean

I~ +put(t : Token) k3
+setContainer(port : IOPort)
T, T, T,
o\ o\ LI\
| ! |
_______ - FI e
|
|
1
«Interface»
Mailbox ProcessReceiver QueueReceiver DEReceiver SDFReceiver
T\ T, T,
"|\ "|\ "|\ 1.1 1.1
r___J r- L.I 1.1
| | |
L | 1
1.1 FIFOQueue ArrayFIFOQueue
CTReceiver CSPReceiver PNReceiver "

© 2000 Edward A. Lee, UC Berkeley

Receiver Interface

e get() : Token
e put(t : Token)
e hasRoom() : boolean
e hasToken() : boolean

The common interface makes it possible
to define components that operate in
multiple domains.

© 2000 Edward A. Lee, UC Berkeley

el7

SDF Receiver Type Signature

g/t
oL Input alphabet:

g: get
p: put
h: hasToken

p/V
Output alphabet:
Py . ot O: false

SDF1

1: true

t: token

v: void

e: exception

h/0 gle © 2000 Edward A. Lee, UC Berkeley

DE Receiver Type Signature

Input alphabet:

‘ . g: get
p: put
@. h: hasToken

This automaton simulates the previous one |
Put does not

DE1

0: false

necessarily
result in 1: true
immediate t: token
availability of V: void
the data. gle e: exception

piv © 2000 Edward A. Lee, UC Berkeley

el8

Type Lattice

Simulation relation ==——)

Simulation relation:

A relation between
state spaces so that
the upper machine
simulates the behavior
of the lower one.

© 2000 Edward A. Lee, UC Berkeley

Domain Polymorphism
|

Components have meaning in multiple domains.

- Make the inputs as general as possible

e Design to a receiver automaton that simulates that of several
domains.

- Make the outputs as specific as possible

e Design to a receiver automaton that is simulated by that of
several domains.

Resolve to the most specific design that meets all the constraints.

Formulation: Least fixed point of a monotonic
function on a type lattice.

© 2000 Edward A. Lee, UC Berkeley

el19

PN Receiver Type Signature

git h/1 Input alphabet:
h/1 g: ge't

p: put

h: hasToken

Output alphabet:
0: false
PV ? 1: true
t: token
v: void
e: exception
© 2000 Edward A. Lee, UC Berkeley

CSP Receiver Type Signature

Input alphabet:

. g: get
WO p: put
$
g

h: hasToken

Output alphabet:
0: false
1. true

h/0 t: token

v: void

e: exception

© 2000 Edward A. Lee, UC Berkeley

020

Type Lattice

Incomparable types:

PN and CSP are
incomparable with DE
and SDF. Does this
mean we cannot design
polymorphic
components? No, it
means we need to
design them to the
least upper bound.

© 2000 Edward A. Lee, UC Berkeley

Domain Polymorphic
Type Signature

Output alphabet:

0: false
Input alphabet: 1: true
g: get t: token
DP gle p: put v: void
plv h: hasToken e: exception

© 2000 Edward A. Lee, UC Berkeley

e21

Type Lattice

Constraints:

Actors impose
inequality constraints
w.r.t. this lattice.
Connectivity also
imposes constraints.
Find the least solution
that satisfies all
constraints.

Finding the bottom element
identifies a type conflict.

© 2000 Edward A. Lee, UC Berkeley

*Charts:

Exploiting Domain Polymorphism

XXX domain

Domain-polymorphic

EES

I

;FCM domain
| 4
<

compaonent interface

Modal mode

domain

© 2000 Edward A. Lee, UC Berkeley

022

Special Case: Hybrid Systems

Example: Two point
masses on springs on
a frictionless table.
They collide and stick
together.

The stickiness is exponentially decaying with respect to time.

© 2000 Edward A. Lee, UC Berkeley

Hybrid System: Block Diagram

CT domain
FSM domain

out =k, (y,in) - k"0, -in)

(<]

© 2000 Edward A. Lee, UC Berkeley

023

Ptolemy 11 Execution
.|

FEApplet Viewer: ptolemy.domains.ct.demo.StickyMasses.Sticky™Ma =101 x| Because Of dom ain
T fio | polymorphism,
Sticky Masses Lol Ptolemy Il can
il Thecs zresun = | COMbine FSMs
ey] hierarchically with
or] any other domain,
of] delivering models like
"] statecharts (with
zz | SR) and SDL (with
A N S N N N N process networks)
0 5} 10 18 20 Lﬂﬁf@}: 40 45 a0 and many Other
sreetion frished modal modeling
techniques.
© 2000 Edward A. Lee, UC Berkeley
Summary

e There is a rich set of component interaction models
e Hierarchical heterogeneity

e System-level types

e Domain polymorphism

© 2000 Edward A. Lee, UC Berkeley

024

Acknowledgements
.|

The entire Ptolemy project team contributed
immensely to this work, but particularly
- John Davis

- Chamberlain Fong

- Tom Henzinger

- Christopher Hylands

- Jie Liu

- Xiaojun Liu

- Steve Neuendorffer

- Neil Smyth

- Kees Vissers

- Yuhong Xiong

© 2000 Edward A. Lee, UC Berkeley

e25

