
1

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley

Concurrent Component Patterns,
Models of Computation, and Types

Edward A. Lee
Yuhong Xiong

Presented at Fourth Annual Workshop on New Directions
in Software Technology (NDIST�01), St. John, US Virgin Islands, December 2001.

E. A. Lee, UC Berkeley 2

Pattern-Related Questions
! Are components active? If passive, how are they activated?

! event driven
! dataflow
! time driven
! synchronous

! How are multiple sources of stimulus merged?
! nondeterministic merge
! round robin
! priorities
! time stamps

! Are communications synchronous?
! synchronous method calls
! thread rendezvous
! asynchronous with futures
! asynchronous with feedback

2

E. A. Lee, UC Berkeley 3

View of Concurrent Components:
Actors with Ports and Attributes

PortPort

Actor Actor
Link

Relation

Actor
Port

connection

connection co
nn

ec
tio

n

Link

Li
nk

Attributes Attributes

Attributes

Model of Computation:

� Messaging schema
� Flow of control
� Concurrency

Key idea: The model of computation is part of the framework
within which components are embedded not part of the
components themselves. It enforces patterns.

E. A. Lee, UC Berkeley 4

Actor View of Producer/Consumer
Components

Models of Computation:

� continuous-time
� dataflow
� rendezvous
� discrete events
� synchronous
� time-driven
� publish/subscribe
��

 Actor

 IOPort
 IORelation

P2
P1

E1

E2

send(0,t) receiver.put(t) get(0)

token t
R1

Basic Transport:

 Receiver
(inside port)

3

E. A. Lee, UC Berkeley 5

Examples of Actor-Oriented
Component Frameworks

! Simulink (The MathWorks)
! Labview (National Instruments)
! OCP, open control platform (Boeing)
! SPW, signal processing worksystem (Cadence)
! System studio (Synopsys)
! ROOM, real-time object-oriented modeling (Rational)
! Port-based objects (U of Maryland)
! I/O automata (MIT)
! VHDL, Verilog, SystemC (Various)
! Polis & Metropolis (UC Berkeley)
! Ptolemy & Ptolemy II (UC Berkeley)
! �

E. A. Lee, UC Berkeley 6

Contrast with Object Orientation
! Call/return imperative semantics
! Concurrency is realized by ad-hoc calling conventions
! Patterns are supported by futures, proxies, monitors

ComponentEntity
CompositeEntity

AtomicActor

CompositeActor

0..1
0..n

«Interface»
Actor

+getDirector() : Director
+getExecutiveDirector() : Director
+getManager() : Manager
+inputPortList() : List
+newReceiver() : Receiver
+outputPortList() : List

«Interface»
Executable

+fire()
+initialize()
+postfire() : boolean
+prefire() : boolean
+preinitialize()
+stopFire()
+terminate()
+wrapup()

Director

Object orientation
emphasizes inheritance
and procedural interfaces.

Actor orientation
emphasizes concurrency
and communication
abstractions.

4

E. A. Lee, UC Berkeley 7

Actor Orientation with a Visual Syntax

Ptolemy II is an experimental framework supporting exploration
of concurrent component models of computation.

Model by Jie Liu

E. A. Lee, UC Berkeley 8

Realization of a Model of Computation
is a �Domain� in Ptolemy II

! The �laws of physics� of component interaction
! communication semantics
! flow of control constraints

In astrophysics: a �domain� is a region of the
universe where a certain set of �laws of physics�
applies.

! Multiple domains may be combined hierarchically
! depends on the concept of �domain polymorphism�

5

E. A. Lee, UC Berkeley 9

Ptolemy II Domains
! Define the flow(s) of control

! �execution model�
! Realized by a Director class

! Define communication between components
! �interaction model�
! Realized by a Receiver class

producer
actor

consumer
actor

IOPort

Receiver

Director

E. A. Lee, UC Berkeley 10

Example Domains
! Communicating Sequential Processes (CSP):

rendezvous-style communication
! Process Networks (PN):

asynchronous communication, determinism
! Synchronous Data Flow (SDF):

stream-based communication, statically scheduled
! Discrete Event (DE):

event-based communication
! Synchronous/Reactive (SR):

synchronous, fixed point semantics
! Time Driven (Giotto):

synchronous, time-driven multitasking
! Timed Multitasking (TM):

priority-driven multitasking, deterministic communication

6

E. A. Lee, UC Berkeley 11

Receiver Object ModelIOPort

FIFOQueue

1..1

1..1

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

0..1 0..n

QueueReceiver

NoRoomException

throws
NoTokenException

throws

PNReceiver

«Interface»
ProcessReceiver

CSPReceiver

SDFReceiver

ArrayFIFOQueue

1..1
1..1

DEReceiverMailbox

CTReceiver

E. A. Lee, UC Berkeley 12

Receiver Interface
«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

These polymorphic methods
implement the communication
semantics of a domain in Ptolemy
II. The receiver instance used in
communication is supplied by the
director, not by the component.

producer
actor

consumer
actor

IOPort

Receiver

Director

7

E. A. Lee, UC Berkeley 13

Behavioral Types �
Codification of Domain Semantics
! Capture the dynamic interaction of components in types
! Obtain benefits analogous to data typing.
! Call the result behavioral types.

producer
actor

consumer
actor

IOPort

Receiver

Director

! Communication has
! data types
! behavioral types

! Components have
! data type signatures
! domain type signatures

! Components are
! data polymorphic
! domain polymorphic

E. A. Lee, UC Berkeley 14

Second Version of a
Behavioral Type System
! Based on Interface automata

! Proposed by de Alfaro and Henzinger
! Concise composition (vs. standard automata)
! Alternating simulation provides contravariance

! Compatibility checking
! Done by automata composition
! Captures the notion �components can work together�

! Alternating simulation (from Q to P)
! All input steps of P can be simulated by Q, and
! All output steps of Q can be simulated by P.
! Provides the ordering we need for subtyping & polymorphism

! Key theorem about compatibility and alternating simulation

8

E. A. Lee, UC Berkeley 15

Example: Synchronous Dataflow (SDF)
Consumer Actor Type Definition

hasTokenhT
getg
Return from firefR

Return False from hasTokenhTF

Return True from hasTokenhTT
Tokent
firef

Inputs:
Outputs:

Such actors are
passive, and
assume that input
is available when
they fire.

execution
interface

communication
interface

E. A. Lee, UC Berkeley 16

Type Definition �
Synchronous Dataflow (SDF) Domain

producer
actor

consumer
actor

IOPort

Receiver

Directorreceiver
interface

director
interface

9

E. A. Lee, UC Berkeley 17

Type Checking � Compose
SDF Consumer Actor with SDF Domain

Compose
SDF Domain SDF Consumer Actor

E. A. Lee, UC Berkeley 18

Type Definition �
SDF Consumer Actor in SDF Domain

1. receives
token from
producer

interface to
producer actor

2. accept
token

3. internal
action: fire
consumer

4. internal
action: call
get()

5. internal
action: get
token

6. internal
action: return
from fire

10

E. A. Lee, UC Berkeley 19

Type Definition �
Discrete Event (DE) Domain

This domain may fire actors
without first providing inputs

E. A. Lee, UC Berkeley 20

Recall Component Behavior
SDF Consumer Actor

1. is fired
2. calls get()
3. gets a token
4. returns

11

E. A. Lee, UC Berkeley 21

Type Checking � Compose
SDF Consumer Actor with DE Domain

! Empty automaton indicates incompatibility
! Composition type has no behaviors

ComposeDE Domain SDF Consumer Actor

E. A. Lee, UC Berkeley 22

Subtyping Relation
Alternating Simulation: SDF ≤ DE

SDF Domain DE Domain

≤

12

E. A. Lee, UC Berkeley 23

System-Level Type Lattice �
Defined by Alternating Simulation

! Consumer actor types
! Subtyping relation
! Shown here for a few

Ptolemy II domains

If an actor is compatible
with a certain type, it is
also compatible with the
subtypes

unknown

PN

SDF

DE

CSP

DP

discrete
events

synchronous
dataflow

unknown

process
networks

communicating
sequential
processes

domain
polymorphic

E. A. Lee, UC Berkeley 24

Type Definition �
Domain Polymorphic Consumer Actor

1. is fired 2. calls
hasToken()

3. true

3. false

4. return

4. call get()

5. get
token

6. return

This actor checks for token availability before
attempting to get the token.

13

E. A. Lee, UC Berkeley 25

Domain Polymorphic Actor
Composes with the DE Domain

ComposeDE Domain Poly Actor

E. A. Lee, UC Berkeley 26

Domain Polymorphic Actor Also
Composes with the SDF Domain

Compose
Poly ActorSDF Domain

14

E. A. Lee, UC Berkeley 27

Conclusion
! We capture patterns of component interaction in

a type system framework: behavioral types

! We describe interaction types and component
behavior using interface automata.

! We do type checking through automata
composition.

! Subtyping order is given by the alternating
simulation relation, supporting polymorphism.

E. A. Lee, UC Berkeley 28

More Speculative
! We can reflect component dynamics in a run-time

environment, providing behavioral reflection.
! admission control
! run-time type checking
! fault detection, isolation, and recovery (FDIR)

! Timed interface automata may be able to model
real-time requirements and constraints.
! checking consistency become a type check
! generalized schedulability analysis

