
1

SRC ETAB Summer Study
Colorado Springs, June 25-26, 2001

Model-Based Approaches to
Embedded Software Design

Edward A. Lee
UC Berkeley & GSRC

Edward A. Lee, Berkeley, 2

Why is Embedded Software an Issue
for Semiconductor Manufacturers?

Silicon without software is getting
rarer.

Time-to-volume is often dominated
by SW development.

Software requirements affect
hardware design.

Embedded SW design is getting
harder (networking, complexity).

Mainstream SW engineering is not
addressing embedded SW well.

prime
example

today

2

Edward A. Lee, Berkeley, 3

Why is Embedded SW not just
Software on Small Computers?

Interaction with physical processes
sensors, actuators, processes

Critical properties are not all functional
real-time, fault recovery, power, security, robustness

Heterogeneous
hardware/software, mixed architectures

Concurrent
interaction with multiple processes

Reactive
operating at the speed of the environment

These feature look more like hardware!

Edward A. Lee, Berkeley, 4

Why not Leave This Problem to the
Software Experts?
E.g. Object-Oriented Design

Call/return imperative semantics
Concurrency is via ad-hoc calling conventions

band-aids: futures, proxies, monitors
Poorly models the environment

which does not have call/return semantics
Little to say about time

ComponentEntity
CompositeEntity

AtomicActor

CompositeActor

0..1
0..n

«Interface»
Actor

+getDirector() : Director
+getExecutiveDirector() : Director
+getManager() : Manager
+inputPortList() : List
+newReceiver() : Receiver
+outputPortList() : List

«Interface»
Executable

+fire()
+initialize()
+postfire() : boolean
+prefire() : boolean
+preinitialize()
+stopFire()
+terminate()
+wrapup()

Director

Object modeling
emphasizes inheritance
and procedural interfaces.

We need to emphasize
concurrency,
communication, and
temporal abstractions.

3

Edward A. Lee, Berkeley, 5

Why not Leave This Problem to the
Software Experts (cont)?

E.g. Real-Time Corba
Component specification includes:

worst case execution time
typical execution time
cached execution time
priority
frequency
importance

This is an elaborate prayer…

Edward A. Lee, Berkeley, 6

Hardware Experts Have Something to
Teach to the Software World

Concurrency
the synchrony abstraction
event-driven modeling

Reusability
cell libraries
interface definition

Reliability
leveraging limited abstractions
leveraging verification

Heterogeneity
mixing synchronous and asynchronous designs
resource management

4

Edward A. Lee, Berkeley, 7

Alternative View of SW Architecture:
Actors with Ports and Attributes

PortPort

Actor Actor
Link

Relation

Actor
Port

connection

connection co
nn

ec
tio

n

Link

Li
nk

Attributes Attributes

Attributes

Model of Computation:

• Messaging schema
• Flow of control
• Concurrency

Examples:

• Synchronous circuits
•Time triggered
• Process networks
• Discrete-event systems
• Dataflow systems
• Publish & subscribe

Key idea: The model of computation is part of the framework
within which components are embedded rather than part of the
components themselves.

Edward A. Lee, Berkeley, 8

Examples of Actors+Ports
Software Architectures

VHDL, Verilog, SystemC (Various)
Simulink (The MathWorks)
Labview (National Instruments)
OCP, open control platform (Boeing)
SPW, signal processing worksystem (Cadence)
System studio (Synopsys)
ROOM, real-time object-oriented modeling (Rational)
Port-based objects (U of Maryland)
I/O automata (MIT)
Polis & Metropolis (UC Berkeley)
Ptolemy & Ptolemy II (UC Berkeley)
…

5

Edward A. Lee, Berkeley, 9

What an Embedded Program Might
Look Like

Edward A. Lee, Berkeley, 10

Simple Example: Controlling an
Inverted Pendulum with Embedded SW

The Furuta pendulum has
a motor controlling the
angle of an arm, from
which a free-swinging
pendulum hangs. The
objective is to swing the
pendulum up and then
balance it.

6

Edward A. Lee, Berkeley, 11

Metaphor for
Disk drive controllers
Manufacturing equipment
Automotive:

Drive-by-wire devices
Engine control
Antilock braking systems, traction control

Avionics
Fly-by-wire devices
Navigation
flight control

Certain “software radio” functions
Printing and paper handling
Signal processing (audio, video, radio)
…

Edward A. Lee, Berkeley, 12

Execution

An execution of the
model displays various
signals and at the bottom
produces a 3-D animation
of the physical system.

Model by Johan Eker

7

Edward A. Lee, Berkeley, 13

Top-Level Model

The top-level is a continuous-time model that specifies the
dynamics of the physical system as a set of nonlinear ordinary
differential equations, and encapsulates a closed loop controller.

Framework by Jie Liu

Edward A. Lee, Berkeley, 14

A Modal Controller

The controller
itself is modal,
with three modes
of operation,
where a different
control law is
specified for
each mode.

Framework by Xiaojun Liu

8

Edward A. Lee, Berkeley, 15

The Discrete Controllers

Three discrete
submodels
(dataflow
models) specify
control laws for
each of three
modes of
operation.

Framework by Steve Neuendorffer

Edward A. Lee, Berkeley, 16

This is System-Level Modeling
SRC funding in system-level modeling, simulation, and
design work 5-10 years ago has had demonstrable impact
via:

SystemC
VSIA standards efforts
Cadence SPW & VSS
Synopsys Cocentric Studio
Agilent ADS (RF + DSP)
…

Much of this work is now starting to address embedded
software issues.

9

Edward A. Lee, Berkeley, 17

The Key Idea

Components are actors with ports
Interaction is governed by a model of computation

flow of control
messaging protocols
non-functional properties (timing, resource management, …)

So what is a model of computation?

It is the “laws of physics” governing the interaction between
components
It is the modeling paradigm

Edward A. Lee, Berkeley, 18

Model of Computation

What is a component? (ontology)
States? Processes? Threads? Differential equations?
Constraints? Objects (data + methods)?

What knowledge do components share? (epistemology)
Time? Name spaces? Signals? State?

How do components communicate? (protocols)
Rendezvous? Message passing? Continuous-time signals?
Streams? Method calls? Events in time?

What do components communicate? (lexicon)
Objects? Transfer of control? Data structures? ASCII text?

10

Edward A. Lee, Berkeley, 19

Domains – Realizations of Models of
Computation

CSP – concurrent threads with rendezvous
CT – continuous-time modeling
DE – discrete-event systems
DDE – distributed discrete-event systems
DT – discrete time (cycle driven)
FSM – finite state machines
Giotto – time driven cyclic models
GR – graphics
PN – process networks
SDF – synchronous dataflow
xDF – other dataflow

 Each of these defines a component ontology and an interaction
semantics between components. There are many more
possibilities!

Edward A. Lee, Berkeley, 20

Domain

Domain

Domain

Hierarchical, Compositional Models

Actors with ports are
better than objects
with methods for
embedded system
design.

11

Edward A. Lee, Berkeley, 21

Heterogeneity – Hierarchical Mixtures
of Models of Computation

Modal Models
FSM + anything

Hybrid systems
FSM + CT

Mixed-signal systems
DE + CT
DT + CT

Complex systems
Resource management
Signal processing
Real time

Edward A. Lee, Berkeley, 22

Key Advantages

Domains are specialized
lean
targeted
optimizable
understandable

Domains are mixable (hierarchically)
structured
disciplined interaction
understandable interaction

12

Edward A. Lee, Berkeley, 23

Model = Design
We need modeling “languages” for humans to

realize complex functionality
understand the design
formulate the questions
predict the behavior

The issue is “model” or “design” not “hardware” or “software”

Invest in:
modeling “languages” for systems
finding the useful abstractions
computational systems theory
composable abstractions
expressing time, concurrency, power, etc.

Edward A. Lee, Berkeley, 24

Composing Systems
We need systematic methods for composing systems

component frameworks
composition semantics
on-the-fly composition, admission control
legacy component integration

Invest in:
methods and tools
reference implementations
semantic frameworks and theories
defining architectural frameworks
strategies for distribution, partitioning
strategies for controlling granularity and modularity

13

Edward A. Lee, Berkeley, 25

Transformations
We need theory of transformations between abstractions

relationships between abstractions
generators (transformers, synthesis tools)
multi-view abstractions
model abstractors (create reduced-order models)
abstractions of physical environments
verifiable transformations

Invest in:
open generator infrastructure (methods, libraries)
theories of generators
methods for correct by construction transformers
co-compilation

Edward A. Lee, Berkeley, 26

Conclusions

Semiconductor manufacturers should not ignore
embedded software.

Software experts are unlikely to solve the
embedded software problem on their own.

Actors with ports are better than objects with
methods for embedded system design.

Well-founded models of computation matter a
great deal, and specialization can help.

