
1

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley

System-Level Types for
Component-Based Design

Edward A. Lee
Yuhong Xiong

Presented at EMSOFT, Lake Tahoe, October 2001.

Lee & Xiong, 2

Outline

Component-based design
System-level types
Interface Automata
Interaction Types and Component Behavior
Type Checking
Type Order and Polymorphism
Design Tradeoffs
Conclusion

2

Lee & Xiong, 3

Component-Based Design
Good for designing complex, concurrent,
heterogeneous systems
Two levels of interface:

data types and
dynamic interaction

Key aspects of dynamic interaction:
communication & execution

Lee & Xiong, 4

Type Systems
Type systems are successful

Safety through type checking
Polymorphism supports reuse (flexible components)
Interface documentation, clarification
Run-time reflection of component interfaces

Data types only specify static aspects of interface

Proposal:
Capture the dynamic interaction of components in types
Obtain benefits analogous to data typing.
Call the result system-level types.

3

Lee & Xiong, 5

Interaction Semantics
Flow of control issues (“execution model” - Sifakis)

in Ptolemy II, these are defined by a Director class
Communication between components (“interaction model”)

in Ptolemy II, this is defined by a Receiver class

producer
actor

consumer
actor

IOPort

Receiver

Director

Actor interface for execution: fire
Receiver interface for communication: put, get, hasToken

Lee & Xiong, 6

Models of Computation
Define the interaction semantics
Implemented in Ptolemy II by a domain

Receiver + Director
Examples:

Communicating Sequential Processes (CSP): rendezvous-style
communication
Process Networks (PN):
asynchronous communication
Synchronous Data Flow (SDF):
stream-based communication, statically scheduled
Discrete Event (DE):
event-based communication
Synchronous/Reactive (SR):
synchronous, fixed point semantics

4

Lee & Xiong, 7

Receiver Object ModelIOPort

FIFOQueue

1..1

1..1

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

0..1 0..n

QueueReceiver

NoRoomException

throws
NoTokenException

throws

PNReceiver

«Interface»
ProcessReceiver

CSPReceiver

SDFReceiver

ArrayFIFOQueue

1..1
1..1

DEReceiverMailbox

CTReceiver

Lee & Xiong, 8

Formal Interaction Semantics:
Use Interface Automata

Automata-based formalism
Proposed by de Alfaro and Henzinger
Optimistic
Concise composition

Compatibility checking
Done by automata composition
Captures the notion “components can work together”

Alternating simulation (from Q to P)
All input steps of P can be simulated by Q, and
All output steps of Q can be simulated by P.
Provides the ordering we need for subtyping & polymorphism

A key theorem about compatibility and alternating
simulation

5

Lee & Xiong, 9

Example: SDF Consumer Actor

hasTokenhT
getg
Return from firefR

Return False from hasTokenhTF
Return True from hasTokenhTT
Tokent
firef

Inputs: Outputs:

Lee & Xiong, 10

Type Definition - SDFDomain

producer
actor

consumer
actor

IOPort

Receiver

Director

6

Lee & Xiong, 11

Type Definition - DEDomain

Lee & Xiong, 12

Component Behavior
SDF Consumer Actor

7

Lee & Xiong, 13

Type Checking
SDF Consumer Actor in SDFDomain

ComposeSDFDomain SDF Consumer Actor

Lee & Xiong, 14

Type Checking
SDF Consumer Actor in SDFDomain

8

Lee & Xiong, 15

Type Checking
SDFActor in DEDomain

Empty automata indicating incompatibility

ComposeDEDomain SDF Consumer Actor

Lee & Xiong, 16

Alternating Simulation
SDF to DE

SDFDomain DEDomain

≤

9

Lee & Xiong, 17

System-Level Type Order
Defined by Alternating Simulation

Analogous to subtyping
If an actor is compatible
with a certain type, it is
also compatible with the
subtypes

NaT

PN

SDF

DE

CSP

DP

Lee & Xiong, 18

Component Behavior
DomainPolymorphicActor

10

Lee & Xiong, 19

DomainPolymorphicActor is
Compatible with DEDomain

ComposeDEDomain Poly Actor

Lee & Xiong, 20

So it is also Compatible with
SDFDomain

Compose Poly ActorSDFDomain

11

Lee & Xiong, 21

Trade-offs in Type System Design

Amount of property checked vs. cost of checking

Static vs. run-time checking

Example of more static checking: deadlock
detection in Dining Philosopher model

Bottom line: static checking of communication
protocols a good starting point

Lee & Xiong, 22

Conclusion and Future Work
We capture dynamic property of component
interaction in a type system framework:
system-level types
We describe interaction types and component
behavior using interface automata.
We do type checking through automata
composition.
Subtyping order is given by the alternating
simulation relation, supporting polymorphism.
We can reflect component state in a run-time
environment, providing system-level reflection.

