
1

ACM SIGPLAN 2001 Workshop on Languages, Compilers, and Tools for
Embedded Systems (LCTES'2001) Jun 22-23, 2001, Snowbird, Utah, USA

Embedded Software from
Concurrent Component Models

Edward A. Lee
UC Berkeley

with
Shuvra Bhattacharyya, Johan Eker,

Christopher Hylands, Jie Liu, Xiaojun Liu,
Steve Neuendorffer, Jeff Tsay, and Yuhong Xiong

E. A. Lee, Berkeley, 2

View of SW Architecture:
Actors with Ports and Attributes

PortPort

Actor Actor
Link

Relation

Actor
Port

connection

connection co
nn

ec
tio

n

Link

Li
nk

Attributes Attributes

Attributes

Model of Computation:

• Messaging schema
• Flow of control
• Concurrency

Examples:

• Time triggered
• Process networks
• Discrete-event systems
• Dataflow systems
• Publish & subscribe

Key idea: The model of computation is part of the framework
within which components are embedded not part of the
components themselves.

2

E. A. Lee, Berkeley, 3

Actor View of Producer/Consumer
Components

Models of Computation:

• continuous-time
• dataflow
• rendezvous
• discrete events
• synchronous
• time-driven
• publish/subscribe
•…

 Actor

 IOPort
 IORelation

P2
P1

E1

E2

send(0,t) receiver.put(t) get(0)

token t
R1

Basic Transport:

 Receiver
(inside port)

E. A. Lee, Berkeley, 4

Examples of Actors+Ports
Software Architectures

Simulink (The MathWorks)
Labview (National Instruments)
OCP, open control platform (Boeing)
SPW, signal processing worksystem (Cadence)
System studio (Synopsys)
ROOM, real-time object-oriented modeling (Rational)
Port-based objects (U of Maryland)
I/O automata (MIT)
VHDL, Verilog, SystemC (Various)
Polis & Metropolis (UC Berkeley)
Ptolemy & Ptolemy II (UC Berkeley)
…

3

E. A. Lee, Berkeley, 5

What a Program Looks Like

Ptolemy II model of an embedded control system and the system
being controlled. This is a hierarchical, heterogeneous model
that combines four models of computation.

Model by Johan Eker

E. A. Lee, Berkeley, 6

Contrast with Object Orientation
Call/return imperative semantics

band-aids: futures, proxies, monitors
Poorly models the environment

which does not have call/return semantics
Concurrency is via ad-hoc calling conventions
Nothing at all to say about time

ComponentEntity
CompositeEntity

AtomicActor

CompositeActor

0..1
0..n

«Interface»
Actor

+getDirector() : Director
+getExecutiveDirector() : Director
+getManager() : Manager
+inputPortList() : List
+newReceiver() : Receiver
+outputPortList() : List

«Interface»
Executable

+fire()
+initialize()
+postfire() : boolean
+prefire() : boolean
+preinitialize()
+stopFire()
+terminate()
+wrapup()

Director

Object modeling
emphasizes inheritance
and procedural interfaces.

Actor modeling
emphasizes concurrency
and communication
abstractions.

4

E. A. Lee, Berkeley, 7

Hierarchy and Heterogeneity 1
Modal Models Model by Johan Eker

E. A. Lee, Berkeley, 8

Domains

Each level of the hierarchy may have its own
“laws of physics”

communication semantics
flow of control constraints

Domain
a region of the universe where a certain set of “laws of
physics” applies
Realizes a “model of computation”

5

E. A. Lee, Berkeley, 9

A Problem: Compiling these Models:
“Code generation”

E. A. Lee, Berkeley, 10

Outline of our Approach
Domain semantics defines communication, flow of control

Ptolemy II model

scheduler

Schedule:
 - fire Gaussian0
 - fire Ramp1
 - fire Sine2
 - fire AddSubtract5
 - fire SequenceScope10

parser

method call

if

block

method call

block

…

for (int i = 0; i < plus.getWidth(); i++) {

if (plus.hasToken(i)) {

if (sum == null) {

sum = plus.get(i);

} else {

sum = sum.add(plus.get(i));

}

}

}

…

All actors are
given in Java,
then translated
to embedded
Java, C, VHDL,
etc. target codeabstract syntax tree

Jeff Tsay,
Christopher Hylands,
Steve Neuendorffer

6

E. A. Lee, Berkeley, 11

Division of Responsibility

Domain semantics defines
flow of control across actors
communication protocols between actors

Actors define:
functionality of components

Hierarchy:
Code generation at a level of the hierarchy produces a
new actor definition

Multiple domains may be used in the same model

E. A. Lee, Berkeley, 12

Software Basis

Build on:
First version on Titanium (UC Berkeley)
Second version on Soot (McGill)

Targeting:
Simulation acceleration
Embedded software synthesis
Configurable hardware synthesis

7

E. A. Lee, Berkeley, 13

Our Generator Approach

Actor libraries are built and maintained in Java
more maintainable, easier to write
polymorphic libraries are rich and small

Java + Domain translates to target language
concurrent and imperative semantics

Efficiency gotten through code transformations
specialization of polymorphic types
code substitution using domain semantics
removal of unnecessary code

E. A. Lee, Berkeley, 14

Code transformations (data types)
// Original actor source

Token t1 = in.get(0);

Token t2 = in.get(1);

out.send(0, t1.multiply(t2));

specialization of Token declarations

// With specialized types

IntMatrixToken t1 = in.get(0);

IntMatrixToken t2 = in.get(1);

out.send(0, t1.multiply(t2));

The Ptolemy II type system
supports polymorphic actors
with propagating type
constraints and static type
resolution. The resolved types
can be used in optimized
generated code.

See Jeff Tsay, A Code Generation Framework for Ptolemy II

8

E. A. Lee, Berkeley, 15

Type System

Output of type
general - pure
event with no value

Input of general
type - anything will
do

Polymorphic output
- type depends on
the parametersdouble

general

int

general

double

Polymorphic actor
uses late binding in
Java to determine
implementation of
addition.

Opaque port -
types propagated
from inside

double

Lossless runtime
type conversion

Type system by Yuhong Xiong

E. A. Lee, Berkeley, 16

Type System

Extensible type lattice
Unification infrastructure

Finds a least fixed point
Composite types

records, arrays, matrices
Higher-order types planned
Experiments with dependent types

encoding domain constraints

9

E. A. Lee, Berkeley, 17

Code transformations (domains)

transformation using domain semantics

// With specialized types

IntMatrixToken t1 = in.get(0);

IntMatrixToken t2 = in.get(1);

out.send(0, t1.multiply(t2));

Domain-polymorphic code is
replaced with specialized
code.

// Extended Java with specialized communication

int[][] t1 = _inbuf[0][_inOffset = (_inOffset+1)%5];

int[][] t2 = _inbuf[1][_inOffset = (_inOffset+1)%5];

_outbuf[_outOffset = (_outOffset+1)%8] = t1 * t2;

See Jeff Tsay, A Code Generation Framework for Ptolemy II

E. A. Lee, Berkeley, 18

Synchronous Dataflow (SDF) Domain
 Balance equations (one for each channel):

FAN = FBM
 Scheduled statically
 Decidable resource requirements

Available optimizations:
eliminate checks for input data
statically allocate communication buffers
statically sequence actor invocations (and inline?)

send(0,t) get(0)

token t
N MA

B

10

E. A. Lee, Berkeley, 19

Synchronous/Reactive Domain
A discrete model of time progresses as a
sequence of “ticks.” At a tick, the signals are
defined by a fixed point equation:

A

C
B

x

y
z

x
y
z

f
f z
f x y

A t

B t

C t

L
N
MMM
O
Q
PPP
L

N
MMM

O

Q
PPP

,

,

,

()
()
(,)

1

Available optimizations:
• Statically sequence fixed-point iteration
• Communication via registers

E. A. Lee, Berkeley, 20

Other Domains with Useful Properties
for Code Generation

Strong static analyzability
Giotto (time triggered)
Finite state machines
Discrete time

Good for hardware descriptions
Discrete events
Process networks
Continuous time (analog hardware)

11

E. A. Lee, Berkeley, 21

Hierarchical Heterogeneity

P6 P3P2 P5P1
E1

E2

E4

E0

M: Manager

D1: local director

D2: local director

P4 P7

E3

E5

Opaque
Composite

Actor

Transparent
Composite

Actor

Ptolemy II composes domains hierarchically,
where components in a model can be refined
into subcomponents where the component
interactions follow distinct semantics.

E. A. Lee, Berkeley, 22

Hierarchical Code Generation

atomic actor definition

atomic actor definition
atomic actor definition

atomic actor definition

12

E. A. Lee, Berkeley, 23

Basic Object Model for
Executable Components

ComponentEntity
CompositeEntity

AtomicActor

CompositeActor

0..1
0..n

«Interface»
Actor

+getDirector() : Director
+getExecutiveDirector() : Director
+getManager() : Manager
+inputPortList() : List
+newReceiver() : Receiver
+outputPortList() : List

«Interface»
Executable

+fire()
+initialize()
+postfire() : boolean
+prefire() : boolean
+preinitialize()
+stopFire()
+terminate()
+wrapup()

Director

E. A. Lee, Berkeley, 24

Abstract Semantics –
How Components Interact
flow of control

Initialization
Execution
Finalization

communication
Structure of signals
Send/receive protocols

13

E. A. Lee, Berkeley, 25

Abstract Semantics –
How Components Interact
flow of control

Initialization
Execution
Finalization

communication
Structure of signals
Send/receive protocols

preinitialize()
declare static information, like
type constraints, scheduling
properties, temporal
properties, structural
elaboration

initialize()
initialize variables

E. A. Lee, Berkeley, 26

Abstract Semantics –
How Components Interact
flow of control

Initialization
Execution
Finalization

communication
Structure of signals
Send/receive protocols

iterate()

14

E. A. Lee, Berkeley, 27

Abstract Semantics –
How Components Interact
flow of control

Initialization
Execution
Finalization

communication
Structure of signals
Send/receive protocols

iterate()
prefire()
fire()
postfire()

stopFire()

E. A. Lee, Berkeley, 28

The Key Action Methods
Prefire()

obtain required resources
may read inputs
may start computations
returns a boolean indicating readiness

Fire()
produces results

Postfire()
commits state updates (transactional)

StopFire()
request premature termination

All of these are atomic (non-preemptible)

15

E. A. Lee, Berkeley, 29

Benefits
Composable semantics

arbitrarily deep hierarchies
heterogeneous hierarchies

controller plant

actuator
dynamics

sensor

task1

task2

TTA

TTA

Hierarchical, heterogeneous,
system-level model

E. A. Lee, Berkeley, 30

This Abstract Semantics
has Worked For

Continuous-time models
Finite state machines
Dataflow
Discrete-event systems
Synchronous/reactive systems
Time-driven models (Giotto)
…

We can even make it work for priority-driven
multitasking (RTOS style)!

Hybrid systems

16

E. A. Lee, Berkeley, 31

A Twist: Threaded Models
The Precise Mode Change Problem

How do you get
the processes
to a quiescent
state to take a
mode change?

thread or process

thread or process

thread or process

Problem posed by Boeing

E. A. Lee, Berkeley, 32

HPM Domain
Hierarchical Preemptive Multitasking

Objective:
support priority-driven preemptive scheduling
use atomic execution, to get composability
solve the precise mode change problem
make behavior (more) deterministic

Solution:
Atomic execution when possible
Façade to long-running processes when not

Split phase execution (read phase, write phase)

Domain by Jie Liu

17

E. A. Lee, Berkeley, 33

Atomic Façade to Long-Running
Computations

Each component
defines the interaction
between the atomic
façade and the long-
running process.

There are several useful
patterns:

allow task to complete
enforce declared timing
“anytime” computation
transactional

Declared time

OperationDispatcher

Atomic Facade

prefire()

ready
start

priority-driven
multitaskingrun other

atomic and
non-atomic
operations

fire()
produce
outputs

Task

join

postfire()
commit
statecontinue

produce outputs

read inputs

commit state

E. A. Lee, Berkeley, 34

Inter-domain example:
Shared-resource controllers

plant1

plant2

computer
controller1

controller2

Model by Jie Liu

18

E. A. Lee, Berkeley, 35

Conclusion
Systematic, principled, real-time, heterogeneous,
hierarchical composition of:

Processes and/or threads
Finite automata (mode controllers)
Other models of computation

Continuous-time models
Dataflow models
…

Code generation

The key is the abstract semantics of Ptolemy II, which
defines hierarchical heterogeneous composition of models
of computation.

http://ptolemy.eecs.berkeley.edu

