Controller Design Using Multiple
Models of Computation

Edward Lee
Johan Eker

with thanks to Paul Griffiths, Jie Liu, Xiaojun Liu,
Steve Neuendorffer, and Yuhong Xiong

MoBIES PI-Meeting, 16-18 July 2001, Jackson Hole

Overview

m Mixed signal control systems

m The throttle control system by Paul Griffith
= Modal controllers

m Extended throttle controller by Johan Eker
m Design patterns

m The use of domains and hierarchy

m Mixed signal models

= Modal models

m Code generation
m co-compilation




A Throttle Control System
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Throttle controller by Paul Griffiths
(Mobies Phase Il, UC Berkeley)

Top-level model
Continuous-time (CT) domain in Ptolemy I
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A Throttle Control System
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Result of
executing the
model shows
intial convergence
phase followed by
tracking with a
slight phase lag.
The control signal
chatters to
overcome friction.




Design Pattern:
Discrete Time in Continuous Time

Eker & Lee UC Berkelex 5

Control Engineer View

m plant dynamics in continuous time
m controller in discrete time
m focus on stability, phase margins, rise time...

m assume ideal sampling with no or little latency




Embedded System Engineer View

m dynamics modeled with RK-4, variable-step solver
m controller modeled in synthesizable SDF, FRP, ...
m focus on scheduling, memory, communication...

m assume fixed controller design
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A More Integrated Approach

m controller design informed by software issues
m domain-oriented modeling language
m modeling = implementation
m latency and jitter are part of the model

m software design informed by controller issues
m expressing timing constraints
m correct-by-construction synthesis
m heterogeneous modeling




Elaborated Throttle Control System
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Design Pattern: Modal Discrete-Time
Controller in Continuous Time
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Hierarchical, heterogeneous model




This is Still An Idealized Model
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Extend the ideal model

m Influence from implementation:
m Jitter
m Control delay

m Execution:
m Multitasking environment
m Incorporate the behavior of the RTOS

= Communication:
m Shared communication links
m Behavior of the network




A more accurate model
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Software Realism

m Express timing constraints
m sample rates
m latency
m jitter tolerances

®» Build models in appropriate abstractions
Giotto: time-triggered

HPM: hierarhical preemptive multitasking
FRP: functional-reactive programming

These facilitate correct-by-construction implementation




The Next Problem:

Synthesizing an Implementation
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Outline of our Approach

Jeff Tsay,

Ptolemy Il model

All actors are
given in Java,
then translated
to embedded
Java, C, VHDL,

elc. abstract syntax tree

Model of Computation semantics define

ommunication, fI?w of control

v
Schedule:
- fire Gaussian0
— - fire Rampl
scheduler | _fia sine2
- fire AddSubtract5

for (inti =0; i < plus.getWdth(); i+ {
if (plus. hasToken(i)) {
if (sum==null) {
sum = plus. get (i);
} else {
sum = sum add(pl us. get (1))

) f:\rgnf code




Division of Responsibility

= MoC semantics defines
m flow of control across actors
® communication protocols between actors
m Actors define:
m functionality of components
m Actors are compiled by a MoC-aware compiler
m generate specialized code for actors in context
m Hierarchy:

m Code generation at a level of the hierarchy produces a new
actor definition

We call this co-compilation.
Multiple domains may be used in the same model
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Software Progress

Build on:
m First version on Titanium (UC Berkeley)
m Second version on Soot (McGill)

Targeting:

m Simulation acceleration

m Embedded software synthesis
m Maryland subcontract

m Configurable hardware synthesis
m delegated to Brigham Young




Our Generator Approach

m Actor libraries are built and maintained in Java
m more maintainable, easier to write
m polymorphic libraries are rich and small

= Java + MoC translates to target language

m concurrent and imperative semantics

Efficiency gotten through code transformations

m specialization of polymorphic types

m code substitution using MoC semantics

m removal of unnecessary code
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Code transformations (data types)

/1 Original actor source
Token t1 = in.get(0);
Token t2 = in.get(1);

The Ptolemy Il type system
supports polymorphic actors with
propagating type constraints and
static type resolution. The
resolved types can be used in
optimized generated code.

/Il Wth specialized types
Int MatrixToken t1 = in.get(0);
IntMatrixToken t2 = in.get(1);

See Jeff Tsay, A Code Generation Framework for Ptolemy Il
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Type system by Yuhong Xiong

Type System
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Type System

m Extensible type lattice
m Knowledgeable users can add full-featured types
®m Unification infrastructure
m Finds a least fixed point
m Composite types
m records, arrays, matrices
m Higher-order types planned
m model = data
» Experiments with dependent types
m encoding MoC constraints

11



Code transformations (MoC-informed)

i /I Wth specialized types MoC-polymorphic code is
/-'H IntMatrixToken t1 = in. get(0): replaced with specialized code.
;_;:T, Int MatrixToken t2 = in.get(1);
e

I'L_i';“'f‘r out.send(0, t1.multiply(t2));

4 1 transformation using MoC semantics
TRt

Ty

r"'l /| Extended Java with specialized communication

I : int[][] t1 = _inbuf[0][_inCffset = (_inCffset+1)9%5];
_;-'* ,1 int[]J[] t2 = _inbuf[1][_inOfset = (_inOffset +1) %] ;
1T | outbuf[_outorfset = (_outOifset+1)9@] = t1 * t2;
g

L i

['7'.,,',. 8 See Jeff Tsay, A Code Generation Framework for Ptolemy I
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Synchronous Dataflow (SDF) Domain

e Balance equations (one for each channel):
FAN = FgM

e Scheduled statically

e Decidable resource requirements

73
8 11 Available optimizations:

!.T“ 1 e eliminate checks for input data

!_:: e statically allocate communication buffers

'_l—”‘ e statically sequence actor invocations (and inline?)
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Synchronous/Reactive Domain

A discrete model of time progresses as a
sequence of “ticks.” At a tick, the signals are
defined by a fixed point equation:

lasde ai(D)

J,' | 5. (2)
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i : Available optimizations:

St A \K‘ « Statically sequence fixed-point iteration
| = | . } c « Communication via registers
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Other Domains with Useful Properties
for Code Generation

m HPM (hierarchical preemptive multitasking)

m FRP (functional reactive programming — Yale)
m Finite state machines

£ m Discrete time

& |1 Good for hardware descriptions

g m Discrete events

Sk m Process networks

!_-;5 m Continuous time (analog hardware)
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Strong static analyzability
Giotto (time triggered)
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Hierarchical Heterogeneity

Ptolemy Il composes domains hierarchically,
f where components in a model can be refined
[h into subcomponents where the component
it interactions follow distinct semantics.
.
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Conclusions

Hierarchically heterogenous modeling matches
the applications well...

"":.l',‘f. Hierarchically heterogenous modeling appears to
-fll be suited to high-quality sythesis
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