
1

MoBIES Working group meeting, 27-28 September 2001, Dearborn

Ptolemy II
The automotive challenge

problems version 4.1

Johan Eker
Edward Lee

with thanks to Jie Liu,
Paul Griffiths, and Steve Neuendorffer

Eker & Lee, UC Berkeley 2

Overview
Yellowstone recap
Selected challenge problems

1.1 Multiple-view modeling
1.2 Automated composition of subcomponents
3.3 Code generation

2

Eker & Lee, UC Berkeley 3

Yellowstone recap:
Design of embedded control systems

Different phases, different tools, different people
makes it difficult to debug:

Control engineer view
plant dynamics, stability, phase margins, rise time, etc.
assumes: equidistant sampling with no or little latency

Embedded system engineer view
scheduling, priorities, memory usage, communication
setup, etc
assumes: fixed controller design

A good toolset supports close interaction
between the different phases/teams
The only interesting performance metric is the
behavior of the controlled system

Eker & Lee, UC Berkeley 4

“Classical” development cycle
Sign-offs are expensive
Feedback slow

Specifications

Control algorithm
design

Control design
sign-off

Software design

Functional
testing

Software design
sign-off

3

Eker & Lee, UC Berkeley 5

Closing the
 “system design/control design” loop

system design

control design

hardware setup
communication
priorities
RTOS tuning

controller parameters
delay compensation
reviewing specs

evaluate system
performance

evaluate system
performance

Eker & Lee, UC Berkeley 6

Idealized Model

Assumes equidistant
sampling constant latency

More realistic model

Multitasking
jitter, execution time

RTOS domain

Communication
Transport, routing,

medium access

4

Eker & Lee, UC Berkeley 7

1.1 Multi-view modeling
Different granularity models

Level 1: Hybrid automata w/ cont. dynamics
Level 2: Discrete controllers and some scheduling info
Level 3: Platform specific info

Component refinement
Start with a naïve implementation and make it gradually
more complex

Ptolemy II
Component based
Hierarchical & heterogeneous
Functional behavior & control flow decoupled through
the use of directors
Composite actors treated like atomic

Eker & Lee, UC Berkeley 8

Multi-view modeling in Ptolemy II

continuous time

finite-state machine

discrete time

Hierarchical, heterogeneous model

5

Eker & Lee, UC Berkeley 9

Component refinement in Ptolemy II
Example model 1

Eker & Lee, UC Berkeley 10

Component refinement in Ptolemy II
Example model 2

6

Eker & Lee, UC Berkeley 11

Composite actors
From top level view: the behavioral semantics of
the component has not changed!

Aggregation not just syntactical
Composite actor is opaque

Eker & Lee, UC Berkeley 12

1.2 Automated composition
of sub-components

What is the actual problem?
Example: Many states and many signals in a Stateflow +
Simulink gets means and whole lot of wiring

Lack of proper aggregation!
Ptolemy addresses the problem through
hierarchy
Smarter editor vs. new languages

7

Eker & Lee, UC Berkeley 13

The ModalModel in Ptolemy II
Wiring of the state refinements is done
automatically,
All wires are hidden under the hood

Eker & Lee, UC Berkeley 14

3.3 Code generation

From Java to Java & Java to C at Maryland
Actor libraries are built and maintained in Java

polymorphic libraries are rich and small
Collapsing composite actors to atomic actors

Director + actors => actor
Efficiency gotten through code transformations

specialization of polymorphic types
code substitution using MoC semantics
removal of unnecessary code

8

Eker & Lee, UC Berkeley 15

Outline of our Approach
Model of Computation semantics defines communication, flow of control

Ptolemy II model

scheduler

Schedule:
 - fire Gaussian0
 - fire Ramp1
 - fire Sine2
 - fire AddSubtract5
 - fire SequenceScope10

parser

method call

if

block

method call

block

…

for (int i = 0; i < plus.getWidth(); i++) {

if (plus.hasToken(i)) {

if (sum == null) {

sum = plus.get(i);

} else {

sum = sum.add(plus.get(i));

}

}

}

…

All actors are
given in Java,
then translated
to embedded
Java, C, VHDL,
etc. target codeabstract syntax tree

Jeff Tsay,
Christopher Hylands,
Steve Neuendorffer

Eker & Lee, UC Berkeley 16

Conclusions

Hierarchically heterogeneous modeling matches
the applications well.
Component based technologies and hierarchical
heterogeneity gives good support for

Multi-view modeling
Piecewise refinement

Tool integration as a more fundamental problem
About designing the proper protocol for communication
between subsystems

