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Overview

n Mixed signal control systems
n The throttle control system by Paul Griffith

n Modal controllers
n Extended throttle controller by Johan Eker

n Design patterns
n The use of domains and hierarchy
n Mixed signal models
n Modal models

n Code generation
n co-compilation
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A Throttle Control System

Throttle controller by Paul Griffiths 
(Mobies Phase II, UC Berkeley)

Top-level model
Continuous-time (CT) domain in Ptolemy II

Input: desired throttle angle (and derivatives)

discrete-time controller throttle model
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A Throttle Control System

Result of
executing the
model shows
intial convergence
phase followed by
tracking with a
slight phase lag.
The control signal
chatters to
overcome friction.
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Design Pattern:
Discrete Time in Continuous Time

Synchronous dataflow director
indicates a new model of
computation.

No director indicates no
new model of computation.
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Control Engineer View

n plant dynamics in continuous time

n controller in discrete time

n focus on stability, phase margins, rise time...

n assume ideal sampling with no or little latency
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Embedded System Engineer View

n dynamics modeled with RK-4, variable-step solver

n controller modeled in synthesizable SDF, FRP, …

n focus on scheduling, memory, communication...

n assume fixed controller design
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A More Integrated Approach

n controller design informed by software issues
n domain-oriented modeling language
n modeling = implementation
n latency and jitter are part of the model

n software design informed by controller issues
n expressing timing constraints
n correct-by-construction synthesis
n heterogeneous modeling
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Elaborated Throttle Control System
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Design Pattern: Modal Discrete-Time
Controller in Continuous Time

continuous time

finite-state machine

discrete time

Hierarchical, heterogeneous model
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This is Still An Idealized Model

No jitter, no delays
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Extend the ideal model

n Influence from implementation:
n Jitter
n Control delay

n Execution:
n Multitasking environment
n Incorporate the behavior of the RTOS

n Communication:
n Shared communication links
n Behavior of the network
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A more accurate model
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Software Realism

n Express timing constraints
n sample rates
n latency
n jitter tolerances

n Build models in appropriate abstractions
n Giotto: time-triggered
n HPM: hierarhical preemptive multitasking
n FRP: functional-reactive programming
n …

n These facilitate correct-by-construction implementation
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The Next Problem:
Synthesizing an Implementation
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Outline of our Approach

Model of Computation semantics defines communication, flow of control

Ptolemy II model

scheduler

Schedule:
 - fire Gaussian0
 - fire Ramp1
 - fire Sine2
 - fire AddSubtract5
 - fire SequenceScope10

parser

method call

if

block

method call

block

…
for (int i = 0; i < plus.getWidth(); i++) {
  if (plus.hasToken(i)) {
    if (sum == null) {
      sum = plus.get(i);
    } else {
      sum = sum.add(plus.get(i));
    }
  }
}
…

All actors are
given in Java,
then translated
to embedded
Java, C, VHDL,
etc. target codeabstract syntax tree

Jeff Tsay,
Christopher Hylands,
Steve Neuendorffer
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Division of Responsibility

n MoC semantics defines
n flow of control across actors
n communication protocols between actors

n Actors define:
n functionality of components

n Actors are compiled by a MoC-aware compiler
n generate specialized code for actors in context

n Hierarchy:
n Code generation at a level of the hierarchy produces a new

actor definition

We call this co-compilation.
Multiple domains may be used in the same model
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Software Progress

Build on:
n First version on Titanium (UC Berkeley)
n Second version on Soot (McGill)

Targeting:
n Simulation acceleration
n Embedded software synthesis

n Maryland subcontract

n Configurable hardware synthesis
n delegated to Brigham Young
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Our Generator Approach

n Actor libraries are built and maintained in Java
n more maintainable, easier to write
n polymorphic libraries are rich and small

n Java + MoC translates to target language
n concurrent and imperative semantics

n Efficiency gotten through code transformations
n specialization of polymorphic types
n code substitution using MoC semantics
n removal of unnecessary code
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Code transformations (data types)

// Original actor source
Token t1 = in.get(0);
Token t2 = in.get(1);
out.send(0, t1.multiply(t2)); 

specialization of Token declarations

// With specialized types
IntMatrixToken t1 = in.get(0);
IntMatrixToken t2 = in.get(1);
out.send(0, t1.multiply(t2)); 

The Ptolemy II type system
supports polymorphic actors with
propagating type constraints and
static type resolution. The
resolved types can be used in
optimized generated code.

See Jeff Tsay, A Code Generation Framework for Ptolemy II
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Type System

Output of type
general - pure event
with no value

Input of general type
- anything will do

Polymorphic output
- type depends on
the parametersdouble

general

int

general

double

Polymorphic actor
uses late binding in
Java to determine
implementation of
addition.

Opaque port - types
propagated from
inside

double

Lossless runtime
type conversion

Type system by Yuhong Xiong
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Type System

n Extensible type lattice
n Knowledgeable users can add full-featured types

n Unification infrastructure
n Finds a least fixed point

n Composite types
n records, arrays, matrices

n Higher-order types planned
n model = data

n Experiments with dependent types
n encoding MoC constraints
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Code transformations (MoC-informed)

transformation using MoC semantics

// With specialized types
IntMatrixToken t1 = in.get(0);
IntMatrixToken t2 = in.get(1);
out.send(0, t1.multiply(t2)); 

MoC-polymorphic code is
replaced with specialized code.

// Extended Java with specialized communication
int[][] t1 = _inbuf[0][_inOffset = (_inOffset+1)%5];
int[][] t2 = _inbuf[1][_inOffset = (_inOffset+1)%5];
_outbuf[_outOffset = (_outOffset+1)%8] = t1 * t2;

See Jeff Tsay, A Code Generation Framework for Ptolemy II
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Synchronous Dataflow (SDF) Domain

l  Balance equations (one for each channel):
FAN = FBM

l  Scheduled statically
l  Decidable resource requirements

Available optimizations:
l eliminate checks for input data
l statically allocate communication buffers
l statically sequence actor invocations (and inline?)

send(0,t) get(0)

token t
N MA

B
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Synchronous/Reactive Domain

n A discrete model of time progresses as a
sequence of “ticks.” At a tick, the signals are
defined by a fixed point equation:
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Available optimizations:
• Statically sequence  fixed-point iteration
• Communication via registers
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Other Domains with Useful Properties
for Code Generation

n Strong static analyzability
n Giotto (time triggered)
n HPM (hierarchical preemptive multitasking)
n FRP (functional reactive programming – Yale)
n Finite state machines
n Discrete time

n Good for hardware descriptions
n Discrete events
n Process networks
n Continuous time (analog hardware)
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Hierarchical Heterogeneity

P6 P3P2 P5P1
E1

E2

E4

E0

M: Manager

D1: local director

D2: local director

P4 P7

E3

E5

Opaque
Composite

Actor

Transparent
Composite

Actor

Ptolemy II composes domains hierarchically,
where components in a model can be refined
into subcomponents where the component
interactions follow distinct semantics.
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Conclusions

n Hierarchically heterogenous modeling matches
the applications well…

n Hierarchically heterogenous modeling appears to
be suited to high-quality sythesis


